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Abstract

Summation-by-parts (SBP) operators have a number of properties that make them an attractive option for higher-order
spatial discretizations of partial differential equations. In particular, they enable the derivation of higher-order bound-
ary closures leading to provable time stability. When implemented on multi-block structured meshes in conjunction
with simultaneous approximation terms (SATs) — penalty terms that impose boundary and interblock-coupling con-
ditions in a weak sense — they offer additional properties of value, even for second-order accurate schemes and steady
problems. For example, they involve low communication overhead for efficient parallel algorithms and relax the con-
tinuity requirements of both the mesh and the solution across block interfaces. This paper provides a brief history
of seminal contributions to, and applications of, SBP-SAT methods followed by a description of their properties and
a methodology for deriving SBP operators for first derivatives and second derivatives with variable coefficients. A
procedure for deriving SATs is also provided. Practical aspects are discussed, including artificial dissipation, transfor-
mation to curvilinear coordinates, and application to the Navier-Stokes equations. Recent developments are reviewed,
including a variational interpretation, the connection to quadrature rules, functional superconvergence, error estimates,
and dual consistency. Finally, the connection to quadrature rules is exploited to provide a generalization of the SBP
concept to a broader class of operators, enabling a unification and rigorous development of SATs for operators such
as nodal-based pseudo-spectral and some discontinuous Galerkin operators.

Keywords: Summation-by-parts operators, Finite-difference methods, Simultaneous approximation terms, Boundary
closures, Numerical boundary schemes, Higher-order methods, Stability, Energy-method

1. Introduction

In the numerical solution of partial differential equa-
tions (PDEs), the potential improvements in efficiency
from higher-order methods have long been recognized
[1, 2]. Their advantage increases as the error tolerance
of a computation becomes more stringent. In compu-
tational fluid dynamics, higher-order methods are often
applied to time-dependent problems requiring high res-
olution. Despite evidence that they can also be more ef-
ficient than second-order methods for steady turbulent
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flows represented by the Reynolds-averaged Navier-
Stokes equations [3], their use in this context is less
common. This arises in part because the numerical
accuracy requirement in such problems is often less
stringent due to the fact that there can be a significant
physical-model error associated with, for example, the
turbulence model. A second issue impacting the effec-
tiveness of higher-order methods when applied to prac-
tical problems is that such problems are often charac-
terized by singularities and discontinuities of various
types, such as shock waves. This can impair the ability
of the higher-order method to achieve its design order,
as the theory typically assumes a sufficiently smooth so-
lution. Further study is needed to determine how this
can be addressed. Nevertheless, there is growing inter-
est in solving practical aerodynamic problems to a high
degree of accuracy, and higher-order methods are being
increasingly applied to such problems [4, 5].

As a result of several advantageous properties,
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summation-by-parts (SBP) finite-difference operators
with simultaneous approximation terms (SATs) for en-
forcing boundary and mesh interface conditions have
emerged as one of several viable higher-order spatial
discretizations for PDEs, for example the Navier-Stokes
(NS) equations governing the flow of a continuum fluid.
The use of finite-difference methods typically involves
the use of multi-block structured meshes as opposed
to fully unstructured meshes, which can be easier to
generate about complex geometries. Nevertheless, for
geometries where a multi-block structured mesh can
be readily generated, including many complex geome-
tries of practical interest [6], finite-difference discretiza-
tions can be the most efficient option [7]. In particular,
higher-order finite-difference methods can be very effi-
ciently implemented on structured meshes [8, 3]. More-
over, the SBP-SAT approach on multi-block meshes has
proven to be advantageous even in a second-order im-
plementation. For example, Hicken and Zingg [9] and
Osusky and Zingg [6] have developed efficient flow
solution methodologies combining the SBP-SAT ap-
proach with a Newton-Krylov-Schur parallel implicit
algorithm for the Euler and Reynolds-averaged Navier-
Stokes equations, respectively, that have been applied to
various complex geometries, including full aircraft con-
figurations [10].

We begin this review with an introduction to the basic
concepts underpinning SBP-SAT schemes in the con-
text of the linear convection equation with a unit wave
speed in one dimension discretized on a uniform mesh.
This is intended for the reader who is new to SBP-SAT
schemes. The reader who is already familiar with the
basic concepts can skip past (26).

With a positive unit wave speed, the linear advection
equation is given by

∂U
∂ t

+
∂U
∂x

= 0 (1)

on the domain xL ≤ x ≤ xR with the boundary condition
U(0, t) = UL(t).

Time stability of the partial differential equation with
UL = 0 is readily shown. The time rate of change of the
energy in the domain is

d
dt
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Applying integration by parts we find

d
dt

� xR

xL
U

2dx = −(U2
R −U

2
L) , (3)

which is nonpositive when UL = 0.
Next consider a discretization in space on a mesh

with N + 1 equally spaced nodes indexed from 0 to N
such that u = [u0,u1, . . . ,uN ]T . We define an SBP finite-
difference operator for a first derivative D1 as

HD1u = Qu , i.e.
∂U
∂x

≈ H
−1

Qu (4)

where H is a diagonal positive definite matrix that de-
fines an inner product, norm, and quadrature by

(u,v)H = uT
Hv , �u�2

H = uT
Hu ,

� xR

xL
UVdx ≈ uT

Hv , (5)

and

Q+Q
T = EN −E0

= diag[0, . . . ,0,1]−diag[1,0, . . . ,0]

=





−1
0

. . .
0

1




. (6)

We will see later that the restriction to a diagonal H is
not necessary, but it simplifies our initial introduction to
SBP schemes.

With these definitions the discrete SBP operator mim-
ics the integration by parts result obtained in the contin-
uous case:

(u,H−1
Qv)H = uT (EN −E0)v− (H−1

Qu,v)H .

(7)

This enables the following energy estimate (ignoring the
boundary condition for now):

duT
Hu

dt
= uT

H
du
dt

+
duT

dt
Hu

= uT
H(−H

−1
Q)u+uT (−Q

T
H
−1)Hu

= −uT
Qu−uT

Q
T u

= −uT (Q+Q
T )u

= −uT (EN −E0)u
= −(u2

N −u2
0) ,

which mimics the continuous case (3).
Before moving on to SATs, we consider an exam-

ple of an SBP operator. The parameter p defines the
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scheme’s order of accuracy. For a first derivative, with
diagonal H, the scheme has interior order 2p, boundary
order p, and global order p+1. For example, with p= 2
we have interior order 4 and global order 3. With p = 2
the matrices H and Q have the following form:

H = ∆x





h11
h22

h33
h44

1
. . .





