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Abstract. This paper presents a general framework to derive a discrete adjoint
method for the optimal control of unsteady flows. The complete formulation of a
generic time-dependent optimal design problem is introduced and it is outlined how
to derive the discrete set of adjoint equations in a general approach. Results are
shown that demonstrate the application of the theory to the drag minimization of
viscous flow around a rotating cylinder, and to the remote inverse design of laminar
flow around the multi-element NLR 7301 configuration at a high angle of attack.
In order to reduce the considerable computational costs of unsteady optimization,
the use of bigger time steps over transitional or unphysical adjusting periods as well
as the skip of time steps while recording the flow solution are investigated and are
shown to work well in practice.
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1. Introduction and Motivation

The use of steady-state aerodynamic optimization methods in the com-
putational fluid dynamics (CFD) community is fairly well established
(Obayashi, 1997; Jameson et al., 1998; Anderson and Bonhaus, 1999;
Nemec and Zingg, 2002). In particular the use of adjoint methods,
which has been pioneered by Jameson (1995) for steady aeronautical
design optimization, has proved to be very beneficial since its cost is
independent of the number of design variables. However, a much smaller
amount of work has been done in applying these methods to unsteady
optimization problems (Nadarajah and Jameson, 2002; Duta et al.,
2002; Tatossian and Nadarajah, 2007; Mani and Mavriplis, 2007), and
many devices of interest, such as helicopter rotors and turbomachinery
blades, operate in unsteady flow environments.

Similarly, the application of numerical optimization to airframe-
generated noise has not received much attention either, but with the
significant quieting of modern engines, airframe noise now competes
with engine noise (Singer et al., 2000). Thus airframe-generated noise

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.



2 M. Rumpfkeil and D.W. Zingg

is an important component of the total noise radiated from commercial
aircraft, especially during aircraft approach and landing, when engines
operate at reduced thrust, and airframe components (such as high-lift
devices) are in the deployed state (Khorrami et al., 2000). Future Fed-
eral Aviation Administration noise regulations, the projected growth
in air travel, and the increase in population density near airports will
require future civil aircraft to be substantially quieter than the current
ones. Consequently, the attempt to understand and reduce airframe
noise has become an important research topic (Singer and Guo, 2004).

In this paper, a framework to calculate the gradient of an objective
function in a nonlinear unsteady flow environment via the discrete ad-
joint method is developed in Section 2. It is then applied to two model
problems to show its effectiveness, namely to the drag minimization
of viscous flow around a rotating cylinder in Section 3.1 and to the
remote inverse design of unsteady laminar flow around the National
Aerospace Laboratory NLR 7301 configuration (van den Berg, 1979)
at a high angle of attack in Section 3.2. This framework can also be used
to optimize the shapes of helicopter rotors or turbomachinery blades
and for many other inherently unsteady optimization problems. The
eventual goal of this research is to be able to modify the shape of a
multi-element airfoil to minimize the radiated noise during approach
while maintaining good performance. The presented remote inverse
design problem in Section 3.2 is a major milestone toward this goal.

However, the optimal control of time-dependent problems is in gen-
eral a computationally expensive task since one needs to solve the ad-
joint equations in reverse time from a final flow solution. Thus one has
to store the entire flow history, which means potentially huge memory
requirements, and then to integrate the adjoint equations backwards in
time which leads to equally huge processor requirements (Nadarajah
and Jameson, 2002). This issue is addressed in this paper by the use of
an increased time step over transitional or unphysical adjusting periods
as well as omitting time steps while recording the flow solution.

2. Formulation of the Discrete Time-dependent Optimal

Control Problem

The control of an unsteady flow in the time interval [0, T ] is considered.
The initial flow solution Q0 at t = 0 must be known and for the discrete
adjoint method the time discretization scheme for the governing equa-
tions must be chosen at this point in the derivation. The framework
is demonstrated here using the implicit Euler time-marching method.
It is straightforward to modify the equations to use any other time-
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marching method (e.g. see the Appendix for the derivation with the
second-order backwards difference (BDF2) time-marching method as
used in Section 3).

