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Abstract We propose a unifying framework for the matrix-based formulation and
analysis of discontinuous Galerkin (DG) and flux reconstruction (FR) methods for
conservation laws on general unstructured grids. Within such an algebraic framework,
the multidimensional summation-by-parts (SBP) property is used to establish the
discrete equivalence of strong and weak formulations, as well as the conservation and
energy stability properties of a broad class of DG and FR schemes. Specifically, the
analysis enables the extension of the equivalence between the strong and weak forms
of the discontinuous Galerkin collocation spectral-element method demonstrated
by Kopriva and Gassner (J Sci Comput 44:136–155, 2010) to more general nodal
and modal DG formulations, as well as to the Vincent-Castonguay-Jameson-Huynh
(VCJH) family of FR methods. Moreover, new algebraic proofs of conservation and
energy stability for DG and VCJH schemes with respect to suitable quadrature rules
and discrete norms are presented in which the SBP property serves as a unifying
mechanism for establishing such results. Numerical experiments are provided for
the two-dimensional linear advection and Euler equations, highlighting the design
choices afforded for methods within the proposed framework and corroborating the
theoretical analysis.
Keywords High-order methods · Discontinuous Galerkin · Flux reconstruction ·
Summation-by-parts · Conservation laws · Energy stability
Mathematics Subject Classification (2010) 65M12 · 65M60 · 65M70

1 Introduction

Hyperbolic and convection-dominated systems of conservation laws are of considerable
importance in the mathematical modelling of physical phenomena, with numerous
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scientific and engineering disciplines relying heavily on efficient and robust numerical
methods for the solution of such systems of partial differential equations (PDEs).
High-order methods (i.e. those of third order or higher) have shown significant
promise in these contexts, particularly for computations involving the propagation
of waves over long distances (an early example being the work of Kreiss and Oliger
[1]) or the fine-scale resolution of turbulent flow structures (as surveyed by Wang et
al. [2]), both of which incur prohibitive computational expense when conventional
second-order spatial discretizations are used. The most popular high-order methods
in current use by practitioners for such problems are arguably the well-established
discontinuous Galerkin (DG) methods and the more recent flux reconstruction (FR)
schemes. DG methods were originally introduced for the steady neutron transport
equation by Reed and Hill [3], and have since been applied successfully to a wide range
of problems following extensive development by Cockburn, Shu, and collaborators
(see, for example, [4–7]). The FR approach was first proposed by Huynh [8] for
one-dimensional conservation laws, extended to triangular elements by Wang and
Gao [9] through the so-called lifting collocation penalty formulation, and further
developed by several other authors, including Vincent et al. [10], Castonguay et al.
[11], and Williams and Jameson [12], who identified energy-stable families of FR
schemes on one-dimensional, triangular, and tetrahedral elements, respectively.

Although DG methods are derived from a weak (i.e. variational) formulation
whereas FR methods are derived from a strong (i.e. differential) formulation, the
two approaches are closely related, as discussed in Huynh’s seminal paper [8] as
well as in further investigations by Allaneau and Jameson [13], De Grazia et al. [14],
Mengaldo et al. [15], and Zwanenburg and Nadarajah [16]. Moreover, certain DG
and FR schemes have been recast in terms of summation-by-parts (SBP) operators,
which are discrete differential operators equipped with compatible inner products
such that integration by parts is mimicked algebraically (see, for example, the review
papers of Del Rey Fernandez et al. [17] and Svärd and Nordström [18]). Beginning
with the work of Kreiss and Scherer [19], this mimetic property, referred to as the
SBP property, has been instrumental in the development and analysis of high-order
finite-difference methods with discrete stability and conservation properties, and
there have been significant advances in recent years towards extending the SBP
methodology to encompass a wider range of novel and existing methods, facilitated
by the one-dimensional and multidimensional generalizations of Del Rey Fernández
et al. [20] and Hicken et al. [21], respectively.

Due to its reliance on discretization-agnostic matrix properties, the SBP approach
allows for existing theoretical results established for particular numerical methods to
be reinterpreted within a more general and arguably simpler setting, and facilitates the
cross-pollination of techniques between different schemes sharing common algebraic
properties. This cross-pollination has proved fruitful over the past decade, with
Gassner [22] and Ranocha et al. [23] employing the SBP property in order to develop
nonlinearly stable DG and FR methods, respectively, for Burgers’ equation in one space
dimension using skew-symmetric split forms originally introduced for finite-difference
discretizations. Motivated by these contributions, as well as by subsequent extensions
to entropy-stable and kinetic-energy-preserving DG-type schemes exploiting the SBP
property in the context of compressible flows (see, for example, Gassner et al. [24] and
Chan [25]), the goal of this work is to develop a comprehensive framework enabling
the unification of existing algebraic techniques for the analysis of DG and FR methods
applied to time-dependent conservation laws and the extension of the existing theory
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based on the SBP property to more general DG and FR formulations. To this end,
the analysis has resulted in the following novel contributions.

– The discrete equivalence of strong and weak formulations, demonstrated by
Kopriva and Gassner [26] in the context of DG methods employing collocated
tensor-product Legendre-Gauss (LG) and Legendre-Gauss-Lobatto (LGL) quadra-
ture rules (i.e. the LG and LGL variants of the discontinuous Galerkin collocation
spectral-element method, which we refer to as the DGSEM-LG and DGSEM-LGL,
respectively), is extended to more general quadrature-based and collocation-based
DG formulations by way of the SBP property.

– The Vincent-Castonguay-Jameson-Huynh (VCJH) family of FR schemes (as
described in [10–12]), is recast in a generalized matrix form, allowing for the use
of arbitrary nodal or modal bases on any element type as well as over-integration
of the volume and/or facet terms. Through the SBP property, these formulations
are shown to be equivalent to filtered DG schemes in strong or weak form, in the
latter case leading to methods which are algebraically equivalent to conventional
strong-form FR methods while offering the potential for improved efficiency.

– Proofs of discrete conservation with respect to suitable quadrature rules are
presented for DG and VCJH methods in strong and weak form, differing from
the existing conservation proofs for the FR approach due to their reliance on
the discrete divergence theorem – which holds as a consequence of the SBP
property – rather than the continuity of the corrected flux, which is not explicitly
reconstructed for multidimensional FR schemes on non-tensor-product elements.

– Energy stability is established with respect to suitable discrete norms as a conse-
quence of the SBP property for DG and FR schemes applied to constant-coefficient
linear advection problems on affine polytopal meshes with periodic or inflow-
outflow boundary conditions, recovering the existing stability results for VCJH
schemes as special cases of a more general algebraic theory.

We now outline the content of the remainder of this paper. In §2, we describe the
systems of conservation laws to which we seek numerical solutions, as well as the
meshes and approximation spaces employed for the discretizations considered in this
work; we then provide a brief overview of DG and FR methods and illustrate the
main ideas underlying the application of the SBP approach to such schemes in the
context of a one-dimensional advection problem. In §3, we develop a unified matrix
formulation for a broad class of DG and FR methods applied to linear or nonlinear
conservation laws in one or more space dimensions, which we employ in §4 for the
analysis of such schemes based on the SBP property. In §5, we present numerical
experiments for the two-dimensional linear advection and Euler equations in support
of the theory. Concluding remarks are provided in §6.

2 Preliminaries

2.1 Notation

Symbols bearing single underlines denote vectors (treated as column matrices),
whereas symbols bearing double underlines denote matrices. Symbols in bold are used
specifically to denote Cartesian (i.e. spatial) vectors, for which we employ the usual
del operator, dot product, and Euclidean norm. Tensors containing indices of both
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types (e.g. fluxes for systems of conservation laws) are bolded as well as underlined,
and we assume that coordinate transformations and differential operators act over the
spatial indices only (i.e. treating them as Cartesian vectors). The symbols R, R+, R+

0 ,
N, N0, and Sd−1 denote the real numbers, the positive real numbers, the non-negative
real numbers, the natural numbers (excluding zero), the natural numbers including
zero, and the unit (d − 1)-sphere, while 0, 1, 0, and I are reserved for vectors of
zeros, vectors of ones, matrices of zeros, and identity matrices, respectively, with their
dimensions inferred from the context. Given any domain D ⊂ Rd of dimension d ∈ N,
we use the symbol ∂D to denote its boundary, D̄ := D ∪ ∂D to denote its closure,
and |D| to denote its Lebesgue measure (i.e. d-dimensional volume); the interior
of a closed domain D is then given by D̊ := D \ ∂D. Other important notational
conventions are introduced as they appear.

2.2 Problem Formulation

We consider first-order systems of time-dependent conservation laws governing the
evolution of Nc ∈ N conservative variables U(x, t) ∈ Υ ⊆ RNc , where Υ denotes
the set of admissible solution states, and x and t denote the spatial and temporal
coordinates, respectively. Such systems of PDEs take the general form

∂U(x, t)
∂t

+∇x · F (U(x, t)) = 0, ∀ (x, t) ∈ Ω × (0, T ),

U(x, 0) = U0(x), ∀x ∈ Ω,
(2.1)

subject to appropriate boundary conditions, if necessary, where Ω ⊂ Rd denotes a
fixed domain of dimension d ∈ N with a piecewise smooth boundary, T ∈ R+ denotes
the final time, F (U(x, t)) denotes the flux tensor, and U0(x) denotes the initial data.
Although a very broad class of problems may be formulated as in (2.1), we highlight
two representative examples, which serve as test cases for the numerical experiments
in §5. We first consider the constant-coefficient linear advection equation,

∂U(x, t)
∂t

+∇x ·
(
aU(x, t)

)
= 0, (2.2)

which governs the transport of a scalar quantity U(x, t) ∈ R =: Υ at a velocity given
by a ∈ Rd. We are also interested in the Euler equations, which constitute a system
of Nc = d+ 2 coupled PDEs governing the conservation of mass, momentum, and
energy for a compressible, inviscid, and adiabatic fluid. Such a system is given by

∂

∂t


ρ(x, t)

ρ(x, t)V1(x, t)
...

ρ(x, t)Vd(x, t)
E(x, t)

+
d∑

m=1

∂

∂xm


ρ(x, t)Vm(x, t)

ρ(x, t)V1(x, t)Vm(x, t) + P (x, t)δ1m
...

ρ(x, t)Vd(x, t)Vm(x, t) + P (x, t)δdm
Vm(x, t)(E(x, t) + P (x, t))

 = 0, (2.3)

where ρ(x, t) ∈ R denotes the fluid density, V (x, t) ∈ Rd denotes the flow velocity,
E(x, t) ∈ R denotes the total energy per unit volume, and P (x, t) ∈ R denotes the
pressure, which is related to the other variables through the equation of state given
by P (x, t) = (γ − 1)(E(x, t) − 1

2ρ(x, t)‖V (x, t)‖2) for an ideal gas with constant
specific heat and specific heat ratio γ > 1. The set of admissible solution states for
(2.3) is therefore given by Υ := {U(x, t) ∈ Rd+2 : P (x, t), ρ(x, t) > 0}.
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Remark 2.1 Throughout this paper, we tacitly assume that the values of numerical
solutions to (2.1) remain within Υ . This is difficult to ensure a priori for nonlinear
problems such as (2.3), and often requires the use of bespoke limiting procedures
(see, for example, Zhang and Shu [27]), which are not considered in this work.

2.3 Mesh and Coordinate Transformation

We begin our description of the spatial discretization by introducing a mesh T h :=
{Ω(1), . . . , Ω(Ne)} consisting of Ne ∈ N compact, connected elements of characteristic
size h ∈ R+ with nonempty interiors, satisfying the following (standard) assumption.

Assumption 2.1 The elements in T h satisfy
⋃Ne
κ=1Ω

(κ) = Ω̄ as well as Ω̊(κ) ∩
Ω̊(ν) = ∅ for any κ 6= ν. Likewise, the boundary of each element Ω(κ) ∈ T h consists
of Nf ∈ N smooth facets {Γ (κ,1), . . . , Γ (κ,Nf )} satisfying

⋃Nf
ζ=1 Γ

(κ,ζ) = ∂Ω(κ) and
Γ̊ (κ,ζ) ∩ Γ̊ (κ,η) = ∅ for any ζ 6= η.1 Furthermore, each element is the image of a
closed, polytopal reference element Ω̂ ⊂ Rd under a smooth, time-invariant mapping
X(κ) : Ω̂ → Ω(κ) satisfying J (κ)(ξ) := det(∇ξX(κ)(ξ)) > 0, where the entries of the
Jacobian matrix ∇ξX(κ)(ξ) ∈ Rd×d are given by [∇ξX(κ)(ξ)]mn := ∂X

(κ)
m (ξ)/∂ξn.

We now recall from Vinokur [28] that systems in the form of (2.1) retain a conservative
formulation under such a transformation, which is given in the present context by

∂J (κ)(ξ)U(X(κ)(ξ), t)
∂t

+∇ξ ·
(
J (κ)(ξ)(∇ξX(κ)(ξ))−1F (U(X(κ)(ξ), t))

)
= 0. (2.4)

Defining J (κ,ζ)(ξ) := ‖J (κ)(ξ)(∇ξX(κ)(ξ))−Tn̂(ζ)‖, where n̂(ζ) ∈ Sd−1 is the (con-
stant) outward unit normal vector to the facet Γ̂ (ζ) ⊂ ∂Ω̂ of the reference element,
we note that the outward unit normal vector to the corresponding physical facet
is given by n(κ,ζ) : Γ (κ,ζ) → Sd−1 according to Nanson’s formula (see, for example,
Gurtin et al. [29, §8.1] for a derivation in the context of continuum mechanics),

J (κ,ζ)(ξ)n(κ,ζ)(X(κ)(ξ)) = J (κ)(ξ)(∇ξX(κ)(ξ))−Tn̂(ζ). (2.5)

Furthermore, since periodic boundary conditions may be treated identically to interior
interfaces through mesh connectivity, we hereinafter abuse notation by using the
symbol ∂Ω to refer only to non-periodic portions of the domain boundary.

2.4 Polynomial Approximation Spaces

Using the symbol ◦ to denote function composition and considering the transformed
system in (2.4), we seek a semi-discrete (i.e. leaving time continuous) approxima-
tion U (h,κ)(·, t) of U(·, t) ◦X(κ) with components belonging to a finite-dimensional
polynomial space with real coefficients, as given by

PN (Ω̂) := span
{
Ω̂ 3 ξ 7→ ξα1

1 · · · ξ
αd
d : α ∈ N

}
, (2.6)

1 For notational convenience, it is assumed that all elements are of the same type and
therefore have an equal number of facets, although this is not a limitation of the analysis.
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where N ⊂ Nd0 denotes a finite set of multi-indices with cardinality N∗ ∈ N. The
space obtained by restricting functions in PN (Ω̂) to the facet Γ̂ (ζ) ⊂ ∂Ω̂ is denoted
by PN (Γ̂ (ζ)), which is of dimension N∗ζ ∈ N. Such spaces afford the present framework
with substantial generality, requiring only the following assumption on the choice of
the multi-index set N , which is standard in the theory of multivariate polynomial
approximation (see, for example, Cohen and Migliorati [30] and references therein)
and, importantly, ensures that PN (Ω̂) is closed under partial differentiation.

Assumption 2.2 The set N is downward closed in the sense that for any given
β ∈ N , every α ∈ Nd0 satisfying αm ≤ βm for all m ∈ {1, . . . , d} also belongs to N .

The globally discontinuous approximation Uh(·, t) of the solution U(·, t) to the
system in (2.1) is then defined piecewise (up to a set of measure zero) as Uh(x, t) :=
U (h,κ)((X(κ))−1(x), t) for x ∈ Ω(κ), with each component belonging to the space

PN (T h) :=
{
V ∈ L2(Ω) : V

∣∣
Ω(κ) ◦X(κ) ∈ PN (Ω̂), ∀Ω(κ) ∈ T h

}
, (2.7)

where L2(Ω) denotes the space of square-integrable measurable functions V : Ω → R.

Remark 2.2 The choice of approximation space generally depends on the geometry of
the reference element. For example, we recover the standard total-degree and tensor-
product polynomial spaces Pp(Ω̂) and Qp(Ω̂) for p ∈ N0 as special cases of (2.6) by
taking N := {α ∈ Nd0 : |α| ≤ p} for the former and N := {α ∈ Nd0 : maxdm=1 αm ≤ p}
for the latter, where we have defined |α| := α1 +· · ·+αd. These are the natural choices
for triangular/tetrahedral and quadrilateral/hexahedral elements, respectively.

Remark 2.3 Rather than constructing approximations of U(X(κ)(ξ), t) such that
U (h,κ)(·, t) ∈ PN (Ω̂)Nc , it is possible to instead approximate J (κ)(ξ)U(X(κ)(ξ), t)
such that J (κ)U (h,κ)(·, t) ∈ PN (Ω̂)Nc . This modification of the approximation space
in (2.7) has no effect when X(κ) is an affine mapping, but simplifies the treatment
of curvilinear coordinates for time-dependent problems. While the analysis in §4
extends in a straightforward manner to such modified formulations, we note that,
as discussed by Yu et al. [31, §3], such schemes have been observed to suffer from
degraded accuracy on curvilinear meshes and are not considered further in this work.

2.5 Discontinuous Galerkin and Flux Reconstruction Methods

In this section, we briefly review the formulation of DG and FR methods for systems
of conservation laws in the form of (2.4) and introduce some relevant notation.