(8)

Q =





−
1
2 θ12 θ13 θ14

−θ12 0 θ23 θ24

−θ13 −θ23 0 θ34 −
1
12

−θ14 −θ24 −θ34 0 8
12 −

1
12

0 0 1
12 −

8
12 0 8

12 −
1

12
. . .

. . .
. . .

. . .
. . .





,

(9)

where both matrices have corresponding entries in the
lower right-hand corner. In the interior of the domain,
the operator is the standard fourth-order centered differ-
ence operator. The various unspecified entries in H and
Q must be determined to satisfy the order of accuracy
requirements; this is further discussed in Section 4. The
SBP property is obtained by construction (the entries in
H must be positive).

SATs are penalty terms that impose boundary condi-
tions in a weak sense. For our simple example, we have

H
du
dt

= −Qu−σ(u0 −UL)e0 , (10)

where σ is a parameter, and e0 = [1,0, . . . ,0]T . With the
SAT term included we get the following energy estimate
(with UL = 0):

duT
Hu

dt
= uT

H
du
dt

+
duT

dt
Hu

= −uT (Q+Q
T )u−2uT σu0e0

= −uT (EN −E0)u−2uT σu0e0

= −u2
N +u2

0 −2σu2
0 , (11)

which is nonnegative for σ ≥ 1/2.
In order to demonstrate that an SBP operator is con-

servative, we must show that Gauss’s theorem
�

S
n ·FdS =

�

V
∇ ·FdV (12)

is satisfied discretely. For the one-dimensional linear
advection equation we require:

U(xR)−U(xL) =
� xR

xL

∂U
∂x

dx (13)

The discrete expression for the integral on the right-
hand side is:

1T
HD1u = 1T

HH
−1

Qu
= 1T

Qu
= 1T [(EN −E0)−Q

T ]u
= 1T [(EN −E0)]u
= uN −u0 , (14)

where we have used 1T
Q

T = (D11)T
H = 0. Adding in

the SAT penalty term gives:

1T
H

du
dt

= −1T
Qu−σ(u0 −UL) (15)

= −(uN −u0)−σ(u0 −UL) (16)
= −(uN −UL) , if σ = 1 . (17)

The choice σ = 1 therefore satisfies both conservation
and time stability.

The same approach to the selection of the penalty pa-
rameter enables conservation at block interfaces even
though the solution is multi-valued there as a result of
the weak enforcement of the interface condition. Abut-
ting or patched multi-block grids are often used for
geometries where a single simply-connected structured
grid cannot be generated. As a simple example, con-
sider a block interface in the middle of the above do-
main. Discretizing in space with NL cells to the left of
the interface and NR cells to the right of the interface,
we have two solution vectors as follows:

uL = [uL
0 ,u

L
1 , . . . ,u

L
NL
]T

uR = [uR
0 ,u

R
1 , . . . ,u

R
NR
]T . (18)

Note that the last node in the left block is coincident
with the first node of the right block, yet uL

NL
� uR

0 , i.e.
the numerical solution is multi-valued at the interface.
Introducing a SAT term into the semi-discrete form for
the right domain, we have:

HL
duL

dt
= −QLuL −σL(uL

0 −UL)e0

HR
duR

dt
= −QRuR −σR(uR

0 −uL
NL
)e0 . (19)

Note that we have taken advantage of the fact that our
wave speed is positive; hence a SAT is needed only at
the left side of each block. Additional SATs are re-
quired if the sign of the wave speed is not known or
for a system where waves propagate in both directions.
The penalty parameters σL and σR must be selected to
maintain both stability and conservation.
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Considering conservation first, we see immediately
from (15) that the choice σL = 1 ensures that

1T
HL

duL

dt
= −(uL

NL
−UL) . (20)

For the right-hand block we have

1T
HR

duR

dt
= −1T

QRuR −σR(uR
0 −uL

NL
)

= −(uR
NR

−uR
0 )−σR(uR

0 −uL
NL
)

= −(uR
NR

−uL
NL
) , if σR = 1 . (21)

Hence with σL = σR = 1 we obtain

d
dt

�
1T

HLuL +1T
HRuR

�
= −(uR

NR
−UL) , (22)

and the block interface is conservative.
For time stability we must have

d
dt

�
(uL)

T
HLuL +(uR)

T
HRuR

�
≤ 0 (23)

when UL = 0. For the left-hand block we have from (11)
with σL = 1:

d(uL)T
HLuL

dt
= −(uL

NL
)2
− (uL

0)
2 . (24)

For the right-hand block, we obtain with σR = 1:

d(uR)T
HRuR

dt
= −(uR

NR
)2
− (uR

0 )
2 +2uR

0 uL
NL

.

(25)

Summing (24) and (25) we find

d
dt

�
(uL)

T
HLuL +(uR)

T
HRuR

�

= −(uL
0)

2
− (uR

NR
)2
− (uL

NL
)2
− (uR

0 )
2 +2uR

0 uL
NL

= −(uL
0)

2
− (uR

NR
)2
− (uL

NL
−uR

0 )
2 , (26)

which is nonpositive, as required for time stability.
With this background we can now introduce some

of the useful properties of the SBP-SAT approach. To
date much of the use of SBP-SAT schemes has been in
a finite-difference context, generally requiring rectilin-
ear grids or curvilinear grids with a coordinate transfor-
mation. However, many of the associated concepts ap-
ply more generally, as will be discussed below. One of
the main purposes of the SBP-SAT formulation is to fa-
cilitate the derivation of higher-order spatial discretiza-
tions that are provably time stable based on the energy
method. Development of numerical boundary schemes
for higher-order methods that are provably stable and
of a suitable order of accuracy can be a challenging
task; applying the energy method provides a relatively

straightforward approach. Another useful property of
SBP-SAT schemes is in the handling of interfaces be-
tween blocks. The approximation of the derivative in
each of two neighbouring blocks is completely deter-
mined by the solution in that block. This means that the
amount of information passed between blocks is mini-
mized, which is helpful for parallel algorithms, and in-
dependent of the order of the scheme. Moreover, nei-
ther the grid nor the solution need be continuous across
the interface. This is particularly useful for problems
where there can be different material properties on ei-
ther side of the interface, such as conjugate heat trans-
fer or electromagnetics. However, this can be advan-
tageous in CFD as well, by relaxing the requirement
of grid smoothness across the block interface. Further-
more, a block interface can intentionally be placed at a
known discontinuity such as a geometric discontinuity.

The objective of this paper is to provide the reader
with a thorough understanding of the SBP-SAT method-
ology, with a particular emphasis on the derivation of
operators; several examples of operators are given. For
a detailed review of theoretical aspects of SBP schemes
the reader is referred to the excellent paper by Svärd and
Nordström [11]. A brief history of key contributions is
provided in the next section along with a description
of some applications. This is followed by a detailed
treatment of SBP operators for first derivatives and sec-
ond derivatives with variable coefficients, including a
methodology for deriving them. Simultaneous approx-
imation terms are then described in the context of the
linear convection-diffusion equation. This is followed
by a section discussing application to the Navier-Stokes
equations, including SATs, numerical dissipation and
the transformation to curvilinear coordinates. Next a
variational interpretation of SBP schemes is provided,
showing the connection to, for example, discontinuous
Galerkin finite-element methods. The variational in-
terpretation and dual consistency also enable proofs of
functional superconvergence and error estimates. We
then describe a further generalization of the SBP con-
cept that further reinforces the link to quadrature rules
and enables unification of many operators under the
SBP umbrella. This is followed by a few additional top-
ics and conclusions.

2. A Brief History

2.1. Theory

This section highlights, in roughly chronological or-
der, some of the major advances in the theory of SBP-
SAT methods. Nearly forty years ago, Kreiss and
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Scherer [12] laid out the basic theory of first deriva-
tive SBP operators. Their goal was to bring to higher-
order FD methods a systematic means of proving sta-
bility through the energy method. SBP operators are
constructed from centered difference interior point op-
erators of order 2p. Centered schemes are naturally
SBP on periodic domains, but to retain the SBP property
on finite domains, specific non-centered near-boundary
point operators at nodes close to and including the
boundary need to be constructed. Near the boundaries,
the discretization error jumps to order p for diagonal
norms or 2p − 1 for block norms. Consequently, the
global order of accuracy is p+1 or 2p for diagonal and
block norms, respectively [13].

During the subsequent twenty years (1974− 1994),
the SBP method was predominantly developed by a
small group of researchers at Uppsala University (see
for example [14, 15, 16]). Strand [17] summarized
much of the accumulated theory for SBP operators as of
1994. He proved the existence of restricted block-norm
operators with near-boundary point operators of order
2p−1, thereby resulting in a globally 2p order method
[13]. Moreover, he analytically derived general solu-
tions for diagonal-norm operators with p ∈ [2,4], and
block- and restricted-block norm operators with p = 3
(also see Carpenter and Gottlieb [18] for construction of
Padé-type SBP operators).

For one-dimensional, constant coefficient, Cauchy or
periodic problems in Cartesian coordinates, the SBP
property is sufficient to prove stability. However,
for problems where boundaries or block interfaces are
present, the traditional method of using injection or
strong enforcement of boundary/interface conditions
destroys the SBP property. In working on spectral meth-
ods, first Funaro [19] and then Funaro and Gottlieb [20]
considered the idea of imposing boundary conditions
weakly using penalty methods. In these methods, both
the PDE and the boundary condition are combined at the
boundary nodes. In a refinement of the concept, Car-
penter, Gottlieb and Abarbanel [18] proposed the SAT
method for imposing boundary conditions. Around the
same time, in a series of two papers, Olsson [21, 22]
proposed enforcing boundary conditions using the so-
called projection method. In several papers, Carpenter,
Nordström and Gottlieb [23], Nordström and Carpenter
[24], and Nordström and Carpenter [25] extended the
SAT concept to handle various types of boundary condi-
tions, as well as block interface conditions in curvilinear
coordinates for linear problems.

Mattsson [26] systematically compared the SAT
and the projection methods on the linear-convection-
diffusion equation and a linear hyperbolic system of

equations. He found that strict stability was lost us-
ing the projection method. After this paper, most of
the development in the SBP community for imposition
of boundary conditions and block interfaces has been
within the SATs framework. Some additional important
contributions to SATs in the context of the compressible
Navier-Stokes equations Include: Svärd, Carpenter and
Nordström [27] who derived far-field SATs; Svärd and
Nordström [28] for no-slip wall boundary SATs; Nord-
ström et al. [29] for block interface SATs, and Berg and
Nordström for Robin solid wall boundary SAT [30].

Both diagonal-norm and block-norm operators con-
tain free parameters after satisfying the accuracy con-
straints and the SBP property. Diener et al. [31] per-
formed a systematic study examining various means of
constructing optimized instances of SBP operators for
the first derivative for various values of p.

Carpenter, Nordström and Gottlieb [23] were the first
to derive minimum-stencil SBP operators for the sec-
ond derivative for block-norms, such that the interior
point operators include the same number of nodes as
the interior point operators for the first derivative. Sub-
sequently, Mattsson and Nordström [32] proposed a
simpler form, mimetic of integration-by-parts, and in-
vestigated constructing both block- and diagonal-norm
minimum-stencil SBP operators for the second deriva-
tive. In that paper, the authors found that using
minimum-stencil second-derivative SBP operators for
parabolic problems resulted in a convergence rate of
p+ 2 rather than the anticipated p+ 1. This supercon-
vergence was then theoretically proven by Svärd and
Nordström [33]. In a followup paper to [32], Mattsson,
Svärd and Shoeybi [34] outlined a systematic means
of constructing SBP operators for the second deriva-
tive as the application of the first derivative twice plus
a corrective term. Moreover, they proved that for PDEs
with cross derivative terms, such as ∂ 2

∂x∂y , for stability,
the first derivative operators used to construct the sec-
ond derivative and the cross derivative terms need to be
the same. Kamakoti and Pantano [35] investigated the
construction of minimum-stencil interior point opera-
tors for the second derivative with variable coefficients.
Recently, Mattsson [36] extended the theory presented
in [34] to SBP approximations of the second derivative
with variable coefficients.

For nonlinear problems, some means of dissipating
under-resolved high frequency modes can be required.
Mattson, Svärd and Nordström [37] and then Nordström
[38] developed a method for constructing dissipation
models for SBP schemes that do not destroy the stability
properties, while maintaining the accuracy properties of
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the underlying scheme. Also of interest is the use of the
skew symmetric form and entropy splitting for nonlin-
ear PDEs [39, 40, 41, 42, 43, 44]).

Though block-norm operators present an improve-
ment in the order of accuracy compared to diagonal-
norm operators, Svärd proved that the SBP property
is lost for curvilinear coordinates [45], consequently,
much of the subsequent research has concentrated
on diagonal-norm SBP operators. One of the draw-
backs of diagonal-norm SBP operators is that although
the interior-point operators are of order 2p, the near-
boundary operators are of order p resulting in a p+ 1
accurate scheme. This loss of accuracy can be mitigated
for functionals if the SBP-SAT discretization is dual
consistent: Hicken and Zingg [46] proved that when a
discretization is dual consistent, functionals computed
with the H−norm are superconvergent of order 2p (see
also [47]). In part, their analysis relies on the fact that
the H−norm represents a 2p accurate quadrature rule
[48]. Berg and Nordström [49] subsequently extended
the ideas in [46] to include temporal dependence.

2.2. Application
In this section, we review the application of the SBP-

SAT method to complex problems. In particular, the
focus is on the Euler and Navier-Stokes equations.

The majority of the mechanics for implementing
SBP-SAT discretizations for the Euler and Navier-
Stokes equations can be found in [24, 25, 32, 27, 28, 34,
29, 50, 36]. Mattsson, Svärd, Carpenter, and Nordström
[51] examined the efficiency gains of third and fifth-
order block-norm SBP operators for free-stream vor-
tex and vortex-wing interactions for the Euler equations.
They found that the efficiency gains for the higher-order
methods for the simple vortex flow case translated to
similar performance for the more complicated vortex-
wing interaction problem.

In the last of a trilogy of papers, Nordström et al. [29]
derived suitable SATs for the NS equations for multi-
block schemes. They demonstrated the validity of their
approach by showing physically correct temporal be-
haviour of the shedding of von Karman vortices behind
a cylinder.

In a follow-up paper to [51], Svärd, Lundberg and
Nordström [52] examined a vortex-wing interaction in-
cluding the effects of viscosity. They validated the pro-
posed SBP-SAT scheme and discussed using the en-
forcement of the no-slip boundary condition as a metric
for determining the accuracy when an analytical solu-
tion is not available.

One drawback of coupling block interfaces with
SATs is that this procedure has been shown to signif-

icantly reduce the maximum stable Courant Fiedrichs
Lewy number for explicit schemes [24]. To circum-
vent this issue Hicken and Zingg [9] proposed us-
ing a Jacobian-Free Newton-Krylov-Schur solution al-
gorithm. This algorithm couples a two-stage New-
ton method for solving the nonlinear equations with a
Krylov subspace method to solve the system of equa-
tions at each Newton step. They concluded that SBP-
SAT schemes fit will within a parallel Newton-Krylov-
Schur solution strategy; the combination provides an ef-
ficient approach to the solution of large-scale problems.

Osusky and Zingg [6] extended the algorithm in [9] to
the Reynolds-averaged Navier-Stokes equations using
the Spalart-Allmaras one-equation turbulence model.
They further demonstrated that the Newton-Krylov-
Schur algorithm is well suited to use with SBP-SAT
schemes, providing an efficient parallel algorithm for
the solution of steady turbulent flows over complex ge-
ometries.

The SBP-SAT method has also been successfully ap-
plied to large scale unsteady problems. Osusky, Boom,
Del Rey Fernández and Zingg [53] solved the tempo-
ral evolution of the Taylor-Green vortex flow with a
high-order SBP-SAT discretization using various high-
order temporal discretizations. They found the combi-
nation of higher-order space and time discretization to
be advantageous for efficiently capturing the evolution
of vortical structures and integrated quantities. Using
the same code, Boom and Zingg [54] computed implicit
large-eddy simulations of the Taylor-Green vortex flow
and transitional flow over an SD7003 wing. They found
that for the Taylor-Green vortex, using a fourth-order
method, they could reduce the computational effort, rel-
ative to a second-order method by 85%. Moreover, they
found that for the grid densities under investigation, the
higher-order methods were necessary in order to resolve
known physical features.

There has also been extensive use of SBP schemes
for direct numerical simulations (DNS) of various flow
types. Sandham, Li and Yee [40] used block-norm SBP
operators to compute the DNS solution to wall-bounded
isothermal compressible turbulent channel flow. They
used entropy splitting to condition the inviscid portion
of the NS equations. The algorithm does not use any
numerical dissipation and boundary conditions were im-
posed using the projection method. They found that it
compared well with previously reported experimental
and numerical results.

Sjögreen and Yee [55] compared second-order to fifth
and sixth-order block-norm SBP operators for the so-
lution of several multi-scale complex unsteady viscous
compressible flows including: the 2D shock tube prob-
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lem with viscous effects (no-slip adiabatic wall bound-
ary conditions), supersonic reactive flow with respect to
fuel breakup, and a planar shock interacting with two
hydrogen bubbles. They found that higher-order meth-
ods on coarser grids give comparable results to second-
order methods on finer grids and are more efficient.

Other areas of application include: conjugate-heat
transfer [56, 57]; uncertainty quantification [58, 59, 60];
magnetic induction [61, 62, 63]; Wave propagation
[64, 65, 66, 67, 68]. Other interesting examples include,
DNS of the interaction between a turbulent boundary
layer and a fluttering panel [69]; and, computation
of acoustically-excited flow through a circular orifice
backed by a hexagonal cavity [70]. SBP-SAT schemes
are provably strictly time-stable, which roughly speak-
ing means that the long term energy growth of the semi-
discrete equations is less than or equal to that of the PDE
(see [71, 72]). This makes them particularly attractive
for problems involving propagation over long distances
(see for example [73]).

3. Notation

Vectors are denoted with lower-case bold fonts, while
matrices are presented using upper-case sans-serif fonts,
for example M. Upper-case letters with script type are
used to denote continuous functions on a specified do-
main x ∈ [α,β ]. As an example, U(x) ∈ C∞[α,β ] de-
notes an infinitely differentiable function on the domain
x ∈ [α,β ]. Lower-case bold fonts are used to denote the
restriction of such functions onto a grid; for example the
restriction of U onto the grid x is given by:

u = [U(x0), . . . ,U(xN)]
T .

Vectors with a subscript h, for example uh ∈ RN×1,
represent the solution to a system of discrete or semi-
discrete equations.

Throughout the paper monomials are used in prov-
ing the degree of various operators. These are repre-
sented by xi =

�
xi

0, . . . ,x
i
N
�T , with the convention that

x raised to a negative power is equal to zero. We also
make frequent use of the vectors e0 = [1,0, . . . ,0]T and
eN = [0,0, . . . ,1]T and matrices E0 = diag[1,0, . . . ,0],
EN = diag[0,0, . . . ,1], and E = EN −E0.

The operators for the first and second derivatives have
different orders of accuracy on the interior, at the bound-
ary, and globally. When it is necessary to distinguish be-
tween operators and the various orders of accuracy, we
append a superscript to operators for the various orders
of accuracy and a subscript to denote which derivative
we are approximating. For example, D

(a,b,c)
i,e , denotes

the operator for the ith derivative with interior order of
accuracy a, boundary closure accuracy b, and a solution
with global order of accuracy c. The additional sub-
script e enables us to distinguish between various ver-
sions of the operator. In some cases we will not be inter-
ested in one or several of the orders of accuracy and will
insert colons; as an example, D

(2,:,:)
3 denotes an approxi-

mation to the third derivative that is second-order on the
interior where we specify neither the accuracy of the
operator at the boundary nor the global order of accu-
racy. For the second derivative with variable coefficients
we will make explicit the dependence on the variable
coefficients by denoting these operators as D

(a,b,c)
2 (B),

where B is a diagonal matrix with the variable coeffi-
cients along its diagonal.

4. SBP Operators for First Derivatives

4.1. Preliminaries
SBP operators are constructed to be mimetic of the

integration by parts (IBP) property of the first deriva-
tive. There are many discrete operators that possess
the SBP property; for example, Carpenter and Gottlieb
[74] and Gassner [75] investigated the SBP property of
pseudo-spectral collocated methods. In the continuous
case, IBP has the following form:

� xR

xL
V

dU
dx

dx = UV|
xR
xL
−

� xR

xL
U

dV
dx

dx. (27)

In order to construct a well-posed problem, a system
of PDEs needs to be augmented by appropriate bound-
ary conditions. In the continuous case, it is possible
to use the energy method to determine boundary con-
ditions that lead to well-posed problems. In the energy
method, the PDE is multiplied by the solution and inte-
grated in space. IBP is then used to transform volume
integrals to surface integrals to allow the introduction of
boundary conditions to determine the well-posedness of
the PDE and the boundary conditions (for more infor-
mation regarding the energy method see [76, 71, 72]).
In the continuous case, the L2 inner product and norm
are defined as

(U ,V) =
� xR

xL
UVdx, ||U||2 =

� xR
xL

U2dx. (28)

With these definitions, (27) can be interpreted as
�
V,

∂U
∂x

�
= UV|

xR
xL
−

�
U ,

∂V
∂x

�
. (29)

SBP operators are constructed to discretely approx-
imate (29) using a grid of N + 1 nodes defined by
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x = [x0, . . . ,xN ]T for x ∈ [xL,xR]. The goal is to con-
struct SBP operators of various orders. The accuracy of
the operator is defined by its degree p, the maximum
degree of the polynomial for which it is exact, by con-
ditions referred to as the accuracy equations:

D1x j = jx j−1, j ∈ [0, p]. (30)

These can alternatively be obtained via Taylor series and
represent (N +1)× (p+1) individual equations. How-
ever, the number of linearly independent equations is
generally less than (N +1)× (p+1). The discrete ana-
logue of IBP is SBP. Using the discrete inner product
and norm (5), where H can be diagonal or block diago-
nal, the SBP property has the following form:

(v,D1u)H = uNvN −u0v0 − (u,D1v), (31)

or, equivalently

vT
HD1u = vT

Eu−uT
HD1v, (32)

where E = diag [−1,0, . . . ,0,1]. Not all first-derivative
approximations satisfy (32), and the conditions under
which D1 can satisfy (32) need to be determined. To do
so, take the transpose of (32), add it to (32), and rear-
range to obtain

vT �
HD1 +D

T
1 H

�
u+uT �

D
T
1 H+HD1

�
v =

vT
Eu+uT

Ev.
(33)

Let Q = HD1 (since H is invertible, D1 = H
−1

Q); (33)
becomes

vT �
Q+Q

T �u+uT �
Q

T +Q
�

v = vT
Eu+uT

Ev, (34)

and it is concluded that

Q+Q
T = E. (35)

To summarize, the following definition is given:

Definition 1. Summation-by-parts operator: An op-
erator is an approximation to the first derivative of de-
gree p with the SBP property if

i) D1x j = H
−1

Qx j = jx j−1, j ∈ [0, p],

ii) H is a positive definite (PD) symmetric matrix, and

iii) Q+Q
T = E.

SBP operators are constructed by first specifying an in-
ternal stencil and then determining what modifications
are required at nodes on and near the boundary such
that the SBP property is obtained and the accuracy equa-
tions satisfied. Both the diagonal and block-norm opera-
tors require a minimum of 2p modified stencils, at both
boundaries. Beyond a certain degree of accuracy, free
parameters remain after satisfying the accuracy equa-
tions and the SBP form. These free parameters can then
be used to optimize the operators in some sense.

The steps for deriving diagonal or block-norm SBP
operators are the same; the starting point is the accuracy
equations (30). Multiplying both sides by H gives

Qx j = jHx j−1, j ∈ [0, p]. (36)

The matrix Q can be split into its symmetric and anti-
symmetric components: Q = QS +QA. The SBP prop-
erty, Q + Q

T = E, leads to the conclusion that QS =
diag

�
−

1
2 ,0, . . . ,0,

1
2
�
. Thus, (36) becomes

QAx j − jHx j−1 =−QSx j =−
1
2 Ex j, j ∈ [0, p].

(37)

4.2. Diagonal-Norm SBP Operators
To make the presentation transparent, we use the p =

2 operator as an example (SBP first derivative operators,
for p ∈ [1,4], are given in Appendix A). All SBP oper-
ators have a unique repeating interior point operator of
degree 2p. In this example, the interior point operator is
of degree 4 and is given as 1

12 S−2 − 2
3 S−1 + 2

3 S1 − 1
12 S2,

where S is the shift operator and has the property Sku j =
u j+k. At the boundaries, the operators are defined by a
2p× 2p block and the symmetries of the operator; for
the current example, see (8) and (9).

The interior of Q is defined by the repeating inte-
rior point operator. The lower portion of the opera-
tor is the negative of the permutation of the rows and
columns of the upper 4×6 block; therefore, it is nearly
anti-bisymmetric. Similarly, the lower portion of H is
the permutation of the rows and columns of the upper
portion, i.e., H(i, i) = HN−(i+1),N−(i+1); therefore, it is
bisymmetric.

Now the system of equations (37) is constructed for
j ∈ [0,2], which gives a total of 2p×3 = 12 equations,
while there are only 10 unknowns. Nevertheless, a suf-
ficient number of equations are linearly dependent such
that for p = 2 there is a unique solution. For p = 3 there
is one free parameter, while for p = 4 there are 2 free
parameters.

For operators with free parameters, p = 3 and p = 4,
the question of how to optimize the diagonal-norm SBP
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operators for the first derivative has been investigated
by several authors [31, 77, 34, 78, 79]. There are two
basic criteria that are typically chosen for optimization:
the truncation error or the spectral properties. However,
Diener et al. [31] have shown that there is a strong rela-
tionship between the spectral radius and the truncation
error; when they minimized for truncation error they
also found that the spectral radius was greatly reduced.

Typically, both the solution error and functionals are
computed using the H-norm. Therefore, an alternative
to minimizing the sum of the point-wise boundary node
truncation error is to minimize the H-norm of the trun-
cation error. This has the advantage that the optimum
minimizes the error in quantities computed using the
norm. Using this idea, a simple objective function, J,
based on the truncation error vector e, is as follows:

ek = D1xk
− kxk−1, Jk = eT

k Hek, k ≥ p+1. (38)

For the operator D
(6,3,:)
1 (p = 3) Maple’s mini-

mize function finds the minimum of J4 as θ56 =
5591070156686698065364559
7931626489314500743872000 .

The operator D
(8,4,:)
1 (p = 4) has three free parame-

ters and minimizing J5 specifies one of the free param-
eters in terms of the other two. We then minimize J6
to specify the remaining free parameters, giving to five
decimal places: θ16 = 0.08314, θ17 = −0.00952, and
θ47 = −0.03510. In Appendix A, Matlab scripts are
provided to construct diagonal-norm SBP operators for
the first derivative for p ∈ [0,4].

4.3. Block-Norm SBP Operators

The block-norm H is bisymmetric, and for p = 2 is
given as

H = ∆x





h11 h12 h13 h14
h12 h22 h23 h24
h13 h23 h33 h34
h14 h24 h34 h44

1
. . .





. (39)

Solving the accuracy equations (36) results in an under-
determined system with a number of free parameters.
The next step is to use the free parameters to optimize
the operator in some way while maintaining a PD H.
The latter presents a challenge, particularly for p> 2, as
the block portion of H grows as 2p× 2p, and the num-
ber of free parameters increases as well. Nevertheless,
it is possible. An alternative is to construct H such that

it is PD by definition. Consider constructing the upper
portion of H as

H(1 : 2p,1 : 2p) = L
TΛL, (40)

where L is a lower unitriangular matrix and Λ is a diag-
onal matrix. In this form, H is guaranteed to be PD if
Λ > 0; the downside is that (36) becomes a system of
nonlinear equations.

To avoid solving nonlinear systems we take a differ-
ent approach. We solve the accuracy equations and set
H1, j = 0, starting with j = 2p, until a unique solution
is obtained. Since, H has not been constructed using
form (40) there is no guarantee that the resultant H is
PD. However, for p ∈ [1,4], this strategy results in PD
H and for p = 2 gives

H
(4,3,4) = ∆x





173
648

41
1296 0 0

41
1296

1135
648 −

353
648

17
108

0 −
353
648

901
648 −

151
1296

0 17
108 −

151
1296

671
648

1
. . .





, (41)

and a Q matrix

Q
(4,3,4) =





−
1
2

2035
2592 −

239
648

217
2592 0 0

−
2035
2592 0 829

864 −
113
648 0 0

239
648 −

829
864 0 1747

2592 −
1
12 0

−
217

2592
113
648 −

1747
2592 0 2

3 −
1

12
1
12 −

2
3 0 2

3 −
1
12

. . .
. . .

. . .
. . .

. . .





.

(42)

5. SBP Operators for Second Derivatives with Vari-
able Coefficients

Many equations in the physical sciences contain
second-order terms. As an example, consider the com-
pressible NS equations, which require second-order
derivatives of the form ∂

∂x

�
B

∂Q
∂x

�
, where Q is a con-

served variable and B is a variable coefficient. Equa-
tions with second-order terms can be decomposed into
a new system of first order terms; however, this re-
sults in an expanded system of equations that must be
solved. To circumvent this, the second derivative can
be approximated directly. For SBP operators, the sim-
plest means of doing so is application of the first deriva-
tive twice, which have interior point operators that use
4p+1 nodes, referred to as wide-stencil operators. Al-
ternatively, minimum-stencil SBP operators can be de-
rived that have interior point operators that use the same
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number of nodes as the interior point operators for the
first derivative (2p + 1). Minimum-stencil operators
have several numerical advantages over wide-stencil op-
erators [34]; they have lower global error and are more
dissipative of high wavenumber modes. Moreover, they
have a smaller bandwidth and thus require less compu-
tational resources, particularly if one is interested ap-
plications for which the Jacobian is constructed (e.g.
adjoint-based sensitivity analysis). Finally, using wide-
stencil SBP operators results in the loss of one order of
accuracy in the context of parabolic PDEs [32].

Mattsson [36] extended the constant coefficient algo-
rithm presented in [34] to the variable coefficient case
and derived diagonal-norm minimum-stencil SBP oper-
ators for the second derivative with variable coefficients.

We present a procedure for deriving minimum-stencil
SBP operators for the second derivative with constant
or variable coefficients based on the ideas [32, 34, 36],
but with formalism as in [80, 81]. First, we define the
SBP operators for the second derivative with constant
or variable coefficients and give a generic structure to
construct them. We define the discrete SBP operator
for the second derivative with constant coefficients, B =
diag(1, . . . ,1), or variable coefficients as follows:

Definition 2. SBP Second Derivative: The matrix
D
(2p,p,p̂)
2 (B) ∈ R(N+1)×(N+1) is an SBP operator for the

differential operator

∂
∂x

�
β ∂u

∂x

�
,

if it is of of the form,

D
(2p,p,p̂)
2 (B) = H

−1
{−M+EBDb} ,

where B = diag(β0, . . . ,βN), D
(:,≥p+1,:)
b is an approxi-

mation to the first derivative at the boundaries, and

M =
�

D
(2p,p,p+1)
1

�T
HBD

(2p,p,p+1)
1 +R.

The matrices B, M and R are positive-semi-definite
(PSD) and symmetric.

In order to construct stable SBP-SAT discretizations,
the first derivative and second derivative must have the
same norm [34]. Furthermore, if cross-derivative terms
are present the SBP operators for the first derivative in
Definition 2 must be the same as the SBP operators used
for the cross derivative terms (if in addition, as in Def-
inition 2, R is PSD then D1 and D

(2p,p,p̂)
2 (B) are said to

be compatible [34]).

Before proceeding, let us make clear how the given
definition leads to an SBP operator and show the rela-
tionship between the minimum- and wide-stencil oper-
ators. Consider the variable-coefficient parabolic equa-
tion on the interval [0,1]:

∂U
∂ t

=
∂
∂x

�
β ∂U

∂x

�
. (43)

Applying the energy method to (43) gives

d||U||2

dt
= 2

�
βU ∂U

∂x

�����
1

0
−2

� 1

0
β
�

∂U
∂x

�2
dx. (44)

Ignoring boundary conditions, the semi-discrete equa-
tions are

duh

dt
= H

−1
{−M+EBDb}uh.

Multiplying by uT
h H and adding the transpose of the

product gives

d||uh||
2
H

dt
= 2uT

h EBDbuh −2uT
h Muh

= 2uT
h EBDbuh −2(Duh)

T
HBDuh

−2uT
h Ruh.

(45)

Let us first consider the application of the first deriva-
tive twice; in this case, R = 0 and Db = D1, and (45)
reduces to

d||uh||
2
H

dt
= 2uT

h EBDuh −2(Duh)
T

HBDuh.

Since the discrete norm represents a 2p-order quadra-
ture, we see that (Duh)T

HBDuh ≈
� 1

0
∂U
∂x B

∂U
∂x dx, while

uT
h EBDuh ≈ B

∂U
∂x

���
1

0
. The difference in the minimum-

stencil operator is the addition of the term uT
h Ruh. From

(45) we see that for stability, R must be PSD.
To construct these operators, we need R. For an oper-

ator with 2p accuracy on the interior, we posit the gen-
eral form [80, 81]:

Rp =
1
h

2p

∑
i=p+1

αi(D̃
(2,1,:)
i,p )T

C
(p)
i BD̃

(2,1,:)
i,p ,

where h is the mesh spacing. The D̃
(2,1,:)
i,p operators

have an interior point operator that spans 2p + 1
nodes, while near-boundary point operators spanning
the first or last 3p nodes are used at the first 2p
and last 2p nodes. The interior point operator is a
second-order centered difference approximation to the
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ith derivative, while the near-boundary point operators
are first-order accurate. The tilde notation denotes an
undivided difference approximation. Constructed as
such, the operator is guaranteed to be PSD, as long
as the C

(p)
i , which are diagonal matrices of the form

C
(p)
i = diag

�
c(p)

i,1 , . . . ,c
(p)
i,2p,1, . . . ,1,c

(p)
i,2p, . . . ,c

(p)
i,1

�
, are

PSD.

The interior point operator that is compatible with the
proposed construction of the second derivative is given
as [80, 81]

D(2p,:,:)
2,int = −(D(2p,:,:)

1,int )T b jD
(2p,:,:)
1,int

−
1
h2 ∑2p

i=p+1 αi(D̃
(2,:,:)
i,p,int)

T b jD̃
(2,:,:)
i,p,int,

(46)
where D(2p,:,:)

1,int and D̃(:,:)
i,int are the interior point operators

of the respective matrix operators. The interior point op-
erators are constructed using the shift operator; in this
context, the transpose operation means that the expo-
nents of the shift operators are multiplied by −1. For
example, consider the interior point operator

D̃ = α1S−1 +α2S0 +α3S1 +α4S3. (47)

The transpose operation applied to (47) results in

D̃T = α1S1 +α2S0 +α3S−1 +α4S−3. (48)

Taking b j = 1, (46) is the classical decomposition of
minimum-stencil 2p accurate centered difference ap-
proximations to the second derivative into the applica-
tion of the first derivative twice plus a corrective term.
The global order of accuracy, p̂, will depend on the par-
ticular problem being solved and can be in the range
p̂ ∈ [p+1, p+2] [33]. The general form is

D
(2p,p,:)
2 (B) =

H
−1

�
−

�
D
(2p,p,:)
1

�T
HBD

(2p,p,:)
1 +EBD

(:,≥p+1,:)
b

�

−
1
h H

−1 ∑2p
i=p+1 α(p)

i

�
D̃
(2,1,:)
i,p

�T
C
(p)
i BD̃

(2,1,:)
i,p ,

(49)
where the α(p)

i coefficients are

• p = 1: α(1)
2 = 1

4 ;

• p = 2: α(2)
3 = 1

18 , α(2)
4 = 1

48 ;

• p = 3: α(3)
4 = 1

80 , α(3)
5 = 1

100 , α(3)
6 = 1

720 ; and

• p = 4: α(4)
5 = 1

350 , α(4)
6 = 1

252 , α(4)
7 = 1

980 , α(4)
8 =

1
11200 .

The above formulation leads to multiple solutions with
many free parameters for which values must be chosen.

The SBP operator for the second derivative is a func-
tion of the matrix B, where for constant coefficients, B

is the identity matrix. As with the first derivative, mono-
mials are used to construct the equations that the opera-
tor needs to satisfy. In contrast to the first derivative, the
degree and the order of the operator are not the same; for
the second derivative, the degree is the order plus one.
Thus for constant coefficients, the accuracy equations
have the following form:

D
(2p,p,:)
2 x j = j( j−1)x j−2, j ∈ [0, p+1]. (50)

Therefore, for each j (50) results in a system of N + 1
equations. However, by construction the operator satis-
fies these equations on the interior. What remains are
equations from the first and last 3p nodes. This re-
sults from the application of the first derivative twice,
which reduces the order of accuracy at the first and last
3p nodes. However, the operator is constructed so that
it is invariant under the transformation x → −x, which
means that only the first 3p equations need to be solved,
giving a total of 3p× (p+ 2) equations. The general
form of the constituent components of SBP operators
for the second derivative with variable coefficients is
given in Appendix B.

For variable coefficients, it is not as clear how to pose
the accuracy equations. The SBP operator must approx-
imate ∂

∂x

�
B

∂U
∂x

�
and be of degree p+ 1. We want to

know what degree monomials to insert for B and U in
constructing the accuracy equations. Taking B = xq and
U = xr and inserting into the second derivative gives

∂
∂x

�
xq ∂xr

∂x

�
= xq+r−2. (51)

This means that all combinations q + r ≤ p + 1 must
be satisfied; thus, for variable coefficients, the accuracy
equations have the following form:

D
(2p,p,:)
2 (diag(xq))xr = r(q+r−1)xq+r−2, q+r ≤ p+1,

(52)
Given that the equations (50) are a subset of (52), it is
sufficient to solve (52).

We demonstrate each step with respect to the operator
D
(4,2,:)
2 (B), while a Matlab script to construct the oper-

ator is provided in Appendix B. In expanded form, the
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operator is given as

D
(4,2,:)
2 (B) = H

−1
�
−

�
D
(4,2,:)
1

�T
HBD

(4,2,:)
1

−
1

18h

�
D̃
(2,1,:)
3,2

�T
C
(2)
3 BD̃

(2,1,:)
3,2

−
1

48h

�
D̃
(2,1,:)
4,2

�T
C
(2)
4 BD̃

(2,1,:)
4,2 +EBD

(:,≥3,:)
b

�
.

(53)

Construction of D
(4,2,:)
2 (B) requires the matrices

• D
(4,2,:)
1 and H;

• D̃
(2,1,:)
3,2 , C

(2)
3 , D̃

(2,1,:)
4,2 , C

(2)
4 ; and

• D
(:,≥3,:)
b .

The matrices for the first derivative, D
(4,2,:)
1 and H, are

separately derived (see Section 4.2). For p = 2 and
near-boundary point operators for the first and last four
nodes, the matrices are unique and are given in the Mat-
lab script in Appendix A. The matrices D̃

(2,1,:)
j,p have cen-

tered interior point operators that are undivided second-
order approximations to the jth derivative that include
2p+ 1 nodes. However, they are first order at the first
2p and last 2p boundary nodes and include 3p nodes
(see Appendix B).The matrices used to construct D2(B)
differ from those in [36]; however they result in opera-
tors with identical interior point operators.

The matrix C(2)
3 is bisymmetric and defined

by C
(2)
3 = diag

�
c(2)3,1,c

(2)
3,2,c

(2)
3,3,c

(2)
3,4,1, . . .

�
; similarly,

C(2)
4 is bisymmetric and is defined by C

(2)
4 =

diag
�
c(2)4,1,c

(2)
4,2,c

(2)
4,3,c

(2)
4,4,1, . . .

�
. Finally, the operator

D̃
(:,≥p+1,:)
b is an approximation to the first deriva-

tive at the boundary nodes of at least degree p +
1. In the current example, the first row is given as�
D̃b,1, D̃b,2, D̃b,3, D̃b,4, D̃b,5, D̃b,6,0, . . .

�
, while the last

row is the negative of the permutation of the columns,
with the remaining entries of the operator being zero.

The resultant nonlinear system of equations is under-
determined and gives four families of solutions, each
with free parameters. In order to choose a family of so-
lutions and the optimal member of that family requires
a criterion for optimization. Here, we follow the same
idea proposed for the first derivative and construct an
objective function, J, based on the truncation error vec-

tor e as follows:

eq,r = D2 (diag(xq))xr −q(q+ r−1)xq+r−2,

Jq,r = eT
q,rHeq,r,

J = ∑p+3
i=1 J(p+3−i),(i−1).

(54)

Besides the objective function (54), the entries of the C

matrices are constrained to be ≥ 0, which is necessary
for stability. An example optimized solution is given
in Appendix B, where Maple’s numerical minimization
function, Minimize, was used to perform the optimiza-
tion. The optimization was carried out until the objec-
tive function value did not vary in the second decimal
place.

6. Simultaneous Approximation Terms

The theory of SATs depends on the concept of well-
posednes and stability. In this section we introduce
this theory. First, using the linear convection-diffusion
(LCD) equation as an example, we develop the basic
approach for constructing SATs. One starts with the
continuous PDE and uses the energy method to deter-
mine data (boundary and initial conditions and forcing
function) that lead to a well-posed problem. This anal-
ysis helps determine the SATs that are constructed for
the semi-discrete equations. The energy method is then
applied to determine the additional conditions on the
SATs so that the semi-discrete form is stable. Second,
the form of the SATs that are constructed for the LCD
equation motivate the form of the SATs we will present
for the NS equations in Section 7. A good review of the
details of the energy method, as applied to the contin-
uous and the semi-discrete problems, is given by Svärd
and Nordström [11]. For a detailed understanding, the
following three books are indispensable [76, 71, 72].

A mathematical model is well-posed if a there ex-
ists a solution that is unique, and small perturbations
to the data result in small perturbations to the solution,
or equivalently the solution is bounded by the data [82].
The energy method is a means of answering the ques-
tion of boundedness, which can then be used to answer
the question of uniqueness. We limit the presentation to
PDEs with homogeneous boundary conditions and forc-
ing function; however, the analysis can be extended to
the nonhomogeneous case [72]. We need the following
definition [72]:

Definition 3. A PDE, on x ∈ [0,1] with homogeneous
data, is called stable if the solution satisfies the esti-
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mate4

�u(·, t)� ≤ Keαt
� f (·)�, (55)

where f is the initial condition, and K and α do not
depend on f . A PDE with homogeneous data is called
well-posed if it has a unique smooth solution and is sta-
ble [72].

Now we use the energy method in conjunction with
the above definition to determine boundary conditions
that lead to a well-posed problem for the LCD equation
given as

∂U
∂ t =−

∂U
∂x + ∂

∂x

�
B(x) ∂U

∂x

�
, 0 ≤ x ≤ 1, t ≥ 0,

U(x,0) = f (x),

α0U(0, t)−B(0) ∂U
∂x (0, t) = G0(t),

α1U(1, t)+B(1) ∂U
∂x (1, t) = G1(t),

(56)
where B(x)≥ 0 and for homogeneous boundary condi-
tions G0(t) = G1(t) = 0. Applying the energy method to
(56) gives

d�U(·, t)�2

dt
=− U

2��1
0 + 2BU

∂U
∂x

����
1

0
−2

����
∂U
∂x

����
2

B
, (57)

where � · �B is a weighted L2 norm. Now we use the
boundary conditions in (56) to replace the derivative
term in (57), which results in

d�U(·,t)�2

dt = (−1−2α1)U(1, t)2 +(1−2α0)U(0, t)2

−2
��� ∂U

∂x

���
2

B
.

(58)
Integrating in time, using Leibniz’s rule, and applying
the initial condition gives

�U(·, t)�2 = � f (·)�2+

� t
0 (−1−2α1)U(1,τ)2 +(1−2α0)U(0,τ)2dτ

−2
� t

0

��� ∂U
∂x

���
2

B
dτ.

(59)

For (−1− 2α1) ≤ 0 and (1− 2α0 ≤ 0) we can replace
(59) with

�U(·, t)�2
≤ � f (·)�2, (60)

4It is assumed that the PDE under consideration has a differential
operator and boundary condition operators that are not time depen-
dent, and that the initial condition is compatible with the boundary
conditions [72].

which is of the form (55), and so with the restrictions
(−1−2α1)≤ 0 and (1−2α0 ≤ 0) the problem is well-
posed.

For the semi-discