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a b s t r a c t

A general unsteady adjoint formulation is applied to a hybrid acoustic prediction algorithm to provide an
efficient far-field noise minimization algorithm. Two-dimensional unsteady Navier–Stokes (NS) compu-
tations for calculating the properties of acoustic sources are combined with the Ffowcs Williams and
Hawkings (FW–H) wave propagation formulation to calculate the resulting far-field noise. Two different
time-marching methods, namely an implicit multi-stage and an implicit multi-step method, are used for
time discretization. The hybrid NS/FW–H solver is verified by comparison to an analytical solution and a
Navier–Stokes solution. A discrete-adjoint Newton–Krylov algorithm is used to enable gradient-based
shape optimization to minimize far-field noise computed using the hybrid solver. Objective functions
considered include remote inverse shape designs for verification as well as the far-field pressure fluctu-
ations for a blunt trailing edge airfoil in an unsteady turbulent flow environment. The examples pre-
sented demonstrate that the combination of a discrete-adjoint Newton–Krylov algorithm with a hybrid
NS/FW–H far-field noise prediction method can be an efficient design tool for reducing aerodynamically
generated noise.

Crown Copyright � 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction and motivation

Airframe-generated noise is an important component of the to-
tal noise radiated from commercial aircraft, especially during air-
craft approach and landing, when engines operate at reduced
thrust, and airframe components (such as high-lift devices) are in
the deployed state [1–4]. Future Federal Aviation Administration
noise regulations, the projected growth in air travel, and the in-
crease in population density near airports will require future civil
aircraft to be substantially quieter than the current ones. Conse-
quently, the attempt to understand and reduce airframe noise
has become an important research topic [5].

A typical approach to tackle airframe-generated noise computa-
tions is to calculate the computational fluid dynamics (CFD) solu-
tion on a reasonable mesh that does not extend too far from the
aircraft. A near-field plane or surface within the computational
mesh can then serve as an interface between the CFD solution
and a wave propagation program [6–8]. Such a program is able
to model the wave propagation and to calculate the pressure fluc-
tuations at a user specified ground plane which can then be used as
a measure of the airframe-generated noise (see Fig. 1). Such hybrid
acoustic predictions have been suggested about thirty years ago
[6]. Several prediction methodologies for far-field signals based
on near-field inputs with a solid physical and mathematical basis
010 Published by Elsevier Ltd. All r
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are currently available. The most popular among them are the Kir-
chhoff approach [9,10] and the Ffowcs Williams and Hawkings
(FW–H) approach [11], which is based on the Lighthill acoustic
analogy [12]. The FW–H equation is analytically superior for aero-
acoustics because it is based upon the conservation laws of fluid
mechanics rather than the wave equation [13] which means that
the FW–H equation is still valid if the near-field surface is in the
non-linear flow region. The Kirchhoff approach can lead to sub-
stantial errors if this surface is not positioned in the linear region
[13,14]. The main difficulty in solving the FW–H equation in two
dimensions is the semi-infinite time integral that arises when
using the appropriate two-dimensional Green function in the
time-domain [15]. This ‘‘tail effect” requires an infinitely long time
to account for all contributions of the sources and is thus infeasi-
ble. However, the FW–H equation can be transformed into the fre-
quency-domain to avoid this problem [16,15] and this approach is
the wave propagation formulation of choice in this work.

Examples of hybrid predictions with the unsteady Reynolds-
averaged Navier–Stokes (URANS) equations can be found in the
literature for a supersonic cavity flow [17], radiated sound for a
circular cylinder [18], and more recently for a slat trailing-edge
flow [19–22]. Singer et al. [20] compared two- and three-dimen-
sional hybrid NS/FW–H solutions for slat far-field noise and dem-
onstrated the usefulness of the two-dimensional results, which
gave the correct features of the radiated sound, but overpredicted
the amplitude. Choudhari et al. [23] also stated that the two-
dimensional approach should be sufficient for the purpose of
understanding the basic noise generation mechanisms and
ights reserved.
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Fig. 1. Schematic of the propagation of the aircraft pressure signature.
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determining the effect of Mach number and angle of attack
changes. This implies that two-dimensional hybrid NS/FW–H sim-
ulations can be used to find trends, even though they do not repre-
sent all of the underlying physics exactly. Eventually one should
use three-dimensional computations and large eddy simulations
(LES) or at least a hybrid NS/LES approach to capture the near-field
physics more exactly. However, for the current state-of-the-art
computers, such simulations are very time-consuming and hence
are not yet commonly used in the context of optimization. Since
unsteady two-dimensional Navier–Stokes simulations are much
cheaper and do a reasonable job of modeling vortex shedding
caused by trailing-edge bluntness [24], which is the investigated
test case here, we use them as our physical model in order to dem-
onstrate and evaluate our algorithm. The 2D URANS model is used
as an example, but the algorithm extends directly to three dimen-
sions and LES or hybrid NS/LES.

The objective of this paper is to present and evaluate an efficient
adjoint-driven gradient-based optimization algorithm to minimize
far-field noise computed using a two-dimensional hybrid NS/FW–
H solver. We employ a general framework to derive a discrete
adjoint method for the optimal control of unsteady flows previously
developed by the authors [25,26] with a Newton–Krylov approach to
optimization [27,28] which together yield a very efficient optimiza-
tion algorithm. Other researchers have also developed the capability
of doing unsteady optimization using the adjoint method [29–33].
The main contributions of this work are the first application of an
adjoint method for gradient evaluation to a hybrid NS/FW–H solver
and a higher-order implicit time-marching method.