2.5.1 Discontinuous Galerkin Method

Integrating (2.4) by parts over the reference element against a suitable test function
and transforming the resulting facet integrals using (2.5) leads to a local weak
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formulation of the system, which is given for all κ ∈ {1, . . . , Ne} and t ∈ (0, T ) by

∫
Ω̂

(
V (ξ)∂J

(κ)(ξ)U(X(κ)(ξ), t)
∂t

−∇ξV (ξ) ·
(
J (κ)(ξ)(∇ξX(κ)(ξ))−1F (U(X(κ)(ξ), t))

))
dξ

+
Nf∑
ζ=1

∫
Γ̂ (ζ)

V (ξ)J (κ,ζ)(ξ)
(
n(κ,ζ)(X(κ)(ξ)) · F (U(X(κ)(ξ), t))

)
dŝ = 0. (2.8)

Choosing test functions belonging to the same space as each component of the
transformed numerical solution and resolving the discontinuity in the global ap-
proximation on the element boundary using a directional numerical flux function
F ∗ : Υ × Υ × Sd−1 → RNc , typically corresponding to an approximate Riemann
solver developed in the context of finite-volume methods (see, for example, Toro [32]),
we obtain a weak-form DG discretization of the system in (2.4), in which, for all
κ ∈ {1, . . . , Ne} and t ∈ (0, T ), we seek a function U (h,κ)(·, t) ∈ PN (Ω̂)Nc satisfying

∫
Ω̂

(
V (ξ)∂J

(κ)(ξ)U (h,κ)(ξ, t)
∂t

−∇ξV (ξ) · F (h,κ)(ξ, t)
)

dξ

+
Nf∑
ζ=1

∫
Γ̂ (ζ)

V (ξ)J (κ,ζ)(ξ)F (∗,κ,ζ)(ξ, t) dŝ = 0, ∀V ∈ PN (Ω̂).
(2.9)

In the above, the transformed flux is evaluated in terms of the numerical solution as

F (h,κ)(ξ, t) := J (κ)(ξ)(∇ξX(κ)(ξ))−1F (U (h,κ)(ξ, t)), (2.10)

and the numerical flux function is evaluated on each facet as

F (∗,κ,ζ)(ξ, t) := F ∗(U (h,κ)(ξ, t), U (+,κ,ζ)(ξ, t),n(κ,ζ)(X(κ)(ξ))), (2.11)

where U (+,κ,ζ)(ξ, t) ∈ Υ denotes the external data corresponding to a weakly imposed
boundary or interface condition. The initial condition for a DG scheme is typically
imposed through a Galerkin projection with respect to the standard L2 inner product
on the physical element; expressing such a projection in reference coordinates, we
therefore obtain U (h,κ)(·, 0) ∈ PN (Ω̂)Nc for κ ∈ {1, . . . , Ne} as the solution to∫

Ω̂

V (ξ)J (κ)(ξ)
(
U (h,κ)(ξ, 0)− U0(X(κ)(ξ))

)
dξ = 0, ∀V ∈ PN (Ω̂). (2.12)

Remark 2.4 As the integrals in (2.9) and (2.12) are often impractical (if not impos-
sible) to evaluate analytically, implementations of DG methods typically employ
some form of numerical integration, which we discuss in §3 within the context of the
algebraic formulation presented therein.
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2.5.2 Flux Reconstruction Method

While DG and FR methods both employ discontinuous polynomial approximation
spaces as described in §2.4, the FR formulation involves the discretization of the strong
form of (2.4) rather than the weak form, and traditionally employs a collocation-based
approximation rather than a Galerkin approach. To construct an FR scheme, we
first require a nodal set S := {ξ(1), . . . , ξ(N)} ⊂ Ω̂ of cardinality N = N∗ which is
unisolvent for PN (Ω̂), implying that for any function2 U : Ω̂ → R, there exists a
unique collocation projection INU ∈ PN (Ω̂) satisfying the interpolation condition

(INU)(ξ(i)) = U(ξ(i)), ∀ i ∈ {1, . . . , N}. (2.13)

We also require correction functions G(ζ,j) : Ω̂ → Rd associated with the nodal set
S(ζ) := {ξ(ζ,1), . . . , ξ(ζ,Nζ)} ⊆ Γ̂ (ζ) for ζ ∈ {1, . . . , Nf}, satisfying

∇ξ ·G(ζ,j) ∈ PN (Ω̂) and G(ζ,j)(ξ(η,k)) · n̂(η) = δζηδjk, (2.14)

where it is typically assumed that S(ζ) is of cardinality Nζ = N∗ζ and is unisolvent for
the space PN (Γ̂ (ζ)). Weighting each correction function by the normal flux difference
at the corresponding node in S(ζ) and adding the resulting flux correction to the
projected flux inside the reference divergence operator, an FR discretization of the
system in (2.4) is given concisely in terms of U (h,κ)(·, t) ∈ PN (Ω̂)Nc as

∂IN (J (κ)U (h,κ)(·, t))
∂t

+∇ξ ·
(

INF (h,κ)(·, t)

+
Nf∑
ζ=1

Nζ∑
j=1

(
J (κ,ζ)(ξ(ζ,j))F (∗,κ,ζ)(ξ(ζ,j), t)

− n̂(ζ) ·
(
INF (h,κ)(·, t)

)
(ξ(ζ,j))

)
G(ζ,j)

)
= 0

(2.15)

for all κ ∈ {1, . . . , Ne} and t ∈ (0, T ), where the operator IN is taken to act
componentwise on vector-valued or tensor-valued functions, and is typically also
used to impose the initial condition. The properties of the FR scheme in (2.15) are
then determined in part by the choice of correction functions, which we discuss in
§3.4.

Remark 2.5 As with the DG scheme in (2.9), the FR formulation in (2.15) is inde-
pendent of the basis used to represent the numerical solution and may employ any
approximation space satisfying Assumption 2.2. In a conventional FR implementation,
the solution is represented using a Lagrange basis (as described, for example, in
Appendix A.2) with nodes collocated with those used for the projection in (2.13).
However, we note that other choices (e.g. modal bases, as described in Appendix A.1
and used alongside nodal bases for the computations in §5) are possible.

2 For the purposes of the present analysis, the regularity of such functions is is not of concern;
we simply require data to be available at all nodes in S in order to form an interpolant.
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2.6 Basic Algebraic Concepts in One Dimension

To introduce the main ideas which will be employed for the matrix-based analysis in
§4, we first provide a simple one-dimensional example; readers familiar with the theory
in [22–25] are invited to skip ahead to §3. Here, we consider the linear advection
equation with a constant wave speed a ∈ R+, which is given by

∂U(x, t)
∂t

+ a
∂U(x, t)
∂x

= 0, ∀ (x, t) ∈ (xL, xR)× (0, T ), (2.16)

supplemented with the initial condition U(x, 0) = U0(x) and the boundary condition
U(xL, t) = B(t). Considering a single element for simplicity, the solution to (2.16)
is approximated as Uh(x, t) =

∑p+1
i=1 u

h
i (t)`(i)(x) in terms of a Lagrange basis B :=

{`(1), . . . , `(p+1)} for the polynomial space Pp([xL, xR]) of degree p ∈ N, which is
given for any set of p+ 1 (distinct) nodes S := {x(1), . . . , x(p+1)} ⊂ [xL, xR] by

`(i)(x) :=
p+1∏

j=1,j 6=i

x− x(j)

x(i) − x(j) . (2.17)

Taking an upwind numerical flux and noting that it is sufficient to test with each basis
function `(i) ∈ B due to the linearity of all terms with respect to the test function, a
one-dimensional DG method analogous to (2.9) is given for all t ∈ (0, T ) as∫ xR

xL

(
`(i)(x)∂U

h(x, t)
∂t

− ad`(i)(x)
dx Uh(x, t)

)
dx

+ a`(i)(xR)Uh(xR, t)− a`(i)(xL)B(t) = 0, ∀ i ∈ {1, . . . , p+ 1}.
(2.18)

The above formulation may then be expressed algebraically in terms of the vector
uh(t) ∈ Rp+1 of nodal expansion coefficients uhi (t) = Uh(x(i), t) as

M
duh(t)

dt − aDTMuh(t) + atRt
T
Ru

h(t)− atLB(t) = 0, (2.19)

where the entries of the derivative matrix D ∈ R(p+1)×(p+1) are given by

Dij := d`(j)

dx (x(i)), (2.20)

and the vectors tL := [`(1)(xL), . . . , `(p+1)(xL)]T and tR := [`(1)(xR), . . . , `(p+1)(xR)]T
are used to extrapolate the solution to the left and right endpoints of the domain,
respectively. For the nodal schemes considered here, the entries of the mass matrix
M ∈ R(p+1)×(p+1) in (2.19) may either be evaluated exactly as

Mij :=
∫ xR

xL

`(i)(x)`(j)(x) dx, (2.21)

or approximated (i.e. lumped) using collocated quadrature as

Mij := δijω
(i), where ω(i) :=

∫ xR

xL

`(i)(x) dx, (2.22)
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completing the algebraic formulation of the DG method.
The FR approach is simplified for this problem by noting that the projection

operator IN in (2.15) vanishes and that the correction procedure need only be applied
at the left boundary in the case of an upwind numerical flux and a positive wave
speed. The resulting strong formulation is then given for all t ∈ (0, T ) by

∂Uh(·, t)
∂t

+ a
∂

∂x

(
Uh(·, t) +

(
B(t)− Uh(xL, t)

)
GL

)
= 0, (2.23)

where, adopting the original sign convention introduced for one-dimensional FR
schemes in [8], the left correction function GL ∈ Pp+1([xL, xR]) is assumed to satisfy
GL(xL) = 1 and GL(xR) = 0. Evaluating (2.23) at each node in S to obtain an
expansion in terms of the nodal basis B, the FR method may be expressed algebraically
as

duh(t)
dt + aDuh(t) +

(
aB(t)− atTLuh(t)

)
g′L = 0, (2.24)

where the influence of the correction function is contained within the vector g′L :=
[(dGL/dx)(x(1)), . . . , (dGL/dx)(x(p+1))]T consisting of the nodal values of its deriva-
tive.

The following lemma, which was proven by Carpenter and Gottlieb [33, Lemmas
2.1 and 2.2] for one-dimensional Lagrange bases including nodes at both endpoints,
is essential for our analysis of the schemes in (2.19) and (2.24). More general nodal
sets were considered in [20] and employed within the context of FR methods in [23].

Lemma 2.1 Suppose that the entries of the mass matrix M are computed exactly
as in (2.21), or, alternatively, that the interpolatory quadrature rule in (2.22) is
of at least degree 2p− 1 with positive weights. The mass matrix is then symmetric
positive-definite (SPD), and the derivative matrix in (2.20) satisfies the SBP property

MD +DTM = tRt
T
R − tLtTL. (2.25)

Remark 2.6 For one-dimensional discretizations of any order employing the derivative
matrix in (2.20) and the lumped mass matrix in (2.22), the SBP property is satisfied on
the LGL nodes as well as the LG nodes,3 as the corresponding collocated quadrature
rules are of degree 2p− 1 and 2p+ 1, respectively, and have positive weights, meeting
the requirements of Lemma 2.1. If the exact mass matrix in (2.21) is used instead of
(2.22), the SBP property is satisfied on any set of p+ 1 distinct nodes. Considering,
for example, an approximation of degree p = 2 on the LG quadrature nodes S :=
{− 1

5
√

15, 0, 1
5
√

15}, one can easily verify that (2.25) is satisfied with

D :=

− 1
2
√

15 2
3
√

15 −− 1
6
√

15
− 1

6
√

15 0 1
6
√

15
1
6
√

15 −− 2
3
√

15 1
2
√

15

 and M :=

 5
9 0 0
0 8

9 0
0 0 5

9

, (2.26)

where the extrapolation vectors are given by tL := [ 1
6 (5 +

√
15),− 2

3 ,
1
6 (5 −

√
15)]T

and tR := [ 1
6 (5 −

√
15),− 2

3 ,
1
6 (5 +

√
15)]T, and we note that (2.21) and (2.22) are

equivalent in this case, since a collocated LG quadrature rule exactly integrates any
product of two basis functions in B.

3 This is also true for the Legendre-Gauss-Radau (LGR) nodes, which contain one endpoint
of the domain and support a quadrature rule of degree 2p (see, for example, [20, §7.2]).
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The equivalence, conservation, and energy stability properties which will be established
more generally in §4 are illustrated in the present context (i.e. considering a one-
dimensional linear problem on a single element) with the following theorem.

Theorem 2.1 Consider an FR discretization in the form of (2.24), satisfying

(M +K)g′L = −tL, where K := c

xR − xL
(
Dp
)T
MDp, (2.27)

where M is SPD, and c ∈ R is chosen such that M +K is also SPD. Provided that
the SBP property in (2.25) is satisfied, such a strong-form discretization of the linear
advection equation in (2.16) is equivalent to the weak-form discretization

M̃
duh(t)

dt − aDTMuh(t) + atRt
T
Ru

h(t)− atLB(t) = 0, (2.28)

where the mass matrix in (2.19) is replaced by M̃ := MF−1, corresponding to pre-
multiplication of the semi-discrete DG residual by a constant filter matrix given by
F := (I +M−1K)−1. Moreover, such DG and FR methods with the SBP property
are discretely conservative, satisfying

d
dt1

TMuh(t) + atTRu
h(t)− aB(t) = 0, (2.29)

and are energy stable with respect to the discrete norm induced by M̃ , satisfying

d
dt (u

h(t))TM̃uh(t) ≤ a(B(t))2. (2.30)

Proof Pre-multiplying (2.24) by M +K and using M̃ = M(I +M−1K) = M +K
as well as KD = 0, the latter of which follows from the form of K in (2.27) due to
the fact that differentiating a degree p polynomial p+ 1 times always yields the zero
function, we obtain the strong-form filtered DG scheme recovered via FR in [13, §3.2],

M̃
duh(t)

dt + aSuh(t)−
(
aB(t)− atTLuh(t)

)
tL = 0, (2.31)

where S := MD is the (advective) stiffness matrix. Applying the SBP property in
(2.25) to the second term on the left-hand side of (2.31), we obtain

M̃
duh(t)

dt + a
(
tRt

T
R − tLtTL −DTM

)
uh(t)−

(
aB(t)− atTLuh(t)

)
tL = 0, (2.32)

where, observing that atLtTLuh(t) cancels from the second and third terms, we recover
the weak formulation in (2.28).

To establish conservation, we pre-multiply (2.28) by 1T and use the fact that
constant functions are differentiated and interpolated exactly to obtain 1TDT = 0T

and 1TtL = 1, resulting in

1TM̃
duh(t)

dt + atTRu
h(t)− aB(t) = 0. (2.33)

Using 1TK = 0T to obtain 1TM̃ = 1TM and moving the time derivative outside of the
first term in (2.33) results in (2.29), where the discrete integral on the left-hand side
is exact under the conditions of Lemma 2.1, such that 1TMuh(t) =

∫ xR
xL

Uh(x, t) dx.
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Energy stability follows from a similar analysis to that described in the general
context of [20, §6]. Pre-multiplying the strong formulation in (2.24) by (uh(t))T(M +
K), applying the chain rule in time, and using KD = 0, we obtain

1
2

d
dt (u

h(t))TM̃uh(t) = −a(uh(t))TSuh(t) + (uh(t))T(aB(t)− atTLuh(t)
)
tL. (2.34)

Separating the matrix S into its symmetric and skew-symmetric parts and again
applying the SBP property in (2.25) results in

(uh(t))TSuh(t) = 1
2(uh(t))T(tRtTR − tLtTL)uh(t)

= 1
2
(
(tTRuh(t))2 − (tTLuh(t))2), (2.35)

which, when applied to the first term on the right-hand side of (2.34), leads to
1
2

d
dt (u

h(t))TM̃uh(t) = −a2
(
(tTLuh(t))2 − 2tTLuh(t)B(t)

)
− a

2 (tTRuh(t))2

= a

2 (B(t))2 − a

2 (tTLuh(t)−B(t))2 − a

2 (tTRuh(t))2,
(2.36)

where we have completed the square in order to obtain the second equality. Noting
the signs of each term in (2.36), we therefore have the bound in (2.30). ut

Remark 2.7 Assuming that the entries of the mass matrix are evaluated exactly
as in (2.21) and requiring the correction function to satisfy (2.27), we recover the
one-parameter family of VCJH FR methods introduced in [10]. More generally, energy-
stable FR schemes can be constructed by finding a matrix K such that the SBP
property is satisfied when the matrix M in (3.11) is replaced by M +K, which must
be SPD to produce an energy estimate. Vincent et al. [34, Theorem 1] achieve this
by requiring K to be symmetric, M +K to be SPD, and KD to be skew-symmetric,
leading to an extended range of energy-stable schemes.

Theorem 2.1 provides a simple illustration of the utility of the SBP property for the
analysis of high-order discretizations of conservation laws, in which the equivalence,
stability, and conservation properties of various schemes are established algebraically
as consequences of the matrix properties of the operators constituting such discretiza-
tions. This approach enables an analysis that is highly general (as many schemes are
amenable to matrix-based formulations with similar algebraic properties) yet leads to
simple proofs requiring very few additional theoretical abstractions or idealizations (as
the analysis is based directly on the computational form of the schemes and explicitly
considers the influence of numerical integration). The basic concepts considered in
this subsection apply much more broadly, however, extending to discretizations of
multidimensional and nonlinear problems as well as to modal and over-integrated
formulations. Such generalizations are the focus of the remainder of this paper.