Now one introduces a cost function

J =

N
∑

n=1

In(Qn, Y ), (1)

where the function In= In(Qn, Y ) depends on the time-dependent flow
solution Qn and design variables Y for n = 1, . . . ,N . N can be cal-
culated from the relation T = N∆t, where ∆t is the chosen time dis-
cretization step. The time-dependent flow solution Qn for n = 1, . . . ,N
can be implicitly defined via

R∗n(Qn, Qn−1, Y ) :=
dQn

dt
+R(Qn, Y )=

Qn−Qn−1

∆t
+R(Qn, Y )= 0, (2)

where R = R(Qn, Y ) contains the spatially discretized convective and
viscous fluxes as well as the boundary conditions. We use an inexact
Newton strategy to drive R∗n= R∗n(Qn, Qn−1, Y ) to zero (Isono and
Zingg, 2004; Pueyo and Zingg, 1998). However, it does not matter how
one solves equation (2) as long as R∗n = 0 for all n, since this is the
requirement for the following derivation.

The task of minimizing the cost function J subject to R∗n = 0 for
all n can now be written as an unconstrained optimization problem of
minimizing the Lagrangian function

L =
N

∑

n=1

[

In(Qn, Y ) + (ψn)TR∗n(Qn, Qn−1, Y )
]

(3)

with respect to Q0, . . . , QN and ψ1, . . . , ψN , where ψ1, . . . , ψN are the
N vectors of Lagrange multipliers. A necessary condition for an ex-
tremal is that the gradient of L with respect toQ0, . . . , QN and ψ1, . . . , ψN

should vanish. Since the states Q1, . . . , QN are calculated starting from
Q0 using the constraints given by equation (2), it is automatically
guaranteed that ∇ψnL = 0 for n = 1, . . . ,N .

The Lagrange multipliers ψn must now be chosen such that ∇QnL = 0
for n = 1, . . . , N , which leads to

0 = ∇QnIn + (ψn)T∇QnR∗n + (ψn+1)T∇QnR∗n+1

for n = 1, . . . , N−1 (4)

0 = ∇QN IN + (ψN )T∇QNR∗N . (5)

This can be written equivalently as

ψN=−
(

(∇QNR∗N )T
)

−1
(∇QN IN )T (6)
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ψn=−
(

(∇QnR∗n)T
)

−1[
(∇QnIn)T+ (∇QnR∗n+1)Tψn+1

]

for n = N−1, . . . , 1. (7)

Since Q1, . . . , QN have been calculated from the current guess of Y ,
the vectors of Lagrange multipliers ψn can be calculated recursively
backwards from the final flow solution (6) using (7). The system of
equations (6) and (7) is known as the system of adjoint equations for
the model (2), or as the adjoint model. In this context, the Lagrange
multipliers are also known as the adjoint variables.

Finally, one can evaluate the gradient of J with respect to the design
variables Y , which can then be used in a gradient-based optimization
algorithm such as BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb,
1970; Shanno, 1970) to find the optimum:

∂J

∂Y
=
∂L

∂Y
=

N
∑

n=1

[

∇Y I
n(Qn, Y ) + (ψn)T∇YR(Qn, Y )

]

. (8)

In summary, the gradient is determined by the solution of the adjoint
equations in reverse time from the final flow solution and the partial
derivatives of the discretized fluxes and objective function with respect
to the design variables (while Qn is held constant). One can also see
that the computational costs of unsteady optimization problems are
directly proportional to the desired number of time steps and (almost)
independent of the number of design variables.

3. Results

We now present the two examples to demonstrate how this framework
can be applied in practice. We use the preconditioned Bi-CGSTAB
algorithm (van der Vorst, 1992) with an absolute convergence tolerance
of 10−12 in order to solve the linear systems in the adjoint equations.
We find that Bi-CGSTAB is about fifty percent faster than the precon-
ditioned generalized minimum residual (GMRES) method (Saad and
Schultz, 1986), which we use in our flow solvers in conjunction with an
inexact Newton strategy (Pueyo and Zingg, 1998). The reason for this is
most likely the fact that (∇QnR∗n)T is more diagonally dominant than
the steady flow Jacobian (∇QR)T due to the extra terms on the diag-
onal, which makes this matrix more suited for the use of Bi-CGSTAB.
However, for the unsteady flow solvers we still use the GMRES method
because there are no significant computational savings for the few linear
iterations we use per nonlinear (outer) iteration.
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3.1. Drag Minimization for Viscous Flow around a

Rotating Cylinder

The viscous flow past a circular cylinder has been comprehensively
studied due to its simple geometry and its representative behavior of
general bluff body wakes. There are various flow regimes which are
highly dependent on the Reynolds number (Re) and can be identified
by the character of the flow in the wake and boundary layer of the
cylinder (Cox et al., 1998). However, over a large Reynolds number
range (47 < Re < 107) there are always eddies shed alternately from
each side of the cylinder, forming rows of vortices in its wake, the
so-called Karman vortex street (von Karman, 1911).

Using the Magnus Effect (also known as the Robin’s Effect), which
can be observed for rotating spheres as well as cylinders, one can try
to suppress the Karman vortex shedding by controlling the angular
velocity of the rotating body. A deep understanding of the control
strategies for flows past rotating bluff bodies is very helpful in areas
such as drag reduction, lift enhancement, vibration control and last but
not least, our particular interest, noise control.

In order to solve the underlying 2D unsteady Navier-Stokes equa-
tions, we use our 2D single-block structured thin-layer solver, PROBE
(Pueyo and Zingg, 1998), which is a Newton-GMRES solver loosely
based on ARC2D (Pulliam, 1986). The rotational boundary conditions
are implemented by requiring the normal velocity on the surface of the
cylinder to be zero and the tangential velocity to be equal to Ω · r,
where Ω is the angular velocity and r = 0.5 the radius of the cylinder.

It is convenient to introduce the Strouhal number

Sn = d · fn/u∞

for comparison purposes, where d is the diameter of the cylinder, fn
is the Karman vortex shedding frequency, and u∞ is the free-stream
velocity. Using an O-mesh with 140 × 90 grid nodes and the BDF2
time-marching method with a time step of ∆t = 0.1, we compare our
results for the mean value of the drag coefficient C̄D and the Strouhal
number Sn with experimentally and computationally obtained values
by various authors (Homescu et al., 2002; He et al., 2000; Williamson,
1989; Henderson, 1997) in Table I.

There is a reasonable agreement for both Reynolds numbers. We
recognize that our time steps are relatively large and the grid is rela-
tively coarse. Also, the use of the thin-layer Navier-Stokes equations is
questionable for a bluff-body flow and will deviate to some degree from
a full Navier-Stokes solution. However, since the primary focus of this
paper is on the optimal control of unsteady flows, we are satisfied with
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Table I. Mean drag coefficients and Strouhal numbers.

C̄D Sn

Reynolds number 100 1000 100 1000

Present work 1.45 1.53 0.179 0.252

Homescu et al. (2002) 1.42 1.68 - -

He et al. (2000) 1.35 1.52 0.167 0.239

Williamson (1989) - - 0.164 -

Henderson (1997) 1.35 1.51 0.166 0.237

the trade-off between accuracy and performance and we proceed, even
though the computed unsteady flow is not grid converged in this case.

The experimental work of Tokumaru and Dimotakis (1991) moti-
vates the attempt to find an optimal angular velocity in order to mini-
mize the drag. Several researchers (Homescu et al., 2002; He et al., 2000)
have considered two control cases (but used different objective func-
tions): The constant rotation case, Ω(t) = Ω using Y = Ω as design vari-
able, and the time harmonic rotary oscillation case, Ω(t) = A · sin(2πFt)
with Y = (A,F ) as design variables.

Our choice for the objective function for the constant and harmonic
rotating cases is a time average (mean) drag minimization problem:

J = C̄D =
1

N−N∗

N
∑

n=N∗+1

CnD, (9)

where CnD is the drag coefficient at time step n.
It is very important to have a practical knowledge of the design

space to be able to choose a reasonable time step and control window.
Therefore, the effect of different values of Ω on the drag coefficient for
the constant rotation case using a fixed time step of ∆t = 0.1 is shown in
Figure 1. The rotation starts impulsively, and after a transition period
of about 1500 steps the mean drag coefficients of the rotating cylinders
are all smaller than the mean drag coefficient of the stationary cylinder.

In order to reduce the computational costs in the actual optimization
runs we “jump” over the adjusting or transition period as quickly as
possible by taking a bigger time step ∆T = 0.5 for N∗= 300 steps. This
larger time step is chosen in such a way that the accuracy of the overall
numerical solution is not significantly diminished. Once we reach the
domain where we want to control the problem (the control window is
indicated by the box in Figure 1), we use a smaller time step ∆t = 0.2
for another 500 steps, for a total of N = 800 time steps in each flow
solve. The corresponding adjoint equations for this situation are given
in the Appendix.
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Figure 1. Drag coefficients for the constant rotation case for different values of Ω
(∆t = 0.1).

Using BFGS (Zhu et al., 1994; Byrd et al., 1995) and constraining Ω
to values between 0 and 1.9, we are able to minimize the mean drag with
gradient norms of 10−8 at the local minima. The resulting design space
is shown in Figure 2 with the gradients at the design points represented
as straight lines. One can see several local minima in this design space,
with the global minimum in the given interval at Ω = Ω∗ ≈ 1.16 leading
to C̄D ≈ 0.11. This optimum value minimizes the mean drag value far
beyond the extent of the control window, as can be seen in Figure 1;
this behaviour was also observed by other researchers (Homescu et al.,
2002; He et al., 2000).

We try to save computational time and storage by saving the flow-
field in the control time window only every other time step leading to
only 300 + 500/2 = 550 matrix inversions for the adjoint as compared
to 800 in the original case. The result is also shown in Figure 2, and
the gradients and objective function values are in reasonable agreement
with each other, thus leading to a similar convergence history, except
that in this case the local minima are slightly shifted (about 0.25 per-
cent off) and the gradient norms only reduce to 10−3 at these minima.
We also tried to skip time steps in the adjusting period and more time
steps in the control window but this did not work as well or did not
converge at all.

In Figure 3 the effect of different values of A and F on the drag
coefficient for the harmonic rotation case using a fixed time step of
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Figure 2. The design space of the constant rotating cylinder Ω(t) = Ω.

∆t = 0.1 is shown. The rotation starts smoothly, and after a transition
period of about 750 steps the mean drag coefficients of the harmonically
rotating cylinders are again all smaller than the mean drag coefficient
of the stationary cylinder.

For this problem we use a bigger time step of ∆T = 0.2 for N∗= 375
steps for the transition period and then switch to a smaller time step
∆t = 0.1 in the actual control window for another 400 steps, yielding
a total of N = 775 steps for each flow solve. Using the same objective
function as for the constant rotating cylinder given by equation (9) and
constraining the amplitude A to [0, 1.9] and the frequency F to [0, 0.3]
to prevent rotations with excessively large amplitudes or frequencies,
we can minimize the mean drag with gradient norms of about 10−4 at
the local minima.

The resulting design space is displayed in Figure 4 with the gradients
at the different design points represented by arrows, and the objective
function values given by a gray scale with white representing the highest
and black the lowest values. Once again several local minima can be
seen, with a global minimum for Y = Y ∗ ≈ (0.98, 0.114) leading to
C̄D ≈ 0.6832, which again leads to a minimized mean drag value far
beyond the extent of the control time window as can be seen in Figure 3.
We did not try to skip any time steps while saving the flowfield due to
the already coarse time steps for this highly oscillatory problem.
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Figure 3. Drag coefficients for the harmonic rotation case for different values of A

and F (∆t = 0.1).
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most interesting region.
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3.2. The Remote Inverse Design of a Multi-element

Airfoil in Unsteady Laminar 2D Flow

A typical approach to tackle the high-lift noise reduction problem is
to represent the CFD solution on a reasonable computational mesh
that does not extend too far from the aircraft. The location of a fixed
near-field plane (see Figure 5) within the computational mesh can then
be specified. This near-field plane serves as an interface between the
CFD solution and a wave propagation program based on principles of
geometrical acoustics and nonlinear wave propagation (Lyrintzis, 2003).
Such a program is able to calculate the pressure fluctuations at a user
specified ground plane which can then be used as a measure of the
airframe-generated noise. This paper only focuses on controlling the
pressures in the near-field plane, which are one of the inputs to a wave
propagation program.

Figure 5. Schematic of the propagation of the aircraft pressure signature.

The usual adjoint implementations for shape optimization calculate
a gradient for a cost function which is computed from flow variables on
the surface, for example of an airfoil, that is being modified. However,
for many problems, such as inlet design, turbomachinery design and
airfoil-generated noise reduction, one wants to minimize an objective
function using flow quantities that are not collocated at the points
where the surface is being modified. This means one has to quantify the
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influence of geometry modifications on the flow variables at an arbitrary
location (e.g. the near-field plane) within the domain of interest. This
type of remote sensitivity calculation has been successfully used before
by Nadarajah et al. (2002; 2006; 2007) for the steady case of sonic
boom minimization and by Rumpfkeil and Zingg (2007a; 2007b) for
the unsteady case of turbulent flow over a single-element airfoil.

The remote inverse design test cases presented here involve the lami-
nar flow over the multi-element NLR 7301 configuration (van den Berg,
1979). The free-stream Mach number is 0.2 with a Reynolds number of
800, and the angle of attack is 20◦. At these conditions the airfoil expe-
riences vortex shedding. We use our 2D multi-block structured solver,
TORNADO (Nemec and Zingg, 2004), which is based on PROBE, to
solve the underlying 2D unsteady laminar Navier-Stokes equations.

The geometries of the main element and flap are described with cubic
B-spline curves (Nemec and Zingg, 2002), which means that some of the
y-coordinates of the B-spline control points can easily be used as shape
design variables. Furthermore, the horizontal and vertical translation of
the flap can also be used as design variables. Two cases with two design
variables each to keep the problem simple and to be able to compare
the adjoint gradient with a finite-differenced one are considered and
the shapes are displayed in Figure 6:

1. The initial airfoil is the NLR 7301, and two shape design variables
of the main element are slightly perturbed to get a target airfoil.

2. The initial airfoil is the NLR 7301, and the horizontal and vertical
translation design variables are slightly perturbed to get a target
airfoil.
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-0.2
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1. Two shape design variables 2. Two translational design variables

Figure 6. The initial (dashed) and target (solid) airfoils for the two test cases.

The discrete cost function J for a remote inverse design is given by

J =
1

2
∆t

N
∑

n=N∗+1

∑

NF

(pn − p∗n)2, (10)

where pn is the near-field pressure obtained from the current airfoil,
and p∗n is the target near-field pressure obtained from the target airfoil
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(both at time step n). The sum over NF implies a sum over all points
that define the near-field plane, and two different choices for this plane
are considered as shown in Figure 7:

a) The near-field plane is a square that extends from −3 to 3 with a
uniform spacing of 0.05 between points in both x- and y-directions.

b) The near-field plane is a rectangle that extends from −1 to 2 in
the x-direction and from −1 to 1 in the y-direction with a uniform
spacing of 0.05 between points in both directions.

X
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-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

X

Y

-1 0 1 2

-1

0

1

a) Square near-field plane b) Rectangular near-field plane

Figure 7. The grid where the two near-field planes are shown in dashed lines.

The pressures (see Figure 8) at the points of the near-field plane are
calculated using biquadratic interpolation involving the closest nodes
of the grid to the point in question.

Figure 9 shows the drag coefficients for the initial and target airfoils
for case 1 over time using a time step of ∆t = 0.1. Since the focus
of this paper is to show the feasibility of an unsteady remote inverse
design no grid convergence studies are performed and we are satisfied
with the relative large time steps and the relative coarse grid with only
about 31, 000 nodes. Both flow solves are warmstarted from a NLR
7301 periodic steady state solution; thus one can see an adjustment
period for the target airfoil.

Once again we want to “jump” over this unphysical adjusting period
after a shape modification has taken place as quickly as possible. There-
fore, we take a bigger time step ∆T = 0.2 for the first N∗= 200 steps,
and once we reach our desired control window, we use a smaller time
step ∆t = 0.1 for another 300 steps, for a total of N = 500 steps for
each flow solve. The corresponding adjoint equations for this situation
are again given in the Appendix.
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Figure 8. The pressure coefficient contours of the initial NLR 7301 configuration at
t = 0 with the rectangular near-field plane.
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Figure 9. Drag coefficient for the initial and target airfoil for case 1 (∆t = 0.1).
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The convergence histories of these remote inverse design problems
with the adjoint approach in comparison to a second-order central
finite-difference approach with a step size of h = 10−7 are shown in
Figure 10 for case 1 and in Figure 11 for case 2. The objective function
J is always scaled such that its initial value is unity. One can see that
the two approaches show a reasonable agreement, which means that
our adjoint approach for the gradient calculation is accurate.

We also try to save computational time and storage by saving the
flowfield in the adjusting period and in the control window only every
fourth and even only every tenth time step for case 1, leading to only
500/4 = 125 and 500/10 = 50 matrix inversions for the solution of the
adjoint equations, respectively. The result is shown in Figure 10, and
the gradients and objective function values are in reasonable agreement
with the original adjoint and finite-difference approach, thus leading
to a somewhat similar convergence history while saving considerable
computational resources.

Trying the same approach for case 2, namely saving the flowfield
only every fourth and tenth time step, shows a slightly different result
as displayed in Figure 11. This time the optimizer fails to converge
if it uses only the information from every tenth time step. However,
the information from only every fourth time step is still sufficient to
converge in a similar manner as the original adjoint. We also save the
flowfield only every fifth time step and one can see that this approach
still works, although it comes with a huge increase in optimization
iterations for the case 2a.
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0 1 2 3 4 5 6 7 8 9 10

10
−15

10
−10

10
−5

10
0

Number of iterations

J

 

 

adjoint
adjoint save every 4th step
adjoint save every 10th step
finite difference

0 1 2 3 4 5 6 7 8 9 10
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Number of iterations

G
ra

di
en

t n
or

m

 

 

adjoint
adjoint save every 4th step
adjoint save every 10th step
finite difference

Convergence history for case 1b

0 2 4 6 8 10 12

10
−15

10
−10

10
−5

10
0

Number of iterations

J

 

 

adjoint
adjoint save every 4th step
adjoint save every 10th step
finite difference

0 2 4 6 8 10 12

10
−6

10
−4

10
−2

10
0

10
2

Number of iterations

G
ra

di
en

t n
or

m

 

 

adjoint
adjoint save every 4th step
adjoint save every 10th step
finite difference

Figure 10. Convergence histories of the remote inverse design problem with two
shape design variables.
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Convergence history for case 2a
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Convergence history for case 2b
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Figure 11. Convergence histories of the remote inverse design problem with two
translational design variables (Note the log scale on both axes).
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4. Conclusion

A general framework to derive a discrete adjoint method for the optimal
control of unsteady flows was presented. It was shown that marching
with a bigger time step over transitional or unphysical adjusting periods
as well as skipping time steps (e.g. every other) while recording the flow
solution works well in practice, thus resulting in significant savings
in both memory and computational time for unsteady optimization
problems. Our future work will focus on the ability to modify the
shape of an airfoil to minimize the radiated noise while maintaining
good performance. Therefore, we will investigate the presented remote
inverse design problem further by using more design variables, a more
realistic turbulent flow and by implementing a near to far-field wave
propagation method.
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Appendix

In this appendix, the discrete adjoint equations are derived in the form
in which they are used to present all the results in this paper. The
time-marching method of choice is the second-order accurate implicit
backward difference (BDF2) method, the flow is controlled after a cer-
tain transition period and one can use different time step sizes in the
transition period and the control window.

The unsteady flow solve is warmstarted at some point in time which
means that Q0 and Q−1 are known. In order to “jump” over the adjust-
ing or transition period as quickly as possible, a bigger time step ∆T
for N∗ steps is used. Once the domain where the problem is supposed
to be controlled is reached, a smaller time step ∆t for another N−N∗

steps is used for a total of N steps. To maintain the second-order time
accuracy through this time step size change, the time-dependent flow
solution Qn is implicitly defined via the following unsteady residuals:

R∗n(Qn, Qn−1, Qn−2, Y ) :=
3Qn − 4Qn−1 +Qn−2

2∆T
+R(Qn, Y ) = 0

for n = 1, . . . ,N∗
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R∗N∗+1(QN
∗+1, QN

∗

, QN
∗
−1, Y ) :=

2∆t+ ∆T

∆t(∆t+∆T )
QN

∗+1
−

∆t+ ∆T

∆t∆T
QN

∗

+
∆t

∆T (∆t+ ∆T )
QN

∗
−1+R(QN

∗+1, Y ) = 0

R∗n(Qn, Qn−1, Qn−2, Y ) :=
3Qn − 4Qn−1 +Qn−2

2∆t
+R(Qn, Y ) = 0

for n = N∗+ 2, . . . ,N.

The problem of minimizing a discrete objective function given by
J =

∑N
n=N∗+1 I

n(Qn, Y ) is then equivalent to the unconstrained opti-
mization problem of minimizing the Lagrangian function

L =
N

∑

n=N∗+1

In(Qn, Y ) +
N

∑

n=1

(ψn)TR∗n(Qn, Qn−1, Qn−2, Y )

with respect to Q0, . . . , QN and ψ1, . . . , ψN . This leads to the following
equations for ψn:

0 = (ψn)T∇QnR∗n + (ψn+1)T∇QnR∗n+1 + (ψn+2)T∇QnR∗n+2

for n = 1, . . . , N∗

0 = ∇QnIn + (ψn)T∇QnR∗n+ (ψn+1)T∇QnR∗n+1+ (ψn+2)T∇QnR∗n+2

for n = N∗+1, . . . , N−2

0 = ∇QN−1IN−1 + (ψN )T∇QN−1R∗N + (ψN−1)T∇QN−1R∗N−1

0 = ∇QN IN + (ψN )T∇QNR∗N ,

which can be written equivalently as

ψN = −
(

(∇QNR∗N )T
)

−1[
(∇QN IN )T

]

ψN−1= −
(

(∇QN−1R∗N−1)T
)

−1
[

(∇QN−1IN−1)T + (∇QN−1R∗N )TψN
]

ψn = −
(

(∇QnR∗n)T
)

−1
[

(∇QnIn)T + (∇QnR∗n+1)Tψn+1

+ (∇QnR∗n+2)Tψn+2
]

for n = N−2, . . . ,N∗+1

ψn = −
(

(∇QnR∗n)T
)

−1
[

(∇QnR∗n+1)Tψn+1+ (∇QnR∗n+2)Tψn+2
]

for n = N∗, . . . , 1.

A little care must be taken in calculating derivatives of R∗N∗+1with
respect to Qn since the factors in front of QN

∗+1, QN
∗

and QN
∗
−1slightly

differ from the usual scheme. Finally, the gradient of J with respect to
the design variables Y is given by

∂J

∂Y
=
∂L

∂Y
=

N
∑

n=N∗+1

∇Y I
n(Qn, Y ) +

N
∑

n=1

(ψn)T∇YR(Qn, Y ).
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