The organization of this paper is as follows. In Section 2 the
hybrid NS/FW–H solver is presented and verified. Section 3 gives
an overview of our unsteady optimization procedure and Section
4 presents the computational results using the novel hybrid
NS/FW–H optimization algorithm. Finally, Section 5 concludes this
paper.

2. Hybrid NS/FW–H solver

The implementation of our two-dimensional hybrid NS/FW–H
solver is described in detail in this section. Section 2.1 describes
the Navier–Stokes solver, and the two-dimensional FW–H solver
is presented in Section 2.2. The FW–H solver and the combined hy-
brid NS/FW–H solver are verified in Section 2.3.

2.1. Navier–Stokes solver

The unsteady compressible two-dimensional thin-layer Navier–
Stokes equations are solved using a well-validated Newton–Krylov
algorithm [34,28]. The algorithm has recently been extended to
Please cite this article in press as: Rumpfkeil MP, Zingg DW. A hybrid algorit
j.compfluid.2010.05.006
unsteady flows with published verification and validation
[35,26,36]. The equations are solved in generalized coordinates
using a spatial discretization based on ARC2D [37], which consists
of second-order centered-difference operators with second- and
fourth-difference scalar artificial dissipation. For turbulent flows,
eddy viscosity is computed using the Spalart–Allmaras turbulence
model [38]. Second-order accurate time-marching is achieved
through the backwards difference (BDF2) method covering a time
interval [0,T]. The time-dependent flow solution Qn for
n = 1, . . . ,N is then implicitly defined via

RnðQn;Q n�1;Q n�2;YÞ :¼ dQn

dt
þ RðQn;YÞ

¼ 3Q n � 4Q n�1 þ Q n�2

2Dt
þ RðQ n;YÞ ¼ 0; ð1Þ

where R = R(Qn,Y) contains the spatially discretized convective and
viscous fluxes as well as the boundary conditions and turbulence
model, and Y are design variables used in the optimization process.
N can be calculated from the relation T = NDt, where Dt is the cho-
sen time discretization step. For higher order accuracy in time we
use the explicit first stage, single diagonal coefficient, diagonally
implicit Runge–Kutta scheme of fourth-order (ESDIRK4) developed
by Bijl, Carpenter and Vatsa [39]. It is implemented in our codes as a
five-stage process [35]:

Rn
kðQ

n
k ; . . . ;Qn

2;Q
n�1Þ :¼ Q n

k � Q n�1

akkDt
þ RðQ n

kÞ þ
1

akk

Xk�1

j¼1

akjRðQn
j Þ ¼ 0

for k ¼ 2; . . . ;6: ð2Þ

Here Qn
k is the solution for the next time step n at stage k, given

the solutions at the previous time level Qn�1 and previous stages
Qn

j with j = 1, . . . ,k � 1. The sixth and last stage gives the solution
at the new time level, that is Q n :¼ Q n

6. The terms akj are the Butch-
er coefficients for the scheme, which are given in Appendix A.

We use an inexact Newton strategy [35,34] to drive the discret-
ized unsteady flow residual Rn to 10�10 at each time step n (or
stage k for ESDIRK4). The main components of this strategy include
the matrix-free generalized minimum residual (GMRES) method
[40] and an incomplete lower-upper factorization [41] ILU(k) right
preconditioner with a fill level of k = 4 to inexactly solve the linear
system which results from applying Newton’s method to the root
finding problem for the unsteady flow residuals. The precondition-
er is based on a first-order approximation of the flow Jacobian ma-
trix, and the matrix–vector products required at each GMRES
iteration are formed in a Jacobian-free manner with first-order fi-
nite differences.

2.2. FW–H solver

With the unsteady CFD solution in the near-field surface points
ys ¼ ðys1

; ys2
Þ (given by f(ys) = 0 such that @f

@yi
¼ ni is the unit normal

vector that points into the fluid) as an input, the FW–H equation
after a Galilean transformation can be written as [15]:

@2

@t2 þ UiUj
@2

@yi@yj
þ 2Uj

@2

@yj@t
� a2

1
@2

@y2
i

( )
½q0Hðf Þ�

¼ @

@t
½Qdðf Þ� � @

@yi
½Fidðf Þ� þ

@2

@yi@yj
½TijHðf Þ�: ð3Þ

Here, the monopole term Q, dipole term Fi, and quadrupole
term or Lighthill stress tensor Tij are defined as

Qðys; tÞ ¼ qujnj; ð4Þ
Fiðys; tÞ ¼ ½qðui � 2UiÞuj þ pdij � sij�nj; ð5Þ
Tijðys; tÞ ¼ qðui � UiÞðuj � UjÞ þ ðp� a2

1qÞdij; ð6Þ
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Fig. 2. Directivity comparison at r = 500 m.
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where q ¼ q1 þ q0; ui ¼ Ui þ u0i and p = p1 + p0 are the total density,
velocity and pressure, respectively. Free-stream quantities are indi-
cated by the subscript 1, Ui are the components of the uniform
mean velocity, and a prime denotes a perturbation from the mean.
The Cartesian coordinates and time are yi and t, respectively, dij is
the Kronecker delta, H(f) is the Heaviside function, and repeated
indices follow the usual Einstein summation convention.

After a Fourier transformation of Eq. (3) and some simplifica-
tions, the far-field pressure fluctuations in the frequency-domain
at an observer position yo ¼ ðyo1

; yo2
Þ for M < 1 can be calculated

from [15]:

p0ðxo;xÞ ¼ �
I

f¼0
ixQðys;xÞGðyo; ys;xÞdl

�
I

f¼0
Fjðys;xÞ

@Gðyo; ys;xÞ
@yj

dl

�
Z

f>0
Tjkðys;xÞ

@2Gðyo; ys;xÞ
@yj@yk

dy; ð7Þ

with the two-dimensional free-space Green function given by

Gðyo; ys;xÞ ¼
i

4b
exp iM1kr1=b

2� �
� Hð2Þ0

k

b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ b2r2
2

q� �
; ð8Þ

where

r1 ¼ ðyo1
� ys1

Þ cos hþ ðyo2
� ys2

Þ sin h; ð9Þ
r2 ¼ �ðyo1

� ys1
Þ sin hþ ðyo2

� ys2
Þ cos h: ð10Þ

The angle h is defined via tanh = U2/U1, Hð2Þ0 is the Hankel func-
tion of the second kind of order zero, k = x/a1 is the wavenumber,

M1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1 þ U2
2

q
=a1 and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

1

q
is the Prandtl–Glauert

factor. The quadrupole term is neglected due to its small contribu-
tions relative to the other terms for the type of flows investigated
in this paper. Furthermore, we let near-field surface points ys coin-
cide with grid nodes and apply a fast Fourier transformation (FFT)
to the monopole and dipole terms. The Green function and its
derivatives are calculated analytically and the line integrals are
computed using the trapezoidal rule.

2.3. Noise prediction verification

In order to verify the program code for solving the two-dimen-
sional FW–H equation in the frequency-domain, two cases are pre-
sented. In the first case, the results for the far-field pressure
fluctuations are compared to a well-known analytical solution. In
the second case, a direct comparison between the FW–H output
and that obtained from a CFD simulation is performed to gauge
the validity of the formulation for airframe-generated noise.

2.3.1. Monopole in uniform flow
The verification case considered is the acoustic field from a

monopole line source. Greschner et al. [42] and Lockard [15] used
very similar verification cases. The complex velocity potential for a
stationary monopole source placed at the origin in a uniform flow
with velocity Ui and a flow angle tanh = U2/U1 can be written as

/ðy1; y2; tÞ ¼Aðy1; y2; tÞH
ð2Þ
0

k

b2
�r

� �
; ð11Þ

with

Aðy1; y2; tÞ ¼ A
i

4b
expðixt þ iM1k�x=b2Þ; ð12Þ

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ b2�y2

q
; ð13Þ

�x ¼ y1 cos hþ y2 sin h; ð14Þ
�y ¼ �y1 sin hþ y2 cos h; ð15Þ
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where A is the amplitude of the source signal. The perturbation vari-
ables needed to calculate the monopole and dipole source terms are
obtained from the real parts of [42]

p0 ¼ p� p1 ¼ �q1
@/
@t
þ U1

@/
@y1
þ U2

@/
@y2

� �
; ð16Þ

u0i ¼ ui � Ui ¼
@/
@yi

; ð17Þ

q0 ¼ q� q1 ¼
p0

a2
1
: ð18Þ

The source terms are calculated from these flow variables eval-
uated over one period TP = 2p/x on the near-field integration sur-
face, which is a circle with a radius of 2 m. One hundred uniformly
spaced points on this circle are used as source locations. For this
example,

A ¼ 0:01 m2=s; M1 ¼ 0:5; x ¼ 3000:0 rad=s;

h ¼ 20�; p1 ¼ 1:00016� 105 Pa; T1 ¼ 300 K:

Fig. 2 compares the directivity from the FW–H calculation to the
analytical solution in the far-field at r = 500 m. The agreement is
excellent, demonstrating that the two-dimensional FW–H formu-
lation is verified for problems with a uniform mean flow.

2.3.2. Airfoil in laminar flow
As a verification case, a direct comparison between the pressure

fluctuations calculated via the FW–H approach and those obtained
from a CFD simulation is performed at three distinct locations with
increasing distance from an airfoil. The laminar flow over the sin-
gle-element NACA 0012 airfoil with a Reynolds number of 800, a
free stream Mach number of 0.2 and an angle of attack of 20� is
considered. At these conditions the airfoil experiences vortex shed-
ding. A very fine C-mesh with 848 � 395 nodes for high accuracy
and a small non-dimensional time step of Dt = 0.03 are used with
BDF2. After the flow solver has reached a periodic steady state,
1800 time steps are taken, which cover about six vortex shedding
cycles, and the solution is recorded. The fictitious or permeable
FW–H integration surface consists of one of the streamwise grid
lines located at about 0.015c away from the airfoil, and the surface
is closed at the trailing edge with one of the existing vertical grid
lines.

The extracted CFD pressure fluctuations and those computed
using the FW–H solver are plotted in Fig. 3 for the three probe loca-
tions. The wavelength of the dominant tone of this quasi point
hm for far-field noise minimization. Comput Fluids (2010), doi:10.1016/
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source is given in non-dimensional units (chord lengths) by
k = a1 � TP � 1 � 9.2 = 9.2. In two dimensions one expects that the
sound intensity, which itself is proportional to the square of the
sound pressure, is inversely proportional to the distance of an
acoustic point source. This distance law is almost perfectly fulfilled
by the pressure fluctuations which are calculated with the FW–H
approach.

Comparing the pressure fluctuations probe location by probe
location, one can make the following observations: At probe loca-
tion 2, which is about 2c below the airfoil, the two pressure records
are almost identical, except for the beginning and end of the data,
where a window function [15] (required to make the input data
periodic) tarnishes the result from the FW–H approach.

The agreement in the first probe location (less than 1c below) is
also fairly good, except for the underprediction of the amplitude by
the FW–H calculation. The very strong wake passing through the
FW–H surface can cause errors [43] and might explain this discrep-
ancy. Another possible explanation is that the quality of the input
data to the FWH prediction code is not accurate enough. The CFD
results at probe location 3 (30c below) are basically useless due
to the coarser grid this far away from the airfoil, and it is apparent
that an accurate propagation of the pressure signatures to the far-
field for moderate cost is only achievable with an acoustic wave
propagation code.

3. Outline of unsteady optimization algorithm

Our unsteady optimization procedure is as follows. First, the
governing flow equations are solved as described in Section 2.1.
Once the time-dependent flow solution Qn has been calculated
and stored for n = 1, . . . ,N, a discrete cost function J is evaluated

J ¼
XN

n¼1

InðQ n; YÞ; ð19Þ

where the function In = In(Qn,Y) depends on Qn and design variables
Y. In our case the evaluation of the cost function is fairly involved
since Qn is the input to the FW–H solver (see Section 2.2) which
Fourier transforms computed monopole and dipole terms, calcu-
lates the line integrals given by Eq. (7) and inverse Fourier trans-
forms the resulting pressure fluctuations in the observer locations.

Next, the appropriate adjoint equations (given in Appendix A for
both time-marching methods) are solved by going backward in
time. The Bi-CGSTAB algorithm [44] is used to solve the linear ad-
Please cite this article in press as: Rumpfkeil MP, Zingg DW. A hybrid algorit
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joint equations with an absolute convergence tolerance of 10�6,
and right preconditioning with ILU(5) is applied to accelerate con-
vergence. The chosen convergence tolerance is a good balance be-
tween avoiding error propagation and spending too much
computational time. We found Bi-CGSTAB to be up to 50% faster
in solving the unsteady adjoint equations than GMRES which is
more efficient for steady-state adjoint problems [27,28]. The rea-
son for this is that the transpose of the unsteady flow Jacobian
ðrQnRnÞT is more diagonally dominant than the transpose of the
steady flow Jacobian (rQR)T due to the extra terms on the diagonal,
which makes this matrix more suited for the use of Bi-CGSTAB.
Note that since the FW–H equation is used as part of the cost func-
tion in the optimization framework, the derivative of the far-field
pressure fluctuations with respect to the near-field input flow vari-
ables is needed explicitly. This differentiation is done by hand
using the chain rule and is somewhat cumbersome. However, this
could be alleviated using automatic differentiation tools (ADOL-C,
ADIFOR, TAPENADE, etc.).

The fourth step is to calculate the gradient of J with respect to
the design variables Y (details are given in Appendix A). The shape
design variables Y are based on a cubic B-spline parametrization of
the airfoils; we use the vertical coordinates of selected B-spline
control points as design variables [27]. It takes about 2–3 times
the computational time of an unsteady flow solution to calculate
the corresponding gradient. Furthermore, the flow data from the
forward time calculation must either be stored or recalculated on
the fly [45]. For our 2D simulations we can easily afford to store
the entire flow-field with negligible impact on the computational
time due to disk access.

Lastly, a quasi-Newton BFGS optimizer [46,47] gives us new de-
sign variable values, the airfoil geometry is updated accordingly,
and the grid is modified using an algebraic grid movement algo-
rithm [28]. In order to avoid large shape changes we impose box
constraints on all design variable values. The entire process is re-
peated until the gradient is reduced by a few orders of magnitude
which implies that the cost function is close to a minimum.

At this time a comment is in order regarding the widely held
notion that optimization of unsteady flows using adjoint methods
is too expensive. The efficiency of the overall procedure depends
on the cost of the flow solver, the cost of the gradient evaluation,
and the number of optimization iterations required. Using the ad-
joint method the cost of computing the gradient is of the order of
the cost of the flow solve. For our particular implementation the
overall computational cost is roughly 3.5 � Noi � Tuf, where Noi is
hm for far-field noise minimization. Comput Fluids (2010), doi:10.1016/
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the required number of optimization iterations and Tuf is the com-
putational time for one unsteady flow solution and cost function
evaluation. We will demonstrate in the results section that the va-
lue of Noi is comparable to steady state problems with a similar
number of design variables. Thus, the ratio of the cost of unsteady
adjoint optimization to unsteady flow solution is quite similar to
the steady case. In conclusion, the only factor left which makes un-
steady optimization more expensive than steady optimization is
Tuf, the computational time required to solve the flow and evaluate
the cost function. For the time being, restrictions to two dimen-
sions, URANS models and/or non-linear frequency-domain meth-
ods [48] for unsteady optimizations are warranted. However,
these limitations will most likely be eased in the near future.
4. Results

4.1. Verification: remote inverse shape design in laminar flow

For verification purposes, several remote inverse shape design
problems are presented with a discrete cost function given by

J ¼ 1
2

Dt
XN

n¼Ncþ1

pn
obs � p�nobs

� �2
: ð20Þ

Here, pn
obs is the pressure at some far-field observer location at

time step n obtained from a current airfoil shape, and p�nobs is the tar-
get pressure at the same observer location and time step obtained
from the target airfoil shape. Nc is the number of time steps used in
the adjusting period where the cost function is not yet computed.
The target shape is given through a perturbation in four shape de-
sign variables of the initial NACA 0012 airfoil; both shapes are
y2
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Fig. 5. Comparison of pressure fluctuations of the initial airfoil calculated by CFD (so
methods.
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shown in Fig. 4. Only four design variables are used to keep the
problem simple and to be able to compare the adjoint gradient
with a finite-differenced one in order to verify the accuracy of
the gradient calculation.

The unsteady flow conditions for this test case are exactly the
same as the ones used in the verification of the acoustic propaga-
tion code in Section 2.3.2, namely a Reynolds number of 800, a
free-stream Mach number of 0.2, and an angle of attack of 20�. A
coarser mesh with only about 35,000 nodes is used to reduce the
computational costs. Nonetheless, as displayed in Fig. 5, the com-
parisons of pressure fluctuations calculated by CFD and FW–H for
the initial NACA 0012 show a good agreement at a point about
two chord lengths below the trailing edge for both time-marching
methods. However, as compared to the second probe location in
Fig. 3 the magnitude is off by a factor of two which indicates that
the solution is not grid converged, but it is still good enough to ver-
ify our overall optimization procedure. We will reanalyze the opti-
mized shapes for the more realistic optimizations in Section 4.3
using a much finer mesh to confirm that those optimizations did
in fact generate a shape that substantially reduces the objective
functions.

Fig. 6 shows the drag coefficients for the initial and target
airfoils over time using a time step of Dt = 0.05 for BDF2 and
Dt = 0.5 for ESDIRK4. One can see the adjustment period for the
target airfoil. In order to reduce the computational costs in the
actual optimization runs, a bigger time step of Dtc = 0.1 is utilized
for the first Nc = 200 steps with BDF2, and Dtc = 0.5 for the first
Nc = 40 steps is used with ESDIRK4. Once the domain where the
pressures are compared is reached, a smaller time step Dt = 0.05
is used for another 1200 steps with BDF2 (Dt = 0.5 for 120 steps
with ESDIRK4), leading to N = 1400 (N = 160 with ESDIRK4) time
y1
0.6 0.8 1

get (dashed) airfoil shapes.
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steps in total for each flow solve covering a time interval of [0,80].
The corresponding adjoint equations for this situation are given in
Appendix A.

The convergence histories of remote inverse shape design prob-
lems using the hybrid NS/FW–H optimization algorithm are pre-
sented in Figs. 7 and 8. The objective function is always scaled
such that its initial value for either time-marching method is unity.
The convergence history for an observer location eighty chord
lengths below the leading edge using only the adjoint approach
is shown in the figure. The adjoint approach is also compared to
a second-order central finite-difference approach with a step size
of 10�7 for a location that is about two chord lengths below the
trailing edge. One can see that the objective functions are driven
to small values in about forty to fifty design iterations, and that
the two approaches show a reasonable agreement for both time-
marching methods. The finite-difference approach for ESDIRK4
(dashed black line) does not fully converge, and the scaled objec-
tive function value stalls at about 10�8. The reason for this is an
inaccurate gradient due to error cancellation for such small values
Please cite this article in press as: Rumpfkeil MP, Zingg DW. A hybrid algorit
j.compfluid.2010.05.006
of the objective function in combination with the more involved
time-marching method. The gradient at the first design iteration
with BDF2 using the adjoint method (ad) yields

@J
@Y

� �
ad
¼ ð�48:09;�162:26;�55:78;�36:68Þ;

which is in good agreement with the gradient calculated via the fi-
nite-difference method (fd):

@J
@Y

� �
fd

¼ ð�52:83;�160:56;�56:68;�36:43Þ:

Using ESDIRK4, the same gradient is given by

@J
@Y

� �
ad

¼ ð�48:37;�166:64;�57:89;�37:76Þ;

which also agrees well with the finite-difference gradient:

@J
@Y

� �
fd

¼ ð�53:11;�164:44;�58:90;�37:60Þ:
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Note that both gradients have some error. The maximum
difference of about 10% in the gradients arises from the different
error propagation in the flow and adjoint solutions (non-linear vs.
linear) combined with the fact that in the adjoint approach the
Please cite this article in press as: Rumpfkeil MP, Zingg DW. A hybrid algorit
j.compfluid.2010.05.006
objective function and residual sensitivities with respect to the
design variables Y are evaluated using finite differences. This gra-
dient accuracy is definitely good enough for an optimization
procedure.
hm for far-field noise minimization. Comput Fluids (2010), doi:10.1016/
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Table 1
Time horizons for blunt trailing-edge flow.

Nc Dtc N � Nc Dt N

BDF2 300 0.01 700 0.005 1000
ESDIRK4 60 0.05 140 0.025 200
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4.2. Verification: turbulent blunt trailing-edge flow

The shape of a NACA 0012 airfoil with a 0.03c thick blunt trail-
ing edge in a turbulent flow is optimized in this section. The free-
stream flow conditions are given by M1 = 0.2, Re = 2 � 106, a = 0�,
and the mesh consists of about 36,000 nodes, which provides suf-
ficient accuracy for our purpose, which is to demonstrate the
applicability of the hybrid NS/FW–H optimization algorithm to
far-field noise minimization problems. A remote inverse shape
design problem is solved with the objective function given by
Eq. (20) and a far-field observer located 40c below the leading
edge. BDF2 and ESDIRK4 are again employed as time-marching
methods, and only two shape design variables are used to enable
a comparison between the adjoint gradient with a finite-differ-
enced one and to thus verify the hybrid NS/FW–H optimization
algorithm for turbulent flows. The initial and target airfoil shapes
are shown in Fig. 9.

A comparison of pressure fluctuations calculated by CFD and
FW–H at a location about 1

3 c below the trailing edge of the initial
airfoil is displayed in Fig. 10 and shows good agreement for both
time-marching methods. Fig. 11 shows the drag coefficients for
the initial and target airfoil over time using a time step of
Dt = 0.005 for BDF2 and Dt = 0.025 for ESDIRK4. Note that the tar-
get solution has not yet reached a periodic steady state, however,
the computational costs are too high to cover the required time
interval. The time horizons used in the remote inverse shape de-
sign for turbulent blunt trailing-edge flow are shown in Table 1.
The chosen time step sizes lead to the same computational effort
for a flow or adjoint solution for the two time-marching methods,
since the computational cost for one time step using ESDIRK4 is
roughly five times more expensive than using BDF2.

The convergence history of the remote inverse shape design
problem for a turbulent blunt trailing-edge flow using the hybrid
NS/FW–H optimization algorithm is presented in Fig. 12. The
Please cite this article in press as: Rumpfkeil MP, Zingg DW. A hybrid algorit
j.compfluid.2010.05.006
objective function is again always scaled such that its initial value
for either time-marching method is unity. The adjoint approach is
shown in comparison to a second-order central finite-difference
approach with a step size of 10�5. One can see that the objective
functions are driven to small values in about ten design iterations
and that the two approaches show a reasonable agreement for
both time-marching methods, which implies that the adjoint ap-
proach for the gradient calculation is accurate.

In particular, the gradient at the first design iteration using the
adjoint method (ad) yields

@J
@Y

� �
ad
¼ ð�34:36;35:11Þ;

which is in good agreement with the gradient calculated via the fi-
nite-difference method (fd):

@J
@Y

� �
fd

¼ ð�33:53;34:18Þ:

Similarly, the adjoint approach for ESDIRK4 at the first design
iteration leads to

@J
@Y

� �
ad
¼ ð�34:29;35:14Þ;

which agrees well with the finite-difference gradient:

@J
@Y

� �
fd

¼ ð�33:71;34:74Þ:

Both approaches for ESDIRK4 do not fully converge, and the
scaled objective function values stall at about 10�10. The reason
is again an inaccurate gradient due to error cancellation for such
small values of the objective function in combination with the
more complicated time-marching method.

4.3. Application to far-field noise minimization

After the verification of the hybrid NS/FW–H optimization algo-
rithm for unsteady laminar and turbulent flows using two time-
marching methods in the previous two sections, more practically
relevant optimizations involving a turbulent blunt trailing-edge
flow are considered here. Although this test case with periodic vor-
tex shedding is not a key far-field noise generation mechanism, it is
a representative problem that contains the important features of a
hm for far-field noise minimization. Comput Fluids (2010), doi:10.1016/
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noise minimization problem. We consider two different objective
functions:

1. Pressure fluctuation (noise) minimization
Please
j.comp
JN ¼
XN

n¼Ncþ1

ðpn
obs � �pobsÞ2 ¼

XN

n¼Ncþ1

ðp0nobsÞ
2
: ð21Þ
2. Mean drag minimization
JD ¼ Cd ¼
1

N � Nc

XN

n¼Ncþ1

Cn
d; ð22Þ
where �pobs is the mean pressure at the observer location, which is
located 40c below the leading edge, and p0nobs ¼ pn

obs � �pobs is the
pressure fluctuation in this observer location at time step n. The
reasoning for the choice of these two objective functions is that
we would like to see whether noise and drag improvements lead
to identical, qualitatively similar or vastly different results for the
shape of this airfoil. In Eq. (21) we consider only a single observer
location, which could lead to a change in directivity rather than
overall noise reduction. In general, a noise cost function should
be defined as an integral over some region, and this is easily done,
but for the present example the results show that a single observer
location is sufficient.
cite this article in press as: Rumpfkeil MP, Zingg DW. A hybrid algorit
fluid.2010.05.006
Eight B-spline control points are used as shape design variables
which are all located in the aft 15% of the chord length (four on the
upper and four on the lower surface). The unsteady shape optimi-
zations are started from three different initial shapes, which are
shown in Fig. 13 together with their initial objective function
values:

1. The initial airfoil (solid).
2. The airfoil that results from setting all eight design variables to

their specified upper bounds (dashed).
3. The airfoil that results from setting all eight design variables to

their specified lower bounds (dotted).

The flow conditions and the mesh are the same as given in Sec-
tion 4.2, but only the BDF2 time-marching method is used here
with the time horizon given in Table 1. Fig. 14 presents the final
optimized airfoil shapes of the turbulent blunt trailing-edge flow
optimizations together with their objective function values. For
each objective function, all three initial shapes converge to the
same respective final shapes. The mean drag value of the noise
minimized airfoils is slightly higher than the mean drag value of
the mean drag minimized airfoils and conversely, the noise objec-
tive function value JN of the mean drag minimized airfoils is a fac-
tor of two higher than the one from the noise minimized airfoils.
hm for far-field noise minimization. Comput Fluids (2010), doi:10.1016/
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This shows that noise and drag improvements lead to qualitatively
similar results to a first approximation, but they do not yield the
same optimized shapes.

The convergence histories of the mean drag minimizations are
displayed in Fig. 15. The objective function values are always
scaled with the mean drag value of the original airfoil, JD = 2.14 �
10�2, to make comparisons easier. Since all three initial shapes
converge to the same final optimized shape, they have the same
objective function value, which translates into a reduction in mean
drag of about 39% from the original airfoil. The objective function
value is mostly reduced in the first few iterations, and the improve-
ments after that are only marginal. The gradient norms are reduced
by 3–4 orders of magnitude indicating that the optimizer has con-
verged to a minimum in each case.

The convergence histories of the noise minimizations in Fig. 16
show that this objective function is mainly reduced in the first five
iterations and that the gradient norms are reduced by 2–3 orders of
magnitude. The sum of the pressure fluctuations for the optimized
shape is reduced to 0.23% of the initial value of the original airfoil
JN = 5.43 � 10�7, which is again used to scale the objective function
values to ease comparisons. Starting from the lower bound leads to
a failed line search in the first iteration because all gradients indi-
cate that it would be beneficial to ‘‘slim” the airfoil even more,
which is not permitted by the box constraints imposed on the
Please cite this article in press as: Rumpfkeil MP, Zingg DW. A hybrid algorit
j.compfluid.2010.05.006
design variables. This implies that there is a local minimum right
on the constraint boundary, so one must start a sufficient distance
from this boundary in order to converge to the global minimum.

The time histories of Cl and Cd for the original blunt trailing edge
airfoil before and after the optimizations are shown in Fig. 17 using
a time step of Dt = 0.005. One can clearly see the adjusting period
for the improved airfoils in the time interval [0,3] before they
reach their new somewhat periodic steady state. A reduced mean
drag and constant mean lift for both optimized airfoils is also vis-
ible, and both objective functions lead to reduced oscillation ampli-
tudes in both lift and drag. This implies that the noise in the entire
flow-field has been reduced although we only use a single observer
location where we minimize the pressure fluctuations.

We also reanalyzed the performance of the original and opti-
mized airfoil shapes on a mesh with about 180,000 nodes. The lift
and drag histories are very similar to the ones shown in Fig. 17. The
mean drag value on this finer mesh changes for the original airfoil
from JD = 2.14 � 10�2 to JD = 2.19 � 10�2, for the mean drag mini-
mized airfoil from 1.31 � 10�2 to 1.52 � 10�2, and for the noise
minimized airfoil from 1.35 � 10�2 to 1.58 � 10�2. Similarly, the
noise objective function value changes for the original airfoil from
JN = 5.43 � 10�7 to JN = 5.28 � 10�7, for the mean drag minimized
airfoil from 2.36 � 10�9 to 6.51 � 10�8, and for the noise mini-
mized airfoil from 1.25 � 10�9 to 1.72 � 10�8. Thus, giving very
hm for far-field noise minimization. Comput Fluids (2010), doi:10.1016/
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Fig. 16. Convergence histories of the noise minimizations for the turbulent blunt trailing-edge flow with eight design variables.
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similar results or at least trends. As a last note, in a very recent
paper Wang et al. [49] used a similar test case with a high-order
discontinuous Galerkin discretization except that their case was
inviscid and they minimized the near-field pressure fluctuations
at the one-chord length circular locations from the center-point.
They also obtained the somewhat bulgy shapes as an optimal
solution.
5. Conclusions

The results presented in this paper show that the novel hybrid
NS/FW–H optimization algorithm proposed, which uses a
Newton–Krylov approach in combination with a discrete adjoint
Please cite this article in press as: Rumpfkeil MP, Zingg DW. A hybrid algorit
j.compfluid.2010.05.006
method, is effective and efficient for problems representative of
practical applications. First we verified a hybrid NS/FW–H solver
by comparison to an analytical solution and a Navier–Stokes solu-
tion. We also verified our hybrid NS/FW–H optimization algorithm
by recovering far-field pressure fluctuations via remote inverse
shape designs in unsteady laminar and turbulent flows. The
unsteady turbulent flow around a blunt trailing edge airfoil exam-
ple demonstrates that it is possible to minimize the pressure
fluctuations at a given far-field observer position and thus that
our hybrid NS/FW–H optimization algorithm is an efficient and
practical design tool for reducing aerodynamically generated noise.
The concepts presented in this paper also allow the use of more
sophisticated, higher-order time-marching methods as demon-
strated in Appendix A for ESDIRK4. Lastly, this optimization
hm for far-field noise minimization. Comput Fluids (2010), doi:10.1016/
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Table 2
Butcher table for ESDIRK4 scheme [39].

a21 1
4

a22 1
4

0 0 0 0

a31 8611
62;500

a32 �1743
31;250

a33 1
4

0 0 0

a41 50;12;029
3;46;52;500

a42 �6;54;441
29;22;500

a43 1;74;375
3;88;108

a44 1
4

0 0

a51 15;26;70;82;809
1;55;37;62;65;600

a52 �7;14;43;401
12;07;74;400

a53 73;08;78;875
90;21;84;768

a54 22;85;395
80;70;912

a55 1
4

0

a61 82;889
5;24;892

a62 0 a63 15;625
83;664

a64 69;875
1;02;672

a65 �2260
8211 a66 ¼ 1

4
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algorithm can be extended to three dimensions as well as different
flow solvers and physical models in a straightforward manner,
although a parallel implementation is highly recommended for
large-scale three-dimensional unsteady optimization problems.
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Appendix A

In this appendix, we derive the discrete adjoint equations in the
form in which we use them to present our results. We begin with
the equations for the BDF2 time-marching method (for more de-
tails see Rumpfkeil and Zingg [25,26]). We start our flow solve at
t = 0 from a periodic steady state solution which implies that we
know the flow solutions Q0 and Q�1. We want to ‘‘jump” over the
adjusting period after a shape modification as quickly as possible
thus taking a bigger time step Dtc for Nc time steps. Once we reach
the domain where we actually want to control the problem we use
a smaller time step Dt for N � Nc time steps. Thus we have a total of
N time steps and to keep the second-order time accuracy, the time-
dependent flow solution Qn is implicitly defined via the following
unsteady residuals:

RnðQn;Q n�1;Q n�2;YÞ

:¼ 3Q n � 4Q n�1 þ Q n�2

2Dtc
þ RðQ n; YÞ ¼ 0

for n ¼ 1; . . . ;Nc;

RNcþ1ðQ Ncþ1;Q Nc ;QNc�1; YÞ

:¼ 2Dt þ Dtc

DtðDt þ DtcÞ
Q Ncþ1 � Dt þ Dtc

DtDtc
Q Nc

þ Dt
DtcðDt þ DtcÞ

QNc�1 þ RðQ Ncþ1; YÞ ¼ 0;

RnðQn;Q n�1;Q n�2;YÞ

:¼ 3Q n � 4Q n�1 þ Q n�2

2Dt
þ RðQ n; YÞ ¼ 0

for n ¼ Nc þ 2; . . . ;N:

The problem of minimizing the discrete objective function J as
given by Eq. (19) subject to the convergence of the unsteady flow
solve is equivalent to the unconstrained optimization problem of
minimizing the Lagrangian function

LðQ1; . . . ;Q N ;w1; . . . ;wN; YÞ ¼
XN

n¼Ncþ1

InðQn;YÞ

þ
XN

n¼1

ðwnÞTRnðQ n;Q n�1;Q n�2;YÞ;
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with respect to Q1, . . . ,QN, w1, . . . ,wN and Y. The Lagrange multipliers
wn must be chosen such that rQnL ¼ 0 for n = 1, . . . ,N, which leads
to

wN ¼ � rQNRN
� �T
� ��1

� rQN IN
� �T
	 


;

wN�1 ¼ � rQN�1RN�1
� �T
� ��1

� rQN�1 IN�1
� �T

þ rQN�1RN
� �T

wN
	 


;

wn ¼ � rQnRn� �T
� ��1

� ðrQn InÞT þ ðrQnRnþ1ÞTwnþ1
h

þ ðrQnRnþ2ÞTwnþ2
i

for n ¼ N � 2; . . . ;Nc þ 1;

wn ¼ � ðrQnRnÞT
� ��1

� ðrQnRnþ1ÞTwnþ1 þ ðrQnRnþ2ÞTwnþ2
h i

for n ¼ Nc; . . . ;1:

The gradient of J with respect to the design variables Y is then
given by

@J
@Y
¼ @L
@Y

����
@L
@Qn¼ @L

@wn¼0
¼

XN

n¼Ncþ1

rY InðQn;YÞ þ
XN

n¼1

ðwnÞTrY RðQ n;YÞ:

In summary, the gradient is determined by the solution of the
adjoint equations in reverse time and the partial derivatives of
the flow residual and objective function with respect to the design
variables (while Qn is held constant). In our code the matrices
ðrQnRnÞT are formed and stored explicitly as are the terms
ðrQn InÞT . The remaining terms, namely the objective function sen-
sitivities rYIn(Qn,Y) and the residual sensitivities rYR(Qn,Y), are
evaluated using fourth-order centered finite differences, which
are not computationally expensive.

For ESDIRK4 only Q0 at t = 0 is required and the time-dependent
flow solution is implicitly defined via

Rn
kðQ

n
k ; . . . ;Q n

2;Q
n�1; YÞ :¼ Qn

k � Qn�1

akkDtc

þ RðQ n
k ;YÞ þ

1
akk

Xk�1

j¼1

akjRðQn
j ;YÞ ¼ 0

for n ¼ 1; . . . ;Nc and k ¼ 2; . . . ;6;

Rn
kðQ

n
k ; . . . ;Q n

2;Q
n�1; YÞ :¼ Qn

k � Qn�1

akkDt

þ RðQ n
k ;YÞ þ

1
akk

Xk�1

j¼1

akjRðQn
j ;YÞ ¼ 0

for n ¼ Nc þ 1; . . . ;N and k ¼ 2; . . . ;6;

with the Butcher coefficients akj given in Table 2.
The Lagrangian function is now given by

LðQ 1
2; . . . ;QN

6 ;w
1
2; . . . ;wN

6 ;YÞ ¼
XN

n¼Ncþ1

InðQ n;YÞ

þ
XN

n¼1

X6

k¼2

ðwn
kÞ

T
Rn

kðQ
n
k ; . . . ;Q

n
2;Q

n�1;YÞ;
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and the Lagrange multipliers wn
k must now be chosen such that

rQn
k
L ¼ 0 for n = 1, . . . ,N and k = 2, . . .,6. Eventually this leads for

n = N, . . . ,1 to

wn
6 ¼ � ðrQn

6
Rn

6Þ
T

� ��1
In þSn½ �;

wn
k ¼ � ðrQn

k
Rn

kÞ
T

� ��1 X6

j¼kþ1

ðrQn
k
Rn

j Þ
Twn

j

" #

for k ¼ 5; . . . ;2;

with

In ¼ ðrQn
6
InÞT for N P n P Nc;

0 otherwise;

(

Sn ¼
0 for n ¼ N;P6
j¼2
ðrQn

6
Rnþ1

j ÞTwnþ1
j for n < N:

8><
>:

Finally, the gradient of J with respect to the design variables Y is
given by

@J
@Y
¼ @L
@Y

����
@L
@Qn

k
¼ @L
@wn

k
¼0

¼
XN

n¼Ncþ1

rY InðQ n;YÞ þ
XN

n¼1

X6

k¼1

X6

j¼k

ðwn
j Þ

T ajk

ajj

 !
rY RðQ n

k ; YÞ

with the definitions a11 := 0 and a11
a11

:¼ 0.
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