3 Algebraic Formulation

3.1 Approximation on the Reference Element

We now introduce the matrices required for the algebraic formulation of the schemes
described in §2.5 and present several assumptions and lemmas which will be employed
throughout the analysis in §4.
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3.1.1 Discrete Inner Products

Considering nodal sets S and S(ζ) defined as in §2.5, we relax the assumptions of
unisolvency in order to allow for over-integration, which in the present context refers
to the evaluation of the semi-discrete residual for each element using N > N∗ nodes
to compute the volume terms and/or Nζ > N∗ζ nodes to compute the facet terms.
The L2 inner products on the reference element and each of its facets may then be
approximated as∫

Ω̂

U(ξ)V (ξ) dξ ≈
〈
U, V

〉
W

:=
N∑
i=1

N∑
j=1

U(ξ(i))WijV (ξ(j)) (3.1)

and ∫
Γ̂ (ζ)

U(ξ)V (ξ) dŝ ≈
〈
U, V

〉
B(ζ) :=

Nζ∑
i=1

Nζ∑
j=1

U(ξ(ζ,i))B(ζ)
ij V (ξ(ζ,j)), (3.2)

in terms of the matrices W ∈ RN×N and B(ζ) ∈ RNζ×Nζ , respectively. Following the
literature on spectral and spectral-element methods (see, for example, Canuto et
al. [35, §2.2.3]),4 we refer to the bilinear forms 〈·, ·〉W and 〈·, ·〉B(ζ) as discrete inner
products and note that such forms allow for the approximation of each term of the
integration-by-parts relation on the reference element for m ∈ {1, . . . , d} as∫

Ω̂

U(ξ)∂V (ξ)
∂ξm

dξ︸ ︷︷ ︸
≈〈U, ∂V/∂ξm〉W

+
∫
Ω̂

∂U(ξ)
∂ξm

V (ξ) dξ︸ ︷︷ ︸
≈〈∂U/∂ξm, V 〉W

=
Nf∑
ζ=1

∫
Γ̂ (ζ)

U(ξ)V (ξ)n̂(ζ)
m dŝ︸ ︷︷ ︸

≈ n̂(ζ)
m 〈U,V 〉B(ζ)

, (3.3)

where we make the following assumption regarding the above approximations.

Assumption 3.1 For any m ∈ {1, . . . , d}, the integration-by-parts relation in (3.3)
is satisfed under the discrete inner products for all U, V ∈ PN (Ω̂), as given by〈

U,
∂V

∂ξm

〉
W

+
〈
∂U

∂ξm
, V

〉
W

=
Nf∑
ζ=1

n̂(ζ)
m

〈
U, V

〉
B(ζ) . (3.4)

3.1.2 Polynomial Bases

Introducing an arbitrary (ordered) basis B := {φ(1), . . . , φ(N∗)} for PN (Ω̂), we may
define the matrices V ∈ RN×N∗ and R(ζ) ∈ RNζ×N∗ with entries given by

Vij := φ(j)(ξ(i)) and R
(ζ)
ij := φ(j)(ξ(ζ,i)), (3.5)

respectively. Referring to Appendix A as well as to Hesthaven and Warburton [38,
§3.1, §6.1, §10.1] and Karniadakis and Sherwin [39, Ch. 3] for details regarding the
construction of such bases, we make the following additional assumption.

4 In such contexts, the weight matrices are generally assumed to be diagonal; Boland and
Duris [36] as well as Hunkins [37] provide more general analyses of such approximations.
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Assumption 3.2 The matrix V is of rank N∗. Additionally, W is SPD, and B(ζ)

is (at least) symmetric positive-semidefinite (SPSD) for all ζ ∈ {1, . . . , Nf}.

Remark 3.1 The condition on the rank of V generalizes the unisolvency property
of S assumed in §2.5 to the case of N ≥ N∗. Details regarding the construction of
discrete inner products satisfying Assumptions 3.1 and 3.2 for quadrature-based and
collocation-based schemes are provided in Appendices B.1 and B.2, respectively.

The choice of a basis defines an isomorphism (i.e. a bijective linear mapping between
vector spaces) associating any polynomial U ∈ PN (Ω̂) with a unique vector ũ ∈ RN∗

containing its expansion coefficients in terms of the basis B, satisfying

U(ξ) =
N∗∑
i=1

ũiφ
(i)(ξ), (3.6)

which may be evaluated on S and S(ζ) through the matrix-vector products

V ũ =
[
U(ξ(1)), . . . , U(ξ(N))

]T and R(ζ)ũ =
[
U(ξ(ζ,1)), . . . , U(ξ(ζ,Nζ))

]T
. (3.7)

The positive-definiteness of the reference mass matrix with entries consisting of the
discrete inner products 〈φ(i), φ(j)〉W of all pairs of basis functions φ(i), φ(j) ∈ B is
then demonstrated with the following lemma.

Lemma 3.1 Under Assumption 3.2, the reference mass matrix M := V TWV is
SPD, regardless of the accuracy of the approximation in (3.1).

Proof The symmetry and positivity of the corresponding quadratic form are clear
from the structure of M and the fact that W is SPD, while the definiteness property
follows from the fact that the nullspace of V contains only the zero vector. ut

3.1.3 Projection Operators

Associated with the discrete inner product in (3.1) is an orthogonal projection operator
approximating the L2 projection of a function onto PN (Ω̂), which we introduce and
relate to the collocation projection in (2.13) with the following lemma.

Lemma 3.2 Under Assumption 3.2, the Galerkin projection ΠNU ∈ PN (Ω̂) of a
given function U : Ω̂ → R with respect to the discrete inner product in (3.1), satisfying〈

V,ΠNU − U
〉
W

= 0, ∀V ∈ PN (Ω̂), (3.8)

may be obtained in terms of any basis B for the space PN (Ω̂) as

(ΠNU)(ξ) =
N∗∑
i=1

(
N∑
j=1

PijU(ξ(j))

)
φ(i)(ξ), (3.9)

where we define P := M−1V TW . The projection then satisfies ΠNU = U for any
U ∈ PN (Ω̂), and recovers the collocation projection in (2.13) when N = N∗.
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Proof The proofs of such properties are standard (see, for example, [39, §4.1.5.3]).
For our purposes, it is important to highlight that the the invertibility of M follows
from its positive-definiteness, which was established in Lemma 3.1. Moreover, we note
that the polynomial exactness of the projection results from substituting (3.6) into
(3.9) and using PV = M−1V TWV = I, and that we recover (2.13) by evaluating
(3.9) at each node in S and using the fact that a square matrix is invertible if and
only if it is of full rank to obtain V P = V V −1 = I in the case of N = N∗. ut

3.1.4 Summation-by-Parts Property

Recalling that Assumption 2.2 implies that the reference approximation space in
(2.6) is closed under partial differentiation, the operator ∂/∂ξm on PN (Ω̂) can be
represented algebraically in a given basis B through the matrix D(m) ∈ RN∗×N∗

defined implicitly (see, for example, [25, Eq. (16)]) for each m ∈ {1, . . . , d} such that
for any function given as in (3.6), the corresponding derivative may be expanded as

∂U(ξ)
∂ξm

=
N∗∑
i=1

(
N∗∑
j=1

D
(m)
ij ũj

)
φ(i)(ξ). (3.10)

The following lemma establishes that the derivative matrix given by (3.10) satisfies
a multidimensional generalization of the SBP property in (2.25), which serves as a
discrete analogue of the integration-by-parts relation in (3.3).

Lemma 3.3 Under Assumptions 2.2 and 3.2, the derivative matrices given as in
(3.10) in terms of any basis B for PN (Ω̂) satisfy the multidimensional SBP property

MD(m) +
(
D(m))TM =

Nf∑
ζ=1

n̂(ζ)
m

(
R(ζ))TB(ζ)R(ζ), ∀m ∈ {1, . . . , d}. (3.11)

Proof As noted in [25, Eq. (26)], the result follows directly from expanding the
functions U, V ∈ PN (Ω̂) in (3.4) in terms of B, using (3.10) to obtain expansions of
the partial derivatives ∂U/∂ξm, and ∂V/∂ξm, which belong to PN (Ω̂) as a consequence
of Assumption 2.2, and expressing the discrete inner products in matrix form. ut

Remark 3.2 As the operators in (3.11) act on expansion coefficients with respect to
a given basis, which do not necessarily correspond to nodal values, such an algebraic
relation is sometimes referred to as a “modal” SBP property (see, for example,
Chen and Shu [40, Eq. (3.5)]), to distinuish it from the nodal multidimensional SBP
property introduced in [21, Definition 2.1], which serves an analogous purpose for
the construction and analysis of nodal discretizations for which the approximation is
not necessarily defined in terms of a polynomial basis.

3.2 Algebraic Formulation of the Discontinuous Galerkin Method

Given any basis B for the space PN (Ω̂), each component of the transformed numerical
solution for a DG or FR method may be expressed in the form of (3.6) in terms of
the expansion coefficients ũ(h,κ,`)(t) ∈ RN∗ as U (h,κ)

` (ξ, t) =
∑N∗

i=1 ũ
(h,κ,`)
i (t)φ(i)(ξ).

In the particular case of the DG scheme in (2.9), we may apply such an expansion



16 Tristan Montoya, David W. Zingg

to the numerical solution, test with each basis function φi ∈ B, and approximate
the volume and facet integrals using (3.1) and (3.2), respectively, resulting in an
inner-product formulation given by

N∗∑
j=1

〈
φ(i), J (κ)φ(j)

〉
W

dũ(h,κ,`)
j (t)

dt −
d∑

m=1

〈
∂φ(i)

∂ξm
, F

(h,κ)
`,m (·, t)

〉
W

+
Nf∑
ζ=1

〈
φ(i), J (κ,ζ)F

(∗,κ,ζ)
` (·, t)

〉
B(ζ)

= 0

(3.12)

for all κ ∈ {1, . . . , Ne}, ` ∈ {1, . . . , Nc}, i ∈ {1, . . . , N∗}, and t ∈ (0, T ). Defining the
diagonal matrices

J (κ) := diag
(
J (κ)(ξ(1)), . . . , J (κ)(ξ(N))

)
(3.13)

and
J (κ,ζ) := diag

(
J (κ,ζ)(ξ(ζ,1)), . . . , J (κ,ζ)(ξ(ζ,Nζ))

)
, (3.14)

the local mass matrix with entries given by 〈φ(i), J (κ)φ(j)〉W for all pairs of basis
functions φ(i), φ(j) ∈ B may be expressed as M (κ) := V TWJ (κ)V . An algebraic
formulation of (3.12) may then be obtained using the operators introduced in §3.1 as

M (κ) dũ(h,κ,`)(t)
dt −

d∑
m=1

(
D(m))TV TWf (h,κ,m,`)(t)

+
Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)f (∗,κ,ζ,`)(t) = 0

(3.15)

for all κ ∈ {1, . . . , Ne}, ` ∈ {1, . . . , Nc}, and t ∈ (0, T ), where we define

f (h,κ,m,`)(t) :=
[
F

(h,κ)
`,m (ξ(1), t), . . . , F (h,κ)

`,m (ξ(N), t)
]T (3.16)

and
f (∗,κ,ζ,`)(t) :=

[
F

(∗,κ,ζ)
` (ξ(ζ,1), t), . . . , F (∗,κ,ζ)

` (ξ(ζ,Nζ), t)
]T
. (3.17)

Remark 3.3 In order to obtain the vectors f (h,κ,m,`)(t) and f (∗,κ,ζ,`)(t), the fluxes
in (2.10) and (2.11) may be evaluated pointwise following the pre-multiplication
of ũ(h,κ,`)(t) by V and R(ζ) as in (3.7) in order to obtain the corresponding nodal
values of the numerical solution. If B is taken to be a nodal basis defined on the set
S̃ ⊂ Ω̂ as in Appendix A.2, the pre-multiplication by V may be avoided if collocation
is exploited with S = S̃, while the pre-multiplication by R(ζ) may be avoided if
S(ζ) ⊂ S̃, reducing the number of floating-point operations per residual evaluation.

The semi-discrete DG residual may be obtained from (3.15) through inversion or
factorization of the local mass matrix, hence requiring the following assumption.

Assumption 3.3 The local mass matrix M (κ) is invertible for all κ ∈ {1, . . . , Ne}.
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Remark 3.4 Assumption 3.3 is satisfied automatically as a consequence of Assump-
tions 2.1 and 3.2 when N = N∗, in which caseM (κ) is a product of invertible matrices.
Alternatively, Assumptions 2.1 and 3.2 lead to Assumption 3.3 being satisfied in the
general case of N ≥ N∗ if we additionally require W to be diagonal, as the resulting
M (κ) can be shown to be SPD in a similar manner to the proof of Lemma 3.1.

For the DG and FR schemes described within the present framework, we impose the
initial condition by approximating the projection in (2.12) analogously to (3.8) as〈

V, J (κ)[U (h,κ)(·, 0)− U0 ◦X(κ)]
`

〉
W

= 0, ∀V ∈ PN (Ω̂), (3.18)

for all κ ∈ {1, . . . , Ne} and ` ∈ {1, . . . , Nc}. A unique solution U (h,κ)(·, 0) ∈ PN (Ω̂)Nc
to (3.18) then exists under Assumption 3.3, with coefficients given by

ũ(h,κ,`)(0) =
(
M (κ))−1

V TWJ (κ)[U0
` (X(κ)(ξ(1))), . . . , U0

` (X(κ)(ξ(N)))
]T
. (3.19)

3.3 Algebraic Formulation of the Flux Reconstruction Method

Separating the divergence of the projected flux from that of the correction term,
defining the scalar-valued correction field associated with each node in S(ζ) as
H(ζ,j)(ξ) := ∇ξ ·G(ζ,j)(ξ), which belongs to PN (Ω̂) as a result of the first condition
in (2.14), and using the projection operator ΠN as opposed to IN in order to allow
for over-integration, the FR method in (2.15) may be expressed more generally as

∂ΠN (J (κ)U (h,κ)(·, t))
∂t

+∇ξ ·ΠNF (h,κ)(·, t)

+
Nf∑
ζ=1

Nζ∑
j=1

(
J (κ,ζ)(ξ(ζ,j))F (∗,κ,ζ)(ξ(ζ,j), t)

− n̂(ζ) ·
(
ΠNF (h,κ)(·, t)

)
(ξ(ζ,j))

)
H(ζ,j) = 0.

(3.20)

An algebraic formulation then follows from expanding all functions belonging to
PN (Ω̂) appearing in (3.20) in terms of B and using the operators in §3.1 to obtain

PJ (κ)V
dũ(h,κ,`)(t)

dt +
d∑

m=1

D(m)Pf (h,κ,m,`)(t)

+
Nf∑
ζ=1

L(ζ)
(
J (κ,ζ)f (∗,κ,ζ,`)(t)−

d∑
m=1

n̂(ζ)
m R(ζ)Pf (h,κ,m,`)(t)

)
= 0

(3.21)

for all κ ∈ {1, . . . , Ne}, ` ∈ {1, . . . , Nc}, and t ∈ (0, T ). The correction fields for the
facet Γ̂ (ζ) are encoded within the lifting matrix L(ζ) ∈ RN∗×Nζ , which satisfies

H(ζ,j)(ξ) =
N∗∑
i=1

L
(ζ)
ij φ

(i)(ξ), ∀ j ∈ {1, . . . , Nζ}, (3.22)

and may be viewed as generalizing [25, Eq. (22)] to allow for a broader range of
correction procedures (i.e. recovering FR schemes that are not equivalent to DG
methods) or as extending the formulation in [23, §3.1] to multiple space dimensions.
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Remark 3.5 Noting that MPJ (κ)V = V TWJ (κ)V = M (κ), we see for general (i.e.
including non-collocated) nodal sets that the matrix pre-multiplying the time deriva-
tive in (3.21) has an inverse given by (PJ (κ)V )−1 = (M (κ))−1M under Assumption
3.3, ensuring that the formulation results in a well-defined semi-discrete residual.

3.4 Vincent-Castonguay-Jameson-Huynh Correction Functions

To complete our algebraic formulation of the FR method in (3.21), the entries of the
lifting matrices L(ζ), or, equivalently, the expansion coefficients of each correction
field (i.e. the divergence of each correction function) in terms of the basis B, must
be specified. The following theorem demonstrates how such lifting matrices may be
obtained, beginning with the fundamental assumptions associated with the VCJH
family of correction functions introduced in [10–12].

Theorem 3.1 Given any polynomial space PN (Ω̂) satisfying Assumption 2.2, sup-
pose that there exist correction functionsG(ζ,j) and correction fields H(ζ,j) parametrized
by the coefficients C := {cα}α∈M withM⊂ N and cα ∈ R for all α ∈M, satisfying
the conditions in (2.14) as well as∫

Ω̂

(
G(ζ,j)(ξ) · ∇ξV (ξ)−

∑
α∈M

cα

|Ω̂|
DαV (ξ)DαH(ζ,j)(ξ)

)
dξ = 0 (3.23)

for all V ∈ PN (Ω̂), ζ ∈ {1, . . . , Nf}, and j ∈ {1, . . . , Nζ}, where we define the
differential operator Dα := ∂|α|/∂ξα1

1 · · · ∂ξ
αd
d . Then, given any basis B for PN (Ω̂)

and discrete inner products defined as in (3.1) and (3.2), satisfying

〈
U, V

〉
W

=
∫
Ω̂

U(ξ)V (ξ) dξ, ∀U, V ∈ PN (Ω̂), (3.24)

and 〈
U, V

〉
B(ζ) =

∫
Γ̂ (ζ)

U(ξ)V (ξ) dŝ, ∀U, V ∈ PN (Γ̂ (ζ)), (3.25)

such correction fields may be expanded as in (3.22) for any ζ ∈ {1, . . . , Nf} with

L(ζ) := (M +K)−1(R(ζ))TB(ζ) and K :=
∑
α∈M

cα

|Ω̂|
(
Dα
)T
MDα, (3.26)

where we define Dα :=
(
D(1))α1 · · ·

(
D(d))αd and assume that M +K is SPD.

Proof Applying integration by parts to the first term of the integrand in (3.23) and
noting that the resulting integrals are L2 inner products of functions in PN (Ω̂) and
PN (Γ̂ (ζ)), we may use the exactness conditions in (3.24) and (3.25) as well as the
fact that H(ζ,j) is defined as the divergence of G(ζ,j) to obtain

〈
V,H(ζ,j)〉

W
+
∑
α∈M

cα

|Ω̂|
〈
DαV,DαH(ζ,j)〉

W
=

Nf∑
η=1

〈
V,G(ζ,j) · n̂(η)〉

B(η) (3.27)
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for all V ∈ PN (Ω̂). Since all terms in (3.27) are linear with respect to V , we can
test with φ(k) ∈ B and apply the expansion in (3.22) to H(ζ,j) ∈ PN (Ω̂) in order to
obtain

N∗∑
i=1

(〈
φ(k), φ(i)〉

W
+
∑
α∈M

cα

|Ω̂|
〈
Dαφ(k),Dαφ(i)〉

W

)
L

(ζ)
ij

=
Nf∑
η=1

〈
φ(k),G(ζ,j) · n̂(η)〉

B(η) , ∀ k ∈ {1, . . . , N∗}.
(3.28)

Recognizing the entries of M and K on the left-hand side, expanding the discrete
inner product on the right-hand side, and using the second condition in (2.14), we
see that the jth column of the matrix L(ζ), containing the expansion coefficients for
the corresponding correction field H(ζ,j) ∈ PN (Ω̂) in terms of the basis B, may be
obtained by solving the linear system of equations given by

N∗∑
i=1

(Mki +Kki)L(ζ)
ij =

Nζ∑
i=1

R
(ζ)
ik B

(ζ)
ij , ∀ k ∈ {1, . . . , N∗}, (3.29)

for which a unique solution in the form of (3.26) exists if and only if M + K is
invertible, which follows from the assumption of positive-definiteness. As such a
system is obtained as a consequence of the conditions in (2.14) and (3.23) for all
j ∈ {1, . . . , Nζ} and ζ ∈ {1, . . . , Nf}, the correction fields are then fully specified
under the present assumptions by defining the lifting matrices as in (3.26). ut

Remark 3.6 While the conditions on the correction functions in Theorem 3.1 imply
the existence of correction fields given by (3.22) in terms of a particular form of L(ζ),
the converse does not hold in general, as we cannot necessarily associate a given
correction fieldH(ζ,j) obtained from L(ζ) as in (3.22) with a unique correction function
G(ζ,j) satisfying the conditions of Theorem 3.1. In fact, correction functions satisfying
such conditions have not, to the authors’ knowledge, been explicitly constructed for
simplicial elements in two or more space dimensions.5 The analysis in §4 based on
properties of the matrix operators appearing in (3.21) is therefore more general than
that explicitly relying on properties of the correction functions, and moreover ensures
that all mathematical objects involved in the proofs are well defined.

Remark 3.7 The accuracy conditions in (3.24) and (3.25) are only necessary to
demonstrate the recovery of the existing VCJH correction fields within the present
framework. The theory in §4 instead requires Assumptions 3.1 and 3.2, which may
be satisfied under slightly weaker accuracy requirements. Discrete inner products
satisfying such assumptions may therefore be used within the present framework to
construct lifting matrices in the form of (3.26) even when the conditions of Theorem
3.1 are not met, although (as discussed in [23, §3.6] for collocated LGL quadrature)
the corresponding correction fields would differ in such a case from those of the
standard VCJH scheme associated with a given set of coefficients C.

The choices ofM and C are then constrained by the following assumption.
5 Recalling the formulation in (3.20), as well as those appearing elsewhere in the literature

(e.g. [11, Eq. (4.35)] and [12, Eq. (29)]), it is the correction fields H(ζ,j), and not the correction
functions G(ζ,j), that appear explicitly in the implementation of a multidimensional FR scheme.
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Assumption 3.4 The correction fields are given in terms of (3.22) with the matrix
L(ζ) defined as in (3.26), where the multi-index setM is chosen such that KD(m) = 0
for all m ∈ {1, . . . , d}, and the coefficients C are chosen such that M +K is SPD.

Conditions for Assumption 3.4 to be satisfied depend on the choice of approximation
space PN (Ω̂), and are discussed further in Appendix C. If we begin with a set of
correction functions satisfying (2.14) and (3.23), the first condition in Assumption
3.4 amounts to choosing M such that the second term of the integrand in (3.23)
is constant. In such a case, we recover the fundamental assumption for the energy
stability analysis of the VCJH schemes in [10, Eqs. (3.31), (3.32)] and [11, Eq. (5.37)],

∫
Ω̂

G(ζ,j)(ξ) · ∇ξV (ξ) dξ =
∑
α∈M

cα(DαV )(DαH(ζ,j)), ∀V ∈ PN (Ω̂), (3.30)

where we slightly abuse notation to treat DαV,DαH(ζ,j) ∈ P0(Ω̂) as constants.

3.5 Nodal Formulations and Multidimensional SBP-SAT Discretizations

In the case of a collocated nodal basis, which, as discussed in Remark 3.3, corresponds
to the choice of S = S̃, where S̃ contains the nodal points associated with a Lagrange
basis (see, for example, Appendix A.2), we obtain V = P = I andM = W . Employing
such a simplification, which was also used for the one-dimensional discretizations
presented in §2.6, the formulations in (3.15) and (3.21) are given in terms of the
vector u(h,κ,`)(t) ∈ RN of nodal expansion coefficients u(h,κ,`)

i (t) = U
(h,κ)
` (ξ(i), t) as

MJ (κ) du(h,κ,`)(t)
dt −

d∑
m=1

(
D(m))TMf (h,κ,m,`)(t)

+
Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)f (∗,κ,ζ,`)(t) = 0

(3.31)

and

J (κ) du(h,κ,`)(t)
dt +

d∑
m=1

D(m)f (h,κ,m,`)(t)

+
Nf∑
ζ=1

L(ζ)
(
J (κ,ζ)f (∗,κ,ζ,`)(t)−

d∑
m=1

n̂(ζ)
m R(ζ)f (h,κ,m,`)(t)

)
= 0,

(3.32)

respectively, where it is usually assumed that Nζ = N∗ζ . The formulation in (3.31)
then recovers the weak form of the DGSEM when a quadrature-based approximation
is used (see, for example, Appendix B.1) and the weak form of the nodal DG approach
described in [38] when a collocation-based approximation is used (see, for example,
Appendix B.2). The former employs a lumped (i.e. diagonal) mass matrix, whereas
the latter employs an exact mass matrix, as given in one dimension by (2.22) and
(2.21), respectively, which differ when the quadrature is of insufficient accuracy to
exactly integrate all products of two basis functions. Referring to §4.1 for a discussion
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of the conditions under which the strong and weak formulations are equivalent, we
also note that the standard VCJH FR methods are recovered from (3.32) under
Assumption 3.4 when a collocation-based approximation is used.

Moreover, we are not restricted to the use of discretizations employing polyno-
mial expansions; the theory in §4 immediately extends to methods using any nodal
approximation D(m) of each partial derivative ∂/∂ξm satisfying the matrix-based
SBP property in (3.11), which is typically supplemented with polynomial exactness
conditions (c.f. [21, Definition 2.1]) to ensure high-order accuracy. Within the SBP
context, boundary or interface penalties such as the third term in (3.32) are referred
to as simultaneous approximation terms (SATs). Such terms are added to strong-form
discretizations employing SBP operators in order to weakly enforce boundary or
interface conditions in a stable and conservative manner, and were introduced in
the finite-difference context by Carpenter et al. [41], extending the penalty approach
developed for spectral methods by Funaro and Gottlieb [42]. A more detailed dis-
cussion of SATs for multidimensional SBP operators as well as an analysis of the
resulting SBP-SAT schemes for variable-coefficient advection problems in curvilinear
coordinates is provided by Del Rey Fernández et al. [43].

3.6 Connection Between FR Methods and Strong-Form Filtered DG Schemes

Consider an FR method in the form of (3.21) for which L(ζ) is defined as in (3.26)
with K = 0, as is obtained when the conditions of Theorem 3.1 are satisfied with
cα = 0 for all α ∈ M. Pre-multiplying such a formulation by the reference mass
matrix M and recalling Remark 3.5, we recover a DG method in strong conservation
form (see, for example, [10, §3.5.1], [11, §5.4], [12, §5], and [16, §2.3]) given by

M (κ) dũ(h,κ,`)(t)
dt +

d∑
m=1

S(m)Pf (h,κ,m,`)(t)

+
Nf∑
ζ=1

(
R(ζ))TB(ζ)

(
J (κ,ζ)f (∗,κ,ζ,`)(t)−

d∑
m=1

n̂(ζ)
m R(ζ)Pf (h,κ,m,`)(t)

)
= 0,

(3.33)

where we define S(m) := MD(m) and note that the components of the flux in (2.10)
are projected onto PN (Ω̂) prior to differentiating on the reference element as well as
prior to computing the normal trace of the flux on each facet through extrapolation.

Remark 3.8 It is also possible to compute the volume terms of a strong-form DG or
FR method by differentiating the flux components exactly using the chain rule and
integrating or projecting afterwards, and to compute the facet terms by evaluating
the normal trace of the flux on each facet directly in terms of the numerical solution
on S(ζ) without first projecting.6 However, the theoretical analysis in §4 based on the
SBP property does not apply to such alternative formulations, which, as discussed in
[26, §4] and [9, §3.3], generally differ from those in (3.21) and (3.33) when applied to
nonlinear or variable-coefficient problems and may therefore result in non-conservative
strong-form discretizations which are not equivalent to their weak-form counterparts.

6 As noted in [26, §4] in the context of the DGSEM-LGL, such a modification to the facet
terms has no effect on the discretization when N = N∗ and S(ζ) ⊂ S for all ζ ∈ {1, . . . , Nf}.
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For more general choices of correction functions satisfying (3.30), it was demonstrated
in [13] for one-dimensional collocated discretizations (and extended to certain mul-
tidimensional schemes in [12, §5] and [16, §2.4]) that the resulting FR formulation
recovers a linearly filtered DG method in the sense that the semi-discrete FR residual
may be recovered by pre-multiplying the strong-form DG residual, which we obtain
through isolating the time derivative in (3.33), by a constant filter matrix. Employing
a transformation to a modal basis, it can be shown that, at least in the case of an
affine mapping between reference and physical coordinates, such a filter acts only
on polynomial modes of the highest degree contained within the space PN (Ω̂) (see,
for example, [13, §3.2] and [12, Appendix B]). The following lemma illustrates this
equivalence within the context of the present framework.

Lemma 3.4 Under Assumptions 2.2, 3.2, 3.3, and 3.4, the FR method in (3.21)
is equivalent to the strong-form filtered DG scheme given for all κ ∈ {1, . . . , Ne},
` ∈ {1, . . . , Nc}, and t ∈ (0, T ) by

M̃ (κ) dũ(h,κ,`)(t)
dt +

d∑
m=1

S(m)Pf (h,κ,m,`)(t)

+
Nf∑
ζ=1

(
R(ζ))TB(ζ)

(
J (κ,ζ)f (∗,κ,ζ,`)(t)−

d∑
m=1

n̂(ζ)
m R(ζ)Pf (h,κ,m,`)(t)

)
= 0,

(3.34)

where M̃ (κ) := M (κ)(F (κ))−1 is defined in terms of the filter matrix on the physical
element F (κ) := (PJ (κ)V )F (PJ (κ)V )−1 for a reference filter F := (I +M−1K)−1.

Proof Pre-multiplying (3.21) by M + K and simplifying the first term by using
M +K = MF−1 and M (κ) = MPJ (κ)V to obtain

(M +K)(PJ (κ)V ) = M (κ)(F (κ))−1 = M̃ (κ), (3.35)

where all necessary inverses exist under the present assumptions, the FR formulation
may be expressed equivalently as

M̃ (κ) dũ(h,κ,`)(t)
dt +

d∑
m=1

S(m)Pf (h,κ,m,`)(t) +
d∑

m=1

KD(m)Pf (h,κ,m,`)(t)

+
Nf∑
ζ=1

(
R(ζ))TB(ζ)

(
J (κ,ζ)f (∗,κ,ζ,`)(t)−

d∑
m=1

n̂(ζ)
m R(ζ)Pf (h,κ,m,`)(t)

)
= 0.

(3.36)

Noting that the third term on the left-hand side of (3.36) vanishes when KD(m) = 0
for all m ∈ {1, . . . , d}, as is the case for methods satisfying Assumption 3.4, we recover
(3.34), which is identical to (3.33) with the exception of the mass matrix. ut

Remark 3.9 If KD(m) 6= 0, in which case the third term of (3.36) does not vanish, or
if the lifting matrix takes a different form from that in (3.26), the resulting FR dis-
cretization has no known equivalence to a filtered or unfiltered DG method. Moreover,
as shown in [16, §2.4], the filtered DG scheme recovered in (3.34) may be expressed
equivalently with the filter matrix only pre-multiplying the facet contributions to the
residual. In this work, we retain the filter on the entire semi-discrete residual (i.e.
as a modification to the mass matrix, whose inverse must pre-multiply all terms in
order to isolate the time derivative), which facilitates the analysis in §4.
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4 Theoretical Analysis

4.1 Equivalence Between Strong and Weak Forms

Just as integration by parts allows for the weak form of a PDE to be obtained from
the strong form, the SBP property in (3.11) may be used analogously to transform a
strong-form discretization into a weak-form discretization, and vice versa (as discussed,
for example, in [17, §8.1] and [22, §2.1]). Although not relying explicitly on the matrix
form of the SBP property in (3.11), Kopriva and Gassner proved in [26, §3] that for
the DGSEM-LG and DGSEM-LGL on curvilinear hexahedral elements, the strong
form in (3.33) is equivalent to the weak form in (3.15). Such an equivalence is extended
to more general DG formulations with the following theorem.

Theorem 4.1 Under Assumptions 2.2, 3.1, 3.2, and 3.3, the strong-form DG method
in (3.33) is equivalent to the weak-form DG method in (3.15).

Proof Applying the SBP property in (3.11) to the second term of (3.33), we obtain

M (κ) dũ(h,κ,`)(t)
dt +

d∑
m=1

(
Nf∑
ζ=1

n̂(ζ)
m

(
R(ζ))TB(ζ)R(ζ) −

(
S(m))T)Pf (h,κ,m,`)(t)

+
Nf∑
ζ=1

(
R(ζ))TB(ζ)

(
J (κ,ζ)f (∗,κ,ζ,`)(t)−

d∑
m=1

n̂(ζ)
m R(ζ)Pf (h,κ,m,`)(t)

)
= 0.

(4.1)

Recognizing that
∑Nf

ζ=1
∑d

m=1 n̂
(ζ)
m (R(ζ))TB(ζ)R(ζ)Pf (h,κ,m,`)(t) cancels from the

second and third terms on the left-hand side of (4.1) and noting the relation
(S(m))TPf (h,κ,m,`)(t) = (D(m))TV TWf (h,κ,m,`)(t), we therefore recover (3.15). ut

Exploiting the connection between FR methods and filtered DG schemes established in
Lemma 3.4, Theorem 4.1 also implies that an equivalent weak form may be recovered
from the FR method in (3.21), as is demonstrated with the following theorem.

Theorem 4.2 Under Assumptions 2.2, 3.1, 3.2, 3.3, and 3.4, the FR method in
(3.21) is equivalent to the weak-form filtered DG scheme given by

M̃ (κ) dũ(h,κ,`)(t)
dt −

d∑
m=1

(
D(m))TV TWf (h,κ,m,`)(t)

+
Nf∑
ζ=1

(
R(ζ))TB(ζ)J (κ,ζ)f (∗,κ,ζ,`)(t) = 0

(4.2)

for all κ ∈ {1, . . . , Ne}, ` ∈ {1, . . . , Nc}, and t ∈ (0, T ).

Proof As shown in Lemma 3.4, the FR scheme in (2.15) is equivalent under the
present assumptions to the strong-form filtered DG scheme in (3.34), which differs
from (3.33) only by the mass matrix. We may therefore proceed analogously to the
proof of Theorem 4.1 by applying the SBP property in (3.11) to the second term of
(3.34) in order to recover the weak formulation in (4.2). ut
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Although the weak-form filtered and unfiltered DG methods in (4.2) and (3.15)
are mathematically equivalent (under the stated assumptions) to the strong-form
FR and DG schemes in (3.21) and (3.33), respectively, the use of the weak form as
opposed to the strong form results in the elimination of facet contributions of the
form

∑d
m=1 n̂

(ζ)
m R(ζ)Pf (h,κ,m,`)(t). Although this reduction in the required number

of floating-point operations for evaluating the semi-discrete residual would ostensibly
result in the weak form being more efficient than the strong form (at least in the
context of explicit temporal integration), the cost of additional local matrix-vector
products could be relatively small if data such as the components of Pf (h,κ,m,`)(t)
are already available in cache, and may not substantially affect the overall run time,
particularly if the simulation is not compute bound. Moreover, as discussed in [26, §7]
in the context of the DGSEM, certain choices of nodes may significantly reduce the
cost of performing the flux extrapolation. For example, if a nodal basis as in Appendix
A.2 is used for the strong formulation, with S(ζ) ⊂ S̃ for all ζ ∈ {1, . . . , Nf}, the
vector Pf (h,κ,m,`)(t), which is needed to compute the volume terms, already contains
the flux values at all facet nodes, and thus no additional matrix-vector products
would be required.

Remark 4.1 The weak form of the VCJH family of FR methods proposed in [16, Eq.
(3.7)] may be expressed in the present notation as

M (κ) dũ(h,κ,`)(t)
dt −

d∑
m=1

(
S(m))TPf (h,κ,m,`)(t) +

Nf∑
ζ=1

FT(R(ζ))TB(ζ)J (κ,ζ)f (∗,κ,ζ,`)(t)

+
Nf∑
ζ=1

d∑
m=1

n̂(ζ)
m

(
I − FT)(R(ζ))TB(ζ)R(ζ)Pf (h,κ,m,`)(t) = 0, (4.3)

which is algebraically equivalent to the strong formulation in (3.21) under the as-
sumptions of Theorem 4.2, but requires a larger number of floating-point operations
than the weak-form DG method in (3.15) when K 6= 0. Theorem 4.2 demonstrates
that by instead using the weak formulation in (4.2), we are in fact able to achieve
equal computational cost to (3.15) for general choices of K satisfying Assumption
3.4. It can also be concluded from the above analysis that any implementation of a
DG method in strong or weak form can be easily modified to recover the full range
of VCJH schemes through a simple modification to the mass matrix (or, equivalently,
through the application of a filter to the entire semi-discrete residual).

4.2 Conservation

The proofs of conservation in this section and the proof of energy stability in §4.3
make use of the following assumption regarding the conformity of the mesh.

Assumption 4.1 For each pair of indices κ, ν ∈ {1, . . . , Ne} with κ 6= ν such that
∂Ω(κ) ∩ ∂Ω(ν) 6= ∅, there exist ζ, η ∈ {1, . . . , Nf} such that either Γ (κ,ζ) = Γ (ν,η), or
the facets are connected via periodic boundary conditions. Moreover, the nodes on
such facets align in physical space up to some permutation τ (κ,ζ), satisfying

X(κ)(ξ(ζ,i)) = X(ν)(ξ(η,τ(κ,ζ)(i))), ∀ i ∈ {1, . . . , Nζ}, (4.4)
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with an additional translation in the periodic case. Moreover, B(η)J (ν,η) and B(ζ)J (κ,ζ)

are congruent (see, for example, Horn and Johnson [44, Definition 4.5.4]) via the
permutation matrix T (κ,ζ) ∈ RNζ×Nζ with entries T (κ,ζ)

ij := δτ(κ,ζ)(i),j , as given by

B(η)J (ν,η) =
(
T (κ,ζ))TB(ζ)J (κ,ζ)T (κ,ζ). (4.5)

We may now demonstrate algebraically that the weak-form unfiltered and filtered
DG methods are discretely conservative, as given by the following theorem.

Theorem 4.3 Under Assumptions 2.2, 3.2, and 3.3, the weak-form unfiltered and
filtered DG methods in (3.15) and (4.2), respectively, the latter with a filter matrix
associated with correction fields satisfying Assumption 3.4, are locally conservative
with respect to a quadrature rule that is independent of the filter matrix, satisfying

d
dt1

TWJ (κ)u(h,κ,`)(t) +
Nf∑
ζ=1

1TB(ζ)f (∗,κ,ζ,`)(t) = 0 (4.6)

for all κ ∈ {1, . . . , Ne}, ` ∈ {1, . . . , Nc}, and t ∈ (0, T ), where the nodal values of the
numerical solution are given by u(h,κ,`)(t) := V ũ(h,κ,`)(t). Moreover, such schemes
are globally conservative with the addition of Assumption 4.1, satisfying

d
dt

Ne∑
κ=1

1TWJ (κ)u(h,κ,`)(t) +
∑

Γ (κ,ζ)⊂∂Ω

1TB(ζ)f (∗,κ,ζ,`)(t) = 0 (4.7)

for all ` ∈ {1, . . . , Nc} and t ∈ (0, T ), provided that F ∗ is conservative in the sense
that F ∗(U−, U+,n) = −F ∗(U+, U−,−n) for all U−, U+ ∈ Υ and n ∈ Sd−1.

Proof Beginning with the weak-form filtered DG scheme in (4.2), which recovers the
standard DG method in (3.15) when K = 0, we pre-multiply by (P1)T, which, by
Assumption 2.2 and Lemma 3.2, contains the expansion coefficients for the constant
function Ω̂ 7→ 1 in terms of the basis B. Recalling (3.35), we therefore obtain

(P1)T(M +K)(PJ (κ)V )dũ(h,κ,`)(t)
dt −

d∑
m=1

(P1)T(D(m))TV TWf (h,κ,m,`)(t)

+
Nf∑
ζ=1

(P1)T(R(ζ))TB(ζ)J (κ,ζ)f (∗,κ,ζ,`)(t) = 0,

(4.8)

where the second term vanishes due to the fact that (P1)T(D(m))T = 0T for all
m ∈ {1, . . . , d}, as any partial derivative of a constant function is zero. Considering
the form of K given in (3.26), such a property also implies that (P1)TK = 0T, which
may be used along with the relations M (κ) = MPJ (κ)V and (P1)T(R(ζ))T = 1T to
obtain the statement of local conservation in (4.6).

To establish global conservation, we sum (4.6) over all κ ∈ {1, . . . , Ne} and split the
net rate of production Φ(κ,ζ)

e (t) := 1TB(ζ)J (κ,ζ)f (∗,κ,ζ,`)(t) + 1TB(η)J (ν,η)f (∗,ν,η,`)(t)
arising from each shared interface equally between the oppositely oriented facets
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Γ (κ,ζ) ⊂ ∂Ω(κ) and Γ (ν,η) ⊂ ∂Ω(ν) which are either coincident or joined through
periodicity, resulting in

d
dt

Ne∑
κ=1

1TWJ (κ)u(h,κ,`)(t) +
∑

Γ (κ,ζ) 6⊂∂Ω

1
2Φ

(κ,ζ)
e (t)

+
∑

Γ (κ,ζ)⊂∂Ω

1TB(ζ)f (∗,κ,ζ,`)(t) = 0,
(4.9)

where the second sum must be taken over both sides of any interface (i.e. consid-
ering coincident but oppositely oriented facets to be distinct). Since (4.5) holds
under Assumption 4.1 and any permutation matrix T (κ,ζ) satisfies T (κ,ζ)1 = 1, the
contribution from each interface may be simplified as

Φ(κ,ζ)
e (t) = 1TB(ζ)J (κ,ζ)f (∗,κ,ζ,`)(t) + 1T(T (κ,ζ))TB(ζ)J (κ,ζ)T (κ,ζ)f (∗,ν,η,`)(t)

= 1TB(ζ)J (κ,ζ)(f (∗,κ,ζ,`)(t) + T (κ,ζ)f (∗,ν,η,`)(t)
)
.

(4.10)
Using (4.4) and the fact that the outward unit normal vectors for an interior or
periodic interface satisfy

n(κ,ζ)(X(κ)(ξ(ζ,i))) = −n(ν,η)(X(ν)(ξ(η,τ(κ,ζ)(i)))), ∀ i ∈ {1, . . . , Nζ}, (4.11)
the terms in parentheses on the second line of (4.10) are given by

f (∗,κ,ζ,`)(t) =


F ∗`
(
U (h,κ)(ξ(ζ,1), t), U (h,ν)(ξ(η,τ(κ,ζ)(1)), t),

n(κ,ζ)(X(κ)(ξ(ζ,1)))
)

...
F ∗`
(
U (h,κ)(ξ(ζ,Nζ), t), U (h,ν)(ξ(η,τ(κ,ζ)(Nζ)), t),

n(κ,ζ)(X(κ)(ξ(ζ,Nζ)))
)

 (4.12)

and

T (κ,ζ)f (∗,ν,η,`)(t) =


F ∗`
(
U (h,ν)(ξ(η,τ(κ,ζ)(1)), t), U (h,κ)(ξ(ζ,1), t),

−n(κ,ζ)(X(κ)(ξ(ζ,1)))
)

...
F ∗`
(
U (h,ν)(ξ(η,τ(κ,ζ)(Nζ)), t), U (h,κ)(ξ(ζ,Nζ), t),

−n(κ,ζ)(X(κ)(ξ(ζ,Nζ)))
)

, (4.13)

which sum to the zero vector due to the conservation property of the numerical flux.
Each term of the second sum in (4.9) then vanishes, and hence we obtain (4.7). ut
The local conservation property in (4.6) may be expressed in terms of quadrature as

d
dt

N∑
i=1

Uh(X(κ)(ξ(i)), t)J (κ)(ξ(i))ω(i)

︸ ︷︷ ︸
≈
∫
Ω(κ) U

h(x,t) dx

+
Nf∑
ζ=1

Nζ∑
i=1

F (∗,κ,ζ)(ξ(i), t)J (κ,ζ)(ξ(ζ,i))ω(ζ,i)

︸ ︷︷ ︸
≈
∫
Γ (κ,ζ) F

(∗,κ,ζ)((X(κ))−1(x),t) ds

= 0,

(4.14)
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where, regardless of the coefficients C used to form the matrix K in (3.26), the
reference volume and facet quadrature weights in (4.14) depend only on the discrete
inner products in (3.1) and (3.2), and are given in the general case (i.e. allowing for
dense weight matrices such as those constructed as in Appendix B.2) by

ω(i) :=
N∑
j=1

Wij and ω(ζ,i) :=
Nζ∑
j=1

B
(ζ)
ij . (4.15)

To establish discrete conservation for strong-form DG and FR methods, the divergence
theorem on must be satisfied on the reference element under the discrete inner
products, or equivalently, under the quadrature rules used in (4.14), for vector fields
with components belonging to the approximation space. Such a condition is given by

〈
1,∇ξ · V

〉
W

=
Nf∑
ζ=1

〈
1,V · n̂(ζ)

〉
B(ζ)

, ∀V ∈ PN (Ω̂)d, (4.16)

which is implied by Assumptions 2.2 and 3.1, where the latter is a sufficient but not
necessary condition.7 Such a result is demonstrated with the following theorem.

Theorem 4.4 Theorem 4.3 is valid for the FR scheme in (3.21) and for the strong-
form DG scheme in (3.33) with the additional requirement that the discrete divergence
theorem in (4.16) holds, as is the case for methods satisfying Assumption 3.1.

Proof We begin by pre-multiplying (3.21) by (P1)T(M + K), which for K = 0 is
equivalent to pre-multiplying (3.33) by (P1)T. Using the fact that (M +K)D(m) =
S(m) holds for all m ∈ {1, . . . , d} under Assumption 3.4 and noting that the relation

d∑
m=1

(P1)TS(m) =
Nf∑
ζ=1

d∑
m=1

n̂(ζ)
m (P1)T(R(ζ))TB(ζ)R(ζ) (4.17)

may obtained by expanding (4.16) in terms of B, or, if Assumption 3.1 is satisfied,
by pre-multiplying (3.11) by (P1)T, using (P1)T(D(m))TM = 0T, and summing
over m ∈ {1, . . . , d}, we obtain the relation in (4.8), with the second term already
eliminated. The remainder of the proof is then identical to that of Theorem 4.3. ut

Remark 4.2 Following the discussion in Remark 3.6, we note that the proofs of
conservation commonly presented in the FR literature (for example, those in [8, §3]
and [11, §4.2]) rely explicitly on properties of the correction functions G(ζ,j), in
particular, the second condition in (2.14), in order to show that the normal trace of
the corrected flux in physical space is continuous on each shared facet. Our proofs, in
contrast, rely only on well-defined algebraic properties of the discretization in (3.21),
wherein the influence of the correction fields is contained within the lifting matrices.

7 Considering, for example, the quadrature-based discrete inner products in Appendix B.1
and the total-degree polynomial space Pp(Ω̂), volume quadrature rules of total degree p− 1
or greater and facet quadrature rules of total degree p or greater are generally insufficient for
Assumption 3.1 to hold, but nonetheless satisfy (4.16).
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4.3 Energy Stability

While the theory in §4.1 and §4.2 applies to DG and FR methods for linear or
nonlinear systems of conservation laws in the form of (2.1) on general curvilinear
elements, the analysis in this section is restricted to the particular case of the constant-
coefficient linear advection equation in (2.2) on meshes consisting solely of affinely
mapped polytopes. We therefore make the following assumption.

Assumption 4.2 The mapping X(κ) is affine for all κ ∈ {1, . . . , Ne}, and hence we
may abuse notation to treat ∇ξX(κ), J (κ), J (κ,ζ), and n(κ,ζ) as constants.

The solution energy and associated norm employed for the stability analysis in this
section are introduced with the following lemma, where we note that the equation
index is suppressed as we are considering a scalar conservation law (i.e. Nc = 1).

Lemma 4.1 Under Assumptions 2.1, 2.2, 3.4, and 4.2, the discrete solution energy

Eh(t) := 1
2

Ne∑
κ=1

(ũ(h,κ)(t))TM̃ (κ)ũ(h,κ)(t) (4.18)

may be expressed as a positive-definite quadratic form in terms of the global de-
grees of freedom ũh(t) := [(ũ(h,1)(t))T, . . . , (ũ(h,Ne)(t))T]T, inducing a norm given by
‖Uh(·, t)‖Ω,h :=

√
2Eh(t) for the approximation space PN (T h) defined in (2.7).

Proof Since J (κ) is constant under Assumption 4.2, the relation in (3.35) reduces to
M̃ (κ) = J (κ)(M +K), and hence M̃ (κ) is SPD for all κ ∈ {1, . . . , Ne} under Assump-
tions 2.1 and 3.4. As the right-hand side of (4.18) may be expressed equivalently as
1
2 (ũh(t))TM̃ũh(t), where M̃ ∈ RNe·N∗×Ne·N∗ is a block-diagonal matrix with SPD
blocks M̃ (κ) along its diagonal, such a quadratic form is also positive definite, and
thus induces a norm for RNe·N∗ . Since the expansion of Uh(·, t) ◦X(κ) terms of the
basis B to obtain ũh(t) defines an isomorphism between the vector spaces PN (T h)
and RNe·N∗ , it therefore follows that (4.18) also induces a norm for PN (T h). ut

Remark 4.3 When the condition in (3.24) is satisfied, we accordingly obtain

‖Uh(·, t)‖2Ω,h =
Ne∑
κ=1

∫
Ω̂

((
Uh(X(κ)(ξ), t)

)2 +
∑
α∈M

cα

|Ω̂|
(
DαU(X(κ)(ξ), t)

)2)
J (κ)(ξ) dξ,

(4.19)

which, under Assumption 3.4, recovers the broken Sobolev-type norm introduced
by Jameson [45] in the context of one-dimensional spectral-difference methods and
adopted in several stability proofs for FR schemes (e.g. those [10, §3], [11, §5], and
[12, §3]). The existing stability theory for VCJH schemes is therefore recovered within
the present framework as a consequence of Theorem 3.1.

In order for advection problems on bounded domains to be well posed in the continuous
case, boundary conditions must be prescribed on portions of ∂Ω such that only
incoming waves are specified. In the discrete case, we follow a similar approach and
impose boundary and interface conditions weakly in a manner consistent with the
physics of the problem through an appropriate choice of numerical flux.



Algebraic Framework for DG and FR Methods Based on the SBP Property 29

Assumption 4.3 For the constant-coefficient linear advection equation in (2.2),
the (non-periodic) boundary ∂Ω with an outward unit normal vector denoted by
n(x) ∈ Sd−1 may be partitioned into disjoint subsets ∂Ω− := {x ∈ ∂Ω : a ·n(x) ≤ 0}
and ∂Ω+ := ∂Ω \ ∂Ω−, the former on which we prescribe the inflow boundary
condition U(x, t) = B(x, t). The numerical flux takes the general form

F ∗(U−, U+,n) := 1
2
(
F (U−) + F (U+)

)
· n− λ|a · n|

2 (U+ − U−) (4.20)

for U−, U+ ∈ R and n ∈ Sd−1, where the parameter λ ∈ R+
0 assumes the same value

on either side of an interior interface, and is taken to be unity for any facet on ∂Ω.

Remark 4.4 The numerical flux in (4.20) satisfies the conservation property assumed
in Theorem 4.3, recovering a fully upwind flux for λ = 1 and a central flux for λ = 0,
which correspond to upwind and symmetric SATs, respectively, in SBP terminology.

We are now equipped to present the following generalized energy stability result for
DG and FR schemes in strong and weak form, in which (as discussed, for example,
in Gustafsson et al. [46, Ch. 11]) we show that the energy defined in (4.18) may only
increase in time due to contributions arising from the inflow boundary.

Theorem 4.5 Under Assumptions 2.1, 2.2, 3.1, 3.2, 3.4, 4.1, 4.2, and 4.3, the DG
and FR methods in (3.15) and (3.21), respectively, are energy stable for the constant-
coefficient linear advection equation, satisfying a bound given for all t ∈ (0, T ) by

dEh(t)
dt ≤

∑
Γ (κ,ζ)⊆∂Ω−

|a · n(κ,ζ)|
2 (b(κ,ζ)(t))TB(ζ)J (κ,ζ)b(κ,ζ)(t), (4.21)

where we define b(κ,ζ)(t) := [B(X(κ)(ξ(ζ,1), t)), . . . , B(X(κ)(ξ(ζ,Nζ), t))]T and note
that the right-hand side vanishes for homogeneous or periodic boundary conditions.

Proof Energy stability will be proven for the strong-form FR method in (3.21),
which is equivalent to the filtered weak-form DG scheme in (4.2) under the present
assumptions as a result of Theorem 4.2, recovering the standard DG method in
(3.15) with K = 0. Beginning with a single element and pre-multiplying (3.21) by
(ũ(h,κ)(t))T(M +K), we may use (3.35) and apply the chain rule in time to obtain

1
2

d
dt (ũ

(h,κ)(t))TM̃ (κ)ũ(h,κ)(t) = −
d∑

m=1

(ũ(h,κ)(t))T(M +K)D(m)Pf (h,κ,m)(t)︸ ︷︷ ︸
=:Σ(κ)

I (t)

+
Nf∑
ζ=1

d∑
m=1

n̂(ζ)
m (ũ(h,κ)(t))T(R(ζ))TB(ζ)R(ζ)Pf (h,κ,m)(t)︸ ︷︷ ︸

=:Σ(κ,ζ)
II (t)

−
Nf∑
ζ=1

(ũ(h,κ)(t))T(R(ζ))TB(ζ)J (κ,ζ)f (∗,κ,ζ)(t)︸ ︷︷ ︸
=:Σ(κ,ζ)

III (t)

, (4.22)
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where the contributions Σ(κ)
I (t), Σ(κ,ζ)

II (t), and Σ(κ,ζ)
III (t) are defined as above. Sub-

stituting F (U (h,κ)(ξ, t)) = aU (h,κ)(ξ, t) into (2.10) as well as using PV = I and
(M+K)D(m) = S(m), which follow from Lemma 3.2 and Assumption 3.4, respectively,
the first two terms on the right-hand side of (4.22) may be expressed as

Σ
(κ)
I (t) =

d∑
m=1

d∑
n=1

anJ
(κ)[(∇ξX(κ))−1]

mn
(ũ(h,κ)(t))TS(m)ũ(h,κ)(t) (4.23)

and

Σ
(κ,ζ)
II (t) =

d∑
m=1

d∑
n=1

anJ
(κ)[(∇ξX(κ))−1]

mn
n̂(ζ)
m (ũ(h,κ)(t))T(R(ζ))TB(ζ)R(ζ)ũ(h,κ)(t)

= a · n(κ,ζ)(ũ(h,κ)(t))T(R(ζ))TB(ζ)J (κ,ζ)R(ζ)ũ(h,κ)(t), (4.24)

where the second equality in (4.24) results from (2.5). Separating S(m) into its
symmetric and skew-symmetric parts and using (3.11), we obtain

(ũ(h,κ)(t))TS(m)ũ(h,κ)(t) = 1
2

Nf∑
ζ=1

n̂(ζ)
m (ũ(h,κ)(t))T(R(ζ))TB(ζ)R(ζ)ũ(h,κ)(t), (4.25)

which recovers (2.35) in the one-dimensional case. Applying (4.25) to (4.23) and
using the first equality in (4.24) then results in Σ

(κ)
I (t) =

∑Nf
ζ=1Σ

(κ,ζ)
II (t)/2. The

local energy balance in (4.22) may therefore be expressed as

1
2

d
dt (ũ

(h,κ)(t))TM̃ (κ)ũ(h,κ)(t) =
Nf∑
ζ=1

(
1
2Σ

(κ,ζ)
II (t)−Σ(κ,ζ)

III (t)
)
, (4.26)

where we note that the right-hand side contains only facet contributions. Summing
(4.26) over all elements and splitting the net contribution Σ(κ,ζ)

net (t) := (Σ(κ,ζ)
II (t) +

Σ
(ν,η)
II (t))/2 − (Σ(κ,ζ)

III (t) + Σ
(ν,η)
III (t)) due to each shared interface equally between

the facets Γ (κ,ζ) ⊂ ∂Ω(κ) and Γ (ν,η) ⊂ ∂Ω(ν) which are coincident or connected via
periodicity results in the global balance

dEh(t)
dt =

∑
Γ (κ,ζ) 6⊂∂Ω

1
2Σ

(κ,ζ)
net (t) +

∑
Γ (κ,ζ)⊂∂Ω

(
1
2Σ

(κ,ζ)
II (t)−Σ(κ,ζ)

III (t)
)
. (4.27)

As we will now demonstrate, the contributions to the right-hand side of (4.27) arising
from interior or periodic interfaces and those arising from facets on the inflow and
outflow portions of the boundary may be analyzed separately in order to establish an
upper bound for the time rate of change in energy.

Similarly to the proof of Theorem 4.3, it follows from Assumption 4.1 that for any
interior or periodic interface, the contributions arising from a numerical flux function
taking the form of (4.20) may be expressed as

Σ
(κ,ζ)
III (t) = 1

2Σ
(κ,ζ)
II (t) + a · n(κ,ζ)

2 (ũ(h,κ)(t))T(R(ζ))TB(ζ)J (κ,ζ)T (κ,ζ)R(η)ũ(h,ν)(t)

− λ|a · n(κ,ζ)|
2 (ũ(h,κ)(t))T(R(ζ))TB(ζ)J (κ,ζ)T (κ,ζ)R(η)ũ(h,ν)(t)

+ λ|a · n(κ,ζ)|
2 (ũ(h,κ)(t))T(R(ζ))TB(ζ)J (κ,ζ)R(ζ)ũ(h,κ)(t) (4.28)
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and

Σ
(ν,η)
III (t) = 1

2Σ
(ν,η)
II (t)

− a · n
(κ,ζ)

2 (ũ(h,ν)(t))T(R(η))T(T (κ,ζ))TB(ζ)J (κ,ζ)R(ζ)ũ(h,κ)(t)

− λ|a · n(κ,ζ)|
2 (ũ(h,ν)(t))T(R(η))T(T (κ,ζ))TB(ζ)J (κ,ζ)R(ζ)ũ(h,κ)(t)

+ λ|a · n(κ,ζ)|
2 (ũ(h,ν)(t))T(R(η))T(T (κ,ζ))TB(ζ)J (κ,ζ)T (κ,ζ)R(η)ũ(h,ν)(t). (4.29)

Noting that the first terms of (4.28) and (4.29) cancel out the contributions of Σ(κ,ζ)
II (t)

and Σ(ν,η)
II (t) to Σ(κ,ζ)

net (t), respectively, and that the matrix B(ζ)J (κ,ζ) is SPSD under
Assumptions 2.1, 3.2, and 4.2, the net contribution to the energy balance in (4.27) is
then given by

Σ
(κ,ζ)
net (t) = −λ|a · n

(κ,ζ)|
2

(
(ũ(h,κ)(t))T(R(ζ))TB(ζ)J (κ,ζ)R(ζ)ũ(h,κ)(t)

− 2(ũ(h,κ)(t))T(R(ζ))TB(ζ)J (κ,ζ)T (κ,ζ)R(η)ũ(h,ν)(t)

+ (ũ(h,ν)(t))T(R(η))T(T (κ,ζ))TB(ζ)J (κ,ζ)T (κ,ζ)R(η)ũ(h,ν)(t)
)

= −λ|a · n
(κ,ζ)|

2 (d(κ,ζ)(t))TB(ζ)J (κ,ζ)d(κ,ζ)(t), (4.30)

where we define d(κ,ζ)(t) := R(ζ)ũ(h,κ)(t) − T (κ,ζ)R(η)ũ(h,ν)(t). It therefore follows
that Σ(κ,ζ)

net (t) ≤ 0 if λ ≥ 0, where for λ = 0, the interior or periodic interfaces do
not contribute to the energy balance, whereas for λ > 0, the upwind bias of the
numerical flux in (4.20) dissipates energy at a rate depending quadratically on the size
of the inter-element jump. We have therefore demonstrated that the interior/periodic
interface coupling procedure is energy stable, and now turn our attention to the
contributions to (4.27) resulting from the inflow and outflow portions of the boundary.

For any facet Γ (κ,ζ) ⊂ ∂Ω−, the contribution Σ(κ,ζ)
II (t)/2−Σ(κ,ζ)

III (t) to the energy
balance in (4.27) may be obtained by expressing Σ(κ,ζ)

II (t) and Σ(κ,ζ)
III (t) as in (4.24)

and (4.28), respectively, with T (κ,ζ)R(η)ũ(h,ν)(t) replaced by b(κ,ζ)(t). We may then
take λ = 1 as per Assumption 4.3 and note that a ·n(κ,ζ) = −|a ·n(κ,ζ)|, resulting in

1
2Σ

(κ,ζ)
II (t)−Σ(κ,ζ)

III (t) = |a · n
(κ,ζ)|

2

(
2(ũ(h,κ)(t))T(R(ζ))TB(ζ)J (κ,ζ)b(κ,ζ)(t)

− (ũ(h,κ)(t))T(R(ζ))TB(ζ)J (κ,ζ)R(ζ)ũ(h,κ)(t)
)

= |a · n
(κ,ζ)|

2

(
(b(κ,ζ)(t))TB(ζ)J (κ,ζ)b(κ,ζ)(t)

− (d(κ,ζ)(t))TB(ζ)J (κ,ζ)d(κ,ζ)(t)
)

≤ |a · n
(κ,ζ)|

2 (b(κ,ζ)(t))TB(ζ)J (κ,ζ)b(κ,ζ)(t), (4.31)

where the second equality follows from completing the square and defining d(κ,ζ)(t) :=
R(ζ)ũ(h,κ)(t)− b(κ,ζ)(t) and the last line follows from the fact that B(ζ)J (κ,ζ) is SPSD.
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Using the fact that Γ (κ,ζ) ⊂ ∂Ω+ implies a · n(κ,ζ) = |a · n(κ,ζ)|, it follows from
taking λ = 1 in (4.28) that Σ(κ,ζ)

III (t) = Σ
(κ,ζ)
II (t). The resulting contribution to the

second sum on the right-hand side of (4.27) is therefore simply −Σ(κ,ζ)
II (t)/2, which

is non-positive as a result of (4.24) and the positive-semidefiniteness of B(ζ)J (κ,ζ),
and hence we see that any facet lying on the outflow boundary does not contribute
to growth in the solution energy. The final energy balance is then given by

dEh(t)
dt =

∑
Γ (κ,ζ)⊆∂Ω−

|a · n(κ,ζ)|
2 (b(κ,ζ)(t))TB(ζ)J (κ,ζ)b(κ,ζ)(t)

−
∑

Γ (κ,ζ)⊆∂Ω+

|a · n(κ,ζ)|
2 (ũ(h,κ)(t))T(R(ζ))TB(ζ)J (κ,ζ)R(ζ)ũ(h,κ)(t)

−
∑

Γ (κ,ζ)⊆∂Ω−

|a · n(κ,ζ)|
2 (d(κ,ζ)(t))TB(ζ)J (κ,ζ)d(κ,ζ)(t)

−
∑

Γ (κ,ζ) 6⊂∂Ω

λ|a · n(κ,ζ)|
4 (d(κ,ζ)(t))TB(ζ)J (κ,ζ)d(κ,ζ)(t),

(4.32)

where the first term corresponds to the energy entering the domain through the inflow
boundary, while the second corresponds to the energy exiting the domain through the
outflow boundary. The third and fourth terms correspond to the energy dissipation
resulting from the facet jumps, which arise due to the discontinuous nature of the
approximation space and the weak imposition of the boundary conditions. Since all
but the first of such contributions to the energy balance are non-positive, we obtain
the inequality in (4.21), thereby proving that the discretization is energy stable. ut

Remark 4.5 For periodic boundary conditions and a central numerical flux, all terms
on the right-hand side of (4.32) vanish, leading to discrete energy conservation.

Remark 4.6 The focus of this paper is on DG and FR methods in standard conserva-
tion (i.e. divergence) form. These discretizations are generally not provably stable
for nonlinear or variable-coefficient PDEs, nor are they provably stable for meshes
consisting of elements for which the transformation from the reference element is not
affine, despite often being stable in practice and nevertheless used extensively in such
contexts. While outside the scope of this paper, entropy-stable or split-form schemes
allow for bounds analogous to (4.21) to be established for more complex problems.
In the case of the Euler equations in (2.3), which are discretized using standard DG
and FR methods in §5, entropy-stable nodal formulations based on the SBP property
were introduced on tensor-product elements by Fisher et al. [47] and Carpenter et al.
[48], which were extended to simplicial elements by Crean et al. [49] and Chen and
Shu [50], and to modal formulations by Chan [25]. In all of the above formulations, it
is required that the matrix W be diagonal and that the facet terms (i.e. the SATs)
be constructed using a lifting operator defined as in (3.26) with K = 0. A subset
of the discretizations discussed in this work (including quadrature-based unfiltered
DG methods as well as nodal SBP schemes with diagonal mass matrices) therefore
readily extend to entropy-stable formulations.
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5 Numerical Experiments

5.1 Design Choices and Implementation

The methods described in §3 are implemented within a free and open-source Python
code8 offering substantial flexibility in the design choices afforded for DG and FR
methods, which are detailed in this section.

5.1.1 Reference Element and Approximation Spaces

The numerical experiments in this work involve formulations in two space dimensions
on a triangular reference element given by T̂ 2 :=

{
ξ ∈ [−1, 1]2 : ξ1 + ξ2 ≤ 0

}
, where

PN (Ω̂) is taken to be the total-degree polynomial space Pp(T̂ 2), which results from
(2.6) with the choice of N := {α ∈ N2

0 : α1 + α2 ≤ p}. Such a space is of dimension
N∗ = (p+ 1)(p+ 2)/2, and we report results for values of p ∈ {2, 3, 4}.

5.1.2 Discrete Inner Products and Nodal Sets

Three options for discrete inner products are employed for the numerical experiments,
which are referred to as Quadrature I, Quadrature II, and Collocation schemes. The
first two make use of the quadrature-based approach described in Appendix B.1,
while the third employs the collocation-based approach in Appendix B.2. For the
quadrature-based schemes, all volume terms are computed using positive quadrature
rules of degree 2p due to Xiao and Gimbutas [51]. To compute the facet terms, we
use LG quadrature rules with p+ 1 nodes on each facet (i.e. degree 2p+ 1) for the
Quadrature I schemes and LGL quadrature rules with p+ 1 nodes on each facet (i.e.
degree 2p− 1) for the Quadrature II schemes. Although both approaches result in
Assumption 3.2 being satisfied (where, as discussed in Remark B.1, the rank of V
was verified numerically), the insufficient accuracy of the facet integration for the
Quadrature II schemes precludes the use of Lemma B.1. As a result, Assumption
3.1 is satisfied for the Quadrature I schemes, but not for the Quadrature II schemes,
leading to the loss of the SBP property in the latter case. The Collocation schemes
interpolate the volume terms on the “warp & blend” nodes introduced by Warburton
[52], which form unisolvent sets for the corresponding polynomial spaces Pp(Ω̂), and
include p+ 1 LGL nodes on each facet, which are used to interpolate the facet terms.
Therefore, as discussed in Appendix B.2, the Collocation schemes satisfy Assumptions
3.1 and 3.2 by construction. The nodal sets corresponding to each choice of discrete
inner product for polynomial degrees 2, 3, and 4 are shown in Figs. 1, 2, and 3,
respectively, where the symbols ◦ and � represent nodes in S and S(ζ), respectively.

5.1.3 Polynomial Bases

For the quadrature-based schemes, we take B to be an orthonormal modal basis
defined as in (A.3), while for the collocation-based schemes, nodal bases given as in
(A.6) are used with S̃ = S, in this case corresponding to the “warp & blend” nodes
in [52], which also satisfy S(ζ) ⊂ S̃ for all ζ ∈ {1, . . . , Nf}.

8 Available at https://github.com/tristanmontoya/GHOST.

https://github.com/tristanmontoya/GHOST
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(a) Quadrature I (b) Quadrature II (c) Collocation

Fig. 1: Nodal sets for p = 2

(a) Quadrature I (b) Quadrature II (c) Collocation

Fig. 2: Nodal sets for p = 3

(a) Quadrature I (b) Quadrature II (c) Collocation

Fig. 3: Nodal sets for p = 4

5.1.4 Semi-Discrete Residual Formulation

We employ the strong formulation in (3.21) as well as the weak formulation in (4.2),
in the case of K = 0 recovering the standard unfiltered strong-form and weak-form
DG schemes in (3.33) and (3.15), respectively.

5.1.5 Lifting and Filter Matrices

The matrix K used to form the lifting and filter matrices is given as in (C.1), where
the coefficient c ∈ R scaling the matrix K is chosen either as c = cDG = 0, recovering
a DG scheme in strong or weak form, or as c = c+, corresponding to the VCJH scheme
found in [11, §6] to allow for the largest stable time step for a given polynomial degree
when solving the linear advection equation.9 The numerical experiments in [11, §7]
employ values of c+ given by 4.3× 10−2, 6.0× 10−4, and 5.6× 10−6 for polynomial

9 The latter choice is merely used as a reference value in order to demonstrate that the
results in §4 hold for K 6= 0; the optimality of such a choice in terms of time step size is highly
dependent on the time-marching method, the mesh, and the particular problem being solved.
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degrees 2, 3, and 4, respectively; we define K for c = c+ using the same values, and,
as a result of the conditions of Theorem 3.1 (in addition to Assumption 3.4) being
satisfied for all discretizations employed in this section, we therefore recover identical
correction fields to those in their work.

5.1.6 Numerical Flux Function

The numerical flux function for the linear advection equation is given as in (4.20),
where we report results for λ ∈ {0, 1}, corresponding to central and upwind fluxes.
In the case of the Euler equations, we use Roe’s approximate Riemann solver [53].

5.1.7 Mesh and Coordinate Transformation

As the test problems considered in this work are posed on the domainΩ := (0, L)2 with
L ∈ R+, we begin with a regular Cartesian grid consisting ofM ∈ N equal intervals in
each direction, subdividing each quadrilateral into two right-angled triangles in order
to obtain a total of Ne = 2M2 elements of equal size. Using an affine transformation
X

(κ)
affine ∈ P1(Ω̂)2 to map the nodes Smap := {ξ(1)

map, . . . , ξ
(Nmap)
map } ⊂ Ω̂ associated

with a Lagrange basis Bmap := {`(1)
map, . . . , `

(Nmap)
map } of degree pmap ∈ N onto each

straight-sided element of the original mesh, we then interpolate the warping

Θ(x) :=
[

x1 + 1
5L sin(πx1/L) sin(πx2/L)

x2 + 1
5L exp(1− x2/L) sin(πx1/L) sin(πx2/L)

]
(5.1)

considered by Del Rey Fernández et al. [54], resulting in a mapping given by

X(κ)(ξ) :=
Nmap∑
i=1

Θ(X(κ)
affine(ξ(i)

map))`(i)map(ξ). (5.2)

In this work, the interpolation nodes in Smap are taken to be the “warp and blend”
nodes in [52], which for p = pmap coincide with those pictured for the Collocation
schemes in Figs. 1, 2, and 3. Examples of meshes obtained through the above warping
procedure with M = 5 are shown in Fig. 4, where the symbol • is used to represent
the image of each node in Smap under the mapping given in (5.2).

5.1.8 Temporal Discretization

The standard explicit fourth-order Runge-Kutta method is used to advance the
solution in time, where the time step is chosen as ∆t ≈ Cth/a,10 with a characteristic
element size of h = L/M and a characteristic wave speed a ∈ R+ taken in §5.2 to
be the magnitude of the advection velocity and in §5.3 to be the magnitude of the
background velocity for the isentropic vortex. Motivated by the Courant-Friedrichs-
Lewy (CFL) condition described for the DG method by Cockburn and Shu [55, §2.2],
we choose Ct = β/(2p+ 1) with β = 2.5× 10−3 in order to ensure that the error due
to the temporal discretization is dominated by that of the spatial discretization.

10 Specifically, we take ∆t = T/Nt, where the total number of time steps is given by Nt =
bT/∆t∗c in terms of the target time step ∆t∗ := Cth/a, with b·c denoting the floor operator.
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(a) Original mesh (b) pmap = 1 (c) pmap = 3

Fig. 4: Warping of a split Cartesian mesh through Lagrange interpolation

5.1.9 Quantities of Interest

In order to numerically verify the theoretical results established in §4, the following
quantities of interest are evaluated for each scheme under consideration.
– Denoting the numerical solutions at time t = T obtained using the strong-form

and weak-form implementations of a given method applied to a particular problem
as Uhstrong(·, T ) and Uhweak(·, T ), respectively, we evaluate the L2 norm of their
difference, which is given for ` ∈ {1, . . . , Nc} by

Equivalence Metric :=

√∫
Ω

(
Uh`,strong(x, T )− Uh`,weak(x, T )

)2 dx. (5.3)

This metric is expected to be zero for the Quadrature I and Collocation schemes
(but not necessarily for the Quadrature II schemes) due to Theorems 4.1 and 4.2.

– For both the strong and weak forms, we compute the net change in the discrete
integral of each conservative variable, which is given for ` ∈ {1, . . . , Nc} by

Conservation Metric :=
Ne∑
κ=1

1TWJ (κ)V ũ(h,κ,`)(t)
∣∣∣T
0
. (5.4)

This metric is expected to be zero as a result of Theorems 4.3 and 4.4, the
conditions of which are satisfied for all discretizations described in this section.

– In the case of the linear advection equation, we also evaluate the net change in
the discrete solution energy defined in (4.21), which is given by

Energy Metric := 1
2

Ne∑
κ=1

(ũ(h,κ)(t))TM̃ (κ)ũ(h,κ)(t)
∣∣∣T
0
. (5.5)

This metric is expected from Theorem 4.5 to be negative with λ = 1 and zero
with λ = 0 for the Quadrature I and Collocation schemes (but not necessarily for
the Quadrature II schemes) applied the periodic problem considered here.

Remark 5.1 In the results tabulated in §5.2 and §5.3, values corresponding to proper-
ties established theoretically in §4 that are violated (i.e. due to design choices leading
to the stated assumptions not being satisfied) are shown in italic type. A horizontal
line denotes a computation for which the scheme was found to be unstable.
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Table 1: Linear advection equation, p = 2

Scheme c λ
Equivalence

Metric
Conservation Metric Energy Metric

Strong Weak Strong Weak

Quadrature I cDG 0 8.937e–15 –4.710e–16 –5.130e–16 –1.665e–15 –1.610e–15
1 1.257e–15 –1.126e–16 –2.004e–16 –5.847e–03 –5.847e–03

c+ 0 6.789e–15 –5.609e–16 –7.048e–16 –7.772e–16 6.106e–16
1 1.002e–15 –3.223e–16 –2.406e–16 –5.328e–02 –5.328e–02

Quadrature II cDG 0 — — — — —
1 1.741e–02 –1.380e–15 4.121e–16 –5.308e–03 –4.728e–03

c+ 0 — — — — —
1 1.949e–02 –5.756e–16 –6.061e–17 –4.864e–02 –5.315e–02

Collocation cDG 0 4.130e–15 1.477e–16 –3.348e–16 –7.550e–15 –9.992e–15
1 3.251e–15 –9.151e–17 –5.074e–16 –5.775e–03 –5.775e–03

c+ 0 3.911e–15 –1.095e–16 –3.338e–16 1.776e–15 –1.221e–15
1 2.994e–15 –7.058e–17 –2.102e–16 –5.156e–02 –5.156e–02

Remark 5.2 All computations in this work are performed using double-precision
arithmetic. Hence, due to accumulated roundoff error as well as the influence of the
temporal discretization (which is not accounted for in the theoretical analysis), we
consider a quantity to be zero if it is on the order of 10−12 or less. This is many orders
of magnitude smaller than the solution error for the grids considered in this work,
which are deliberately chosen to be coarse in order to unambiguously demonstrate
that the properties proven in §4 hold discretely, regardless of the grid resolution.

5.2 Linear Advection Equation

We solve the constant-coefficient linear advection equation in (2.2) on a square domain
of side length L ∈ R+, with periodic boundary conditions applied in both directions.
The initial condition is given by U0(x) := sin(2πx1/L) sin(2πx2/L) and the advection
velocity is prescribed as a := a[cos(θ), sin(θ)]T with a ∈ R+ and θ ∈ [0, 2π). The mesh
is constructed as described in §5.1, where we use pmap = 1 such that Assumption
4.2 is satisfied, and the solution is advanced in time for one period, corresponding to
T = L/(amax(|cos(θ)|, |sin(θ)|)). For the numerical experiments in this section, the
solver is run with parameter values of L = 1, M = 8, a =

√
2 and θ = π/4.

The results for polynomial degrees 2, 3, and 4 are shown in Tables 1, 2, and 3,
respectively. In all cases, the results for the Quadrature I and Collocation schemes
are consistent with the theory, satisfying the equivalence, conservation, and stability
(i.e. energy conservation for λ = 0 and energy dissipation for λ = 1) properties
which were proven in §4. As discussed in §5.1, the Quadrature II schemes violate
Assumption 3.1, and thus the theory in §4.1 and §4.3 does not apply; accordingly,
the strong-form and weak-form numerical solutions are different, and both the strong
and weak forms are found to be unstable when a central flux (i.e. λ = 0) is used.
Although the Quadrature II schemes are seen to be stable in practice for an upwind
flux (i.e. λ = 1), no a priori energy estimate exists due to the violation of the SBP
property. The use of an upwind flux in such a case can therefore be interpreted as
the addition of numerical dissipation to stabilize an unstable baseline scheme.
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Table 3: Linear advection equation, p = 4

Scheme c λ
Equivalence

Metric
Conservation Metric Energy Metric

Strong Weak Strong Weak

Quadrature I cDG 0 1.281e–14 4.943e–16 –2.732e–16 –1.776e–15 –7.216e–16
1 2.301e–15 4.210e–16 1.444e–16 –4.326e–06 –4.326e–06

c+ 0 8.634e–15 –1.134e–15 –1.394e–15 6.106e–16 –4.996e–16
1 2.400e–15 –3.072e–16 –5.458e–16 –5.770e–05 –5.770e–05

Quadrature II cDG 0 — — — — —
1 4.366e–04 –4.139e–16 –4.358e–16 –4.219e–06 –3.999e–06

c+ 0 — — — — —
1 3.523e–04 –6.670e–16 –8.674e–19 –5.974e–05 –5.569e–05

Collocation cDG 0 1.018e–14 –8.815e–17 9.780e–17 –2.720e–15 2.054e–15
1 5.212e–15 –1.828e–16 –3.014e–17 –4.360e–06 –4.360e–06

c+ 0 8.760e–15 –2.413e–16 –6.336e–16 –2.165e–15 3.886e–15
1 6.157e–15 1.253e–16 –3.226e–16 –5.702e–05 –5.702e–05

Table 2: Linear advection equation, p = 3

Scheme c λ
Equivalence

Metric
Conservation Metric Energy Metric

Strong Weak Strong Weak

Quadrature I cDG 0 2.518e–14 –1.212e–16 –1.637e–16 1.887e–15 6.106e–16
1 2.639e–15 –1.269e–17 –1.054e–16 –1.942e–04 –1.942e–04

c+ 0 1.463e–14 –1.366e–17 –2.243e–16 2.220e–15 7.772e–16
1 2.339e–15 –6.904e–16 –7.605e–16 –2.315e–03 –2.315e–03

Quadrature II cDG 0 — — — — —
1 2.736e–03 2.267e–16 –1.434e–16 –1.831e–04 –1.710e–04

c+ 0 — — — — —
1 2.697e–03 –6.112e–16 –7.589e–19 –2.255e–03 –2.282e–03

Collocation cDG 0 6.416e–15 –7.264e–18 –3.464e–16 –3.886e–16 –1.721e–15
1 2.043e–15 –3.193e–16 –4.105e–16 –1.970e–04 –1.970e–04

c+ 0 4.335e–15 2.244e–16 –4.142e–17 0.000e+00* 1.665e–16
1 1.209e–15 4.001e–17 –1.709e–16 –2.302e–03 –2.302e–03

* Indicates a difference of two floating-point quanitities with the same finite-precision representation

5.3 Euler Equations

The propagation of an isentropic vortex is commonly used as a test case for numerical
methods applied to nonlinear hyperbolic systems. Numerous versions of this problem
have been posed in the literature, with the form considered here being a modification of
that presented by Shu [56, §5.1] following the general formulation described by Spiegel
et al. [57]. Considering the Euler equations in (2.3) and denoting the Mach number
and direction of the background flow as Ma∞ ∈ R+

0 and θ ∈ [0, 2π), respectively, the
initial velocity field is given for a vortex of strength ε ∈ R+ centred at x0 ∈ Ω as

V 0(x) := Ma∞
([

cos(θ)
sin(θ)

]
+ ε exp

(
1− ‖x− x0‖2

)[−(x2 − x0
2)

x1 − x0
1

])
, (5.6)



Algebraic Framework for DG and FR Methods Based on the SBP Property 39

the initial temperature field is prescribed as

T 0(x) := 1− (γ − 1)ε2Ma2
∞

2 exp
(
1− ‖x− x0‖2

)
, (5.7)

and constant entropy is enforced throughout the spatial domain. Using (5.6) and
(5.7), as well as the equation of state and isentropic relations for an ideal gas with
constant specific heat, the initial condition is then given by

U0(x) :=

 (T 0(x))1/(γ−1)

(T 0(x))1/(γ−1)V 0(x)
1

γ−1 (T 0(x))γ/(γ−1) + 1
2 (T 0(x))1/(γ−1)‖V 0(x)‖2

. (5.8)

Similarly to the advection problem described in §5.2, such an initial condition results
in an exact solution on an infinite domain given by the advection of the vortex at the
constant background velocity. For the numerical experiments in this section, periodic
boundary conditions are applied in both directions on a square domain of side length
L, where the meshes are constructed as in §5.1 with pmap = p, and the solver is run
for one period such that T = L/(Ma∞max(|cos(θ)|, |sin(θ)|)), with parameter values
of L = 10, M = 16, γ = 1.4, Ma∞ = 0.4, θ = π/4, and ε = 1.

The results for polynomial degrees 2, 3, and 4 are shown in Tables 4, 5, and
6, respectively, where we see that the strong and weak forms are equivalent to one
another for the Quadrature I and Collocation schemes, and the discrete integrals of
all four solution variables are invariant for all three approaches, as expected from the
analysis in §4.1 and §4.2. For the Quadrature II schemes, the strong and weak forms
again result in different numerical solutions due to Assumption 3.1 not being satisfied.
We do not investigate energy balances for this problem, as the theory in §4.3 is not
applicable as a result of the flux being nonlinear and the mapping not being affine.
Hence, the numerical results in this section for the Euler equations, as with those in
§5.2 for the linear advection equation, are consistent with the theory in §4.

6 Conclusions

We have proposed a unifying framework enabling the algebraic formulation of a broad
class of high-order DG and FR methods applied to systems of conservation laws,
facilitating the unified theoretical analysis of such schemes through matrix-based
techniques. The role of the multidimensional SBP property was examined in detail
for methods within the proposed framework, revealing new insights and generalizing
existing results pertaining to the equivalence, conservation, and stability properties
of DG and FR methods, which were confirmed in numerical experiments. Based on
this analysis, the following results were demonstrated theoretically for discretizations
of linear as well as nonlinear conservation laws on unstructured grids employing
curvilinear elements of any type and polynomial approximations of any order.

– If the components of the transformed flux in (2.10) are projected onto the polyno-
mial approximation space on the reference element before evaluating the divergence
and normal trace, the strong formulation in (3.33) of any DG method with the
SBP property, regardless of the choice of basis or quadrature, is algebraically
equivalent to the weak formulation in (3.15), which, unlike the strong formulation,
does not require the extrapolation of the projected flux to the facet nodes.
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Table 4: Euler equations, p = 2

Scheme c Equation Equivalence
Metric

Conservation Metric

Strong Weak

Quadrature I cDG ρ 6.471e–14 3.695e–13 1.421e–14
ρV1 1.470e–13 2.593e–13 –7.567e–13
ρV2 1.698e–13 1.030e–12 1.148e–12
E 1.606e–13 1.023e–12 3.979e–13

c+ ρ 5.382e–14 3.979e–13 8.527e–14
ρV1 1.398e–13 2.984e–13 –8.100e–13
ρV2 1.589e–13 1.020e–12 1.066e–12
E 1.378e–13 9.663e–13 –2.842e–14

Quadrature II cDG ρ 3.384e–02 7.105e–14 –2.842e–14
ρV1 6.001e–02 –8.846e–13 –2.132e–12
ρV2 6.388e–02 1.148e–12 1.759e–12
E 7.306e–02 0.000e+00 –6.253e–13

c+ ρ 2.529e–02 0.000e+00 –1.563e–13
ρV1 3.513e–02 –8.811e–13 –2.316e–12
ρV2 3.853e–02 1.123e–12 1.808e–12
E 5.652e–02 1.137e–13 –6.253e–13

Collocation cDG ρ 1.284e–13 3.553e–13 –3.126e–13
ρV1 3.083e–13 5.222e–13 –1.616e–12
ρV2 3.230e–13 1.343e–12 1.034e–12
E 3.352e–13 1.393e–12 –4.547e–13

c+ ρ 1.501e–13 5.400e–13 –3.695e–13
ρV1 5.104e–13 5.365e–13 –3.244e–12
ρV2 5.586e–13 1.329e–12 2.135e–12
E 4.469e–13 1.592e–12 –8.811e–13

– Any VCJH FR method satisfying the SBP property may be expressed equivalently
as a filtered (or, in the case of K = 0, unfiltered) DG method in strong form,
as in (3.34), or in weak form, as in (4.2), where, unlike in [16], the filter matrix
is applied to the entire semi-discrete residual and not only to the facet terms.
These equivalences extend to FR methods employing modal bases and to those
for which over-integration is employed for the volume and/or facet terms.

– The VCJH filter matrix defined in Lemma 3.4 does not alter the conservation
properties of a given DG method. Consequently, any VCJH FR method satisfy-
ing the discrete divergence theorem is locally conservative with respect to the
same quadrature rule as the corresponding DG scheme, with global conservation
resulting from a suitable choice of numerical flux.

We have also demonstrated that all of the above DG and VCJH FR methods with
the SBP property are energy stable with respect to discrete norms given as in Lemma
4.1 for linear advection problems on affine meshes, provided that a central or upwind-
biased numerical flux is used for all interior or periodic interfaces, and that the
boundary condition is weakly imposed on the inflow portion of the boundary. Due to
the discretization-agnostic nature of the matrix-based analysis employed in this work,
the equivalence, conservation, and energy stability results described above extend
directly to any method employing derivative matrices satisfying the SBP property in
(3.11), provided that the boundary and interface SATs are constructed appropriately.

Potential avenues for future research include the application of similar unifying
principles to fully discrete formulations (i.e. considering the influence of the temporal
discretization, which is neglected in the present analysis) and problems with diffusive
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Table 5: Euler equations, p = 3

Scheme c Equation Equivalence
Metric

Conservation Metric

Strong Weak

Quadrature I cDG ρ 7.946e–14 4.263e–13 9.948e–14
ρV1 1.920e–13 –7.248e–13 –8.349e–13
ρV2 1.637e–13 2.373e–12 1.165e–12
E 1.803e–13 1.535e–12 4.547e–13

c+ ρ 7.618e–14 5.116e–13 5.684e–14
ρV1 1.817e–13 –6.537e–13 –8.065e–13
ρV2 1.612e–13 2.380e–12 1.208e–12
E 1.811e–13 1.648e–12 4.547e–13

Quadrature II cDG ρ 1.653e–02 7.105e–14 8.527e–14
ρV1 2.712e–02 –1.343e–12 –1.599e–12
ρV2 3.173e–02 2.103e–12 1.830e–12
E 2.774e–02 6.537e–13 1.421e–13

c+ ρ 1.235e–02 1.421e–13 1.847e–13
ρV1 1.730e–02 –1.332e–12 –1.474e–12
ρV2 2.003e–02 2.096e–12 1.748e–12
E 2.060e–02 5.684e–13 4.263e–13

Collocation cDG ρ 2.505e–13 4.974e–13 8.242e–13
ρV1 6.482e–13 –1.975e–12 1.322e–12
ρV2 6.931e–13 3.634e–12 1.219e–12
E 5.879e–13 1.364e–12 2.103e–12

c+ ρ 1.691e–13 6.111e–13 6.679e–13
ρV1 5.552e–13 –1.972e–12 7.248e–13
ρV2 5.716e–13 3.617e–12 1.037e–12
E 4.905e–13 9.948e–13 1.364e–12

terms, as well as the comparative evaluation of methods within and outside of the
present framework. Specifically, it would be interesting to examine the difference
in computational expense between strong and weak formulations which we have
shown in this paper to be mathematically equivalent, as well as to compare (i.e.
through numerical experiments and eigensolution analysis) the DG and FR methods
considered in this paper with those employing multidimensional SBP operators
without an analytical basis. The theory could also be extended to enable proofs of
convergence and a priori error estimates. More broadly, the present work may be
viewed as a case study on the applicability of algebraic techniques for the unified
analysis of numerical methods across multiple discretization paradigms. Although no
single framework is likely to encompass all methods of interest for a given class of
problem, we hope that the unifying perspective advocated in this paper will enable
practitioners to consider a wider range of numerical methods within a common
framework than would otherwise be possible, thereby facilitating the development or
identification of schemes with advantageous properties for particular applications.
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Table 6: Euler equations, p = 4

Scheme c Equation Equivalence
Metric

Conservation Metric

Strong Weak

Quadrature I cDG ρ 6.169e–14 1.705e–13 1.563e–13
ρV1 8.503e–14 –2.167e–13 –4.832e–13
ρV2 7.916e–14 7.674e–13 9.770e–13
E 9.730e–14 4.263e–13 3.126e–13

c+ ρ 5.551e–14 1.421e–13 2.132e–13
ρV1 8.555e–14 –2.380e–13 –5.471e–13
ρV2 8.252e–14 7.923e–13 1.013e–12
E 8.694e–14 2.842e–13 2.558e–13

Quadrature II cDG ρ 1.150e–02 5.969e–13 7.105e–14
ρV1 9.686e–03 –3.624e–13 –2.121e–12
ρV2 9.717e–03 2.167e–12 2.093e–12
E 7.893e–03 1.535e–12 2.842e–13

c+ ρ 4.837e–03 4.690e–13 1.421e–13
ρV1 5.590e–03 –3.091e–13 –2.107e–12
ρV2 6.339e–03 2.188e–12 1.993e–12
E 5.901e–03 1.819e–12 1.137e–13

Collocation cDG ρ 3.886e–13 –1.435e–12 1.393e–12
ρV1 8.213e–13 –3.755e–12 5.258e–13
ρV2 8.456e–13 –1.005e–12 3.457e–12
E 9.621e–13 –3.922e–12 3.212e–12

c+ ρ 3.765e–13 –1.293e–12 1.563e–12
ρV1 8.498e–13 –3.787e–12 5.294e–13
ρV2 8.323e–13 –1.016e–12 3.581e–12
E 9.764e–13 –3.922e–12 3.325e–12
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A Polynomial Bases

Although the theoretical analysis in this work is independent of the choice of basis
B employed for a given discretization, the concrete implementation of a DG or FR
method nevertheless requires a basis to be chosen. Two families of such bases, both
of which are used for the computations in §5, are thus described in this appendix.

A.1 Modal (L2-Orthogonal) Basis

A basis B0 := {φ(1)
0 , . . . , φ

(N∗)
0 } is said to be orthogonal with respect to the L2 inner

product on the reference element if any two basis functions φ(i)
0 , φ

(j)
0 ∈ B satisfy∫

Ω̂

φ
(i)
0 (ξ)φ(j)

0 (ξ) dξ = 0, ∀ i 6= j. (A.1)

Analytical expressions for such bases are well known for certain spaces and element
types; for example, an orthogonal basis for the space Pp(T̂ 2) was introduced by
Proriol [62] (see also Koornwinder [63, §3.3] and Dubiner [64, §5]) as a triangular
analogue of the Legendre polynomial system. Defining P (a,b)

r ∈ Pr([−1, 1]) as the
degree r ∈ N0 Jacobi polynomial satisfying∫ 1

−1
P (a,b)
q (ξ)P (a,b)

r (ξ)(1− ξ)a(1 + ξ)b dξ = 0, ∀ q 6= r, (A.2)

the normalized Proriol-Koornwinder-Dubiner (PKD) basis functions are given by

φ
(σ(α))
0 (χ(η)) :=

√(
α1 + 1

2
)(
α1 + α2 + 1

)
P (0,0)
α1

(η1)
(1− η2

2

)α1
P (2α1+1,0)
α2

(η2),
(A.3)

where σ : N → {1, . . . , (p+ 1)(p+ 2)/2} defines an ordering11 of the multi-index set
N := {α ∈ N2

0 : α1 + α2 ≤ p}, and the mapping χ : [−1, 1]2 → T̂ 2 is given by

χ(η) :=
[ 1

2 (1 + η1)(1− η2)− 1
η2

]
. (A.4)

Similar bases are described for quadrilateral, hexahedral, tetrahedral, prismatic, and
pyramidal elements in [39, Ch. 3].

11 Such an ordering may be chosen arbitrarily, provided that σ is a bijection; for example,
Hesthaven and Warburton [38, §6.1] consider σ(α) := α2 + (p+ 1)α1 + 1− α1(α1 − 1)/2.
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A.2 Nodal (Lagrange) Basis

While it is possible to directly employ a modal basis to represent the numerical solution
such that B = B0, it can often be more computationally efficient to use a Lagrange
basis B := {φ(1), . . . , φ(N∗)} associated with a nodal set S̃ := {ξ̃(1), . . . , ξ̃(N∗)} ⊂ Ω̂
such that φ(i)(ξ̃(j)) = δij . Although the corresponding basis functions are given
explicitly by (2.17) for d = 1, analytical expressions do not necessarily exist for nodal
bases on arbitrary non-tensorial nodal sets in the case of d ≥ 2. We therefore take a
more general approach by constructing a matrix Ṽ ∈ RN∗×N∗ with entries

Ṽij := φ
(j)
0 (ξ̃(i)) (A.5)

for a modal basis B0 as described in Appendix A.1, which is invertible when S̃ is
unisolvent for the space PN (Ω̂). The Lagrange polynomials constituting the basis B
may then be obtained in terms of the modal basis as

φ(i)(ξ) :=
N∗∑
j=1

[
Ṽ
−T
]
ij
φ

(j)
0 (ξ). (A.6)

The entries of the corresponding derivative matrix satisfying (3.10) are therefore

D
(m)
ij = ∂φ(j)

∂ξm
(ξ̃(i)) =

N∗∑
k=1

[
Ṽ
−T
]
jk

∂φ
(k)
0

∂ξm
(ξ̃(i)), ∀ i, j ∈ {1, . . . , N∗}, (A.7)

defining a nodal SBP operator on S̃ in the sense of [21, Definition 2.1] in the case of
discrete inner products satisfying Assumptions 3.1 and 3.2.

Remark A.1 In the case of d ≥ 2, unisolvency is not guaranteed for arbitrary nodal
sets S̃ containing N∗ distinct nodes. Special care is therefore needed to ensure that
Ṽ is invertible, where we refer to Marchildon and Zingg [65] for the derivation of
necessary conditions for obtaining unisolvent symmetrical nodal sets for total-degree
polynomial spaces on triangles and tetrahedra. Further details regarding nodal bases
for high-order methods may be found, for example, in [38, §3.1, §6.1, §10.1].

B Discrete Inner Products

Implementations of the DG and FR methods presented in §2.5 can often be charac-
terized by the techniques employed for numerical integration or projection, which
may be formalized in terms of discrete inner products defined as in (3.1) and (3.2).
In this appendix, we situate the standard quadrature-based integration approach
commonly employed for DG methods (e.g. those in [4–7]) as well as the collocation-
based approach employed for the nodal DG formulations described in [38] and the
FR schemes in [8–12] within the general context of the present framework.
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B.1 Quadrature-Based Approximation

Considering quadrature rules on S and S(ζ) with positive weights given by {ω(i)}Ni=1
and {ω(ζ,i)}Nζi=1, respectively, we may define the diagonal weight matrices

W := diag
(
ω(1), . . . , ω(N)) and B(ζ) := diag

(
ω(ζ,1), . . . , ω(ζ,Nζ)), (B.1)

such that the double sums in (3.1) and (3.2) reduce to

〈
U, V

〉
W

:=
N∑
i=1

U(ξ(i))V (ξ(i))ω(i) (B.2)

and 〈
U, V

〉
B(ζ) :=

Nζ∑
i=1

U(ξ(ζ,i))V (ξ(ζ,i))ω(ζ,i), (B.3)

respectively. The following lemma provides sufficient conditions on such quadrature
rules for Assumption 3.1 to be satisfied.

Lemma B.1 Assumption 3.1 is satisfied with PN (Ω̂) = Pp(Ω̂) for any p ∈ N0, on
any polytopal reference element, if the discrete inner products are computed as in (B.2)
and (B.3) using quadrature rules of at least total degree 2p− 1 and 2p, respectively.

Proof For any U, V ∈ Pp(Ω̂), the volume integrals in (3.3) contain functions in
P2p−1(Ω̂), while the facet integrals contain functions in P2p(Γ̂ (ζ)). For volume and
facet quadrature rules of total degree 2p− 1 or greater and 2p or greater, respectively,
all terms in (3.3) are computed exactly, and hence (3.4) holds for m ∈ {1, . . . , d}. ut

Remark B.1 In addition to the positive-definiteness of W and B(ζ), which is clearly
the case if and only if the volume and facet quadrature weights are strictly positive,
Assumption 3.2 requires V to be of rank N∗, which is difficult to ensure theoretically,
particularly in the case of N > N∗. We have nevertheless numerically verified that
such a property is satisfied for all schemes employed for the computations in §5.

B.2 Collocation-Based Approximation

If S is unisolvent for a space PK(Ω̂) ⊇ PN (Ω̂) of dimension N ≥ N∗, we may define
a nodal basis {`(1), . . . , `(N)} for PK(Ω̂) satisfying `(i)(ξ(j)) = δij as in Appendix A.2.
The collocation projection IKU ∈ PK(Ω̂) of a function U : Ω̂ → R is then given by

(IKU)(ξ) :=
N∑
i=1

U(ξ(i))`(i)(ξ), (B.4)

recovering the projection in (2.13) when PK(Ω̂) = PN (Ω̂). Similarly, if S(ζ) is
unisolvent for a polynomial space on Γ̂ (ζ) ⊂ ∂Ω̂ which is of dimension Nζ ≥ N∗ζ and
contains PN (Γ̂ (ζ)), we may define a projection operator analogously to (B.4) as

(I (ζ)U)(ξ) :=
Nζ∑
i=1

U(ξ(ζ,i))`(ζ,i)(ξ), (B.5)
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where the nodal basis functions {`(ζ,1), . . . , `(ζ,Nζ)} satisfy `(ζ,i)(ξ(ζ,j)) = δij . Inte-
grating the products of such projections, we obtain discrete inner products given by〈

U, V
〉
W

:=
∫
Ω̂

(IKU)(ξ)(IKV )(ξ) dξ (B.6)

and 〈
U, V

〉
B(ζ) :=

∫
Γ̂ (ζ)

(I (ζ)U)(ξ)(I (ζ)V )(ξ) dŝ, (B.7)

which take the forms in (3.1) and (3.2), respectively, with

Wij :=
∫
Ω̂

`(i)(ξ)`(j)(ξ) dξ and B
(ζ)
ij :=

∫
Γ̂ (ζ)

`(ζ,i)(ξ)`(ζ,j)(ξ) dŝ, (B.8)

where the above integrals may be evaluated as part of a preprocessing stage.

Remark B.2 Noting that the matrices W and B(ζ) defined in (B.8) are generally
dense, and are SPD due to the linear independence of the nodal bases used to define
the projection operators (see, for example, [44, Theorem 7.2.10]), Assumptions 3.1
and 3.2 (as well as Assumption 3.3 for meshes satisfying Assumption 2.1, at least
in the case of PK(Ω̂) = PN (Ω̂) considered for the computations in §5) are therefore
satisfied by construction. Such a quadrature-free formulation enables the construction
of conservative and energy-stable schemes on arbitrary unisolvent nodal sets for which
the quadrature accuracy requirements of Lemma B.1 may not be met.

Remark B.3 Recalling (4.15), the weights of the interpolatory quadrature rule on
the abscissae S under which conservation may be proven for collocation-based ap-
proximations may be expressed in terms of the Lagrange basis functions as

ω(i) =
N∑
j=1

Wij =
∫
Ω̂

`(i)(ξ) dξ, ∀ i ∈ {1, . . . , N}, (B.9)

where such a quadrature is exact (at least) for all functions in PK(Ω̂). If, however,
the nodes in S are chosen such that the quadrature rule with weights given as in
(B.9) is exact for all products of two functions in PK(Ω̂),12 it can be shown (see, for
example, [37]) that W reduces to a diagonal matrix of quadrature weights, recovering
an approximation identical to that in Appendix B.1. An analogous equivalence holds
for the matrices B(ζ) and the associated facet quadrature rules.

C Parametrization of the K Matrix

The following lemma establishes suitable choices of multi-index setsM⊂ N satisfying
the first part of Assumption 3.4 for schemes employing total-degree polynomial spaces
(the case of tensor-product elements is discussed by Cicchino and Nadarajah in [66]).

Lemma C.1 Taking PN (Ω̂) = Pp(Ω̂) for any p ∈ N0, the choice ofM := {α ∈ Nd0 :
|α| = p} in (3.26) ensures that KD(m) = 0 is satisfied for all m ∈ {1, . . . , d}.
12 Taking PK(Ω̂) = Pq(Ω̂), this would require the nodes in S to be associated with a volume
quadrature rule of at least degree 2q, as is the case for the collocated LG quadrature rule in
Remark 2.6, for which the mass matrix is the same whether computed as in (2.21) or (2.22).
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Proof Noting from (3.26) that KD(m) = 0 is satisfied for a given m ∈ {1, . . . , d} if
DαD(m) = 0 for all α ∈ M, it is sufficient to require the image of any V ∈ Pp(Ω̂)
under the corresponding differential operator ∂|α|+1/∂ξα1

1 · · · ∂ξαm+1
m · · · ∂ξαdd to be

the zero function. Since differentiating V ∈ Pp(Ω̂) a total of p+ 1 times always yields
the zero function, and the action of the above operator consists of differentiating a
total of |α|+1 times, constrainingM to satisfy |α| = p leads to the desired result. ut

Based on symmetry considerations discussed in [11, §5.3] and [12, §4.1], the set of
multi-indicesM defined in Lemma C.1 may be parametrized in terms of d− 1 scalar
indices. The matrix K in (3.26) is then given in two and three space dimensions by

K := c

|Ω̂|

p∑
q=0

(
p
q

)(
D(p−q,q))TMD(p−q,q) (C.1)

and

K := c

|Ω̂|

p∑
q1=0

q1∑
q2=0

(
p
q1

)(
q1
q2

)(
D(p−q1,q1−q2,q2))TMD(p−q1,q1−q2,q2), (C.2)

respectively, recovering (2.27) in the one-dimensional case, where c ∈ R determines
the properties of the resulting schemes. With respect to the formalism of Theorem
3.1, the parametrizations defining K in (C.1) and (C.2) correspond to cα = c

(
p
α2

)
and cα = c

(
p

p−α1

)(
p−α1
α3

)
, respectively, and lead to K being SPSD for all c ≥ 0, which

is sufficient under Assumption 3.2 for M +K to be SPD, implying that the second
part of Assumption 3.4 is satisfied under such conditions.

Remark C.1 While c ≥ 0 is typically assumed for simplicial elements with d ≥ 2, it
has been shown for d = 1 (see, for example, [10, §3.3], [13, §3.2], and [23, §3.6]) that
there exists c− < 0 depending only on the polynomial degree p (and on the volume
quadrature rule, if (3.24) is not satisfied) such that M +K is SPD for c− < c <∞.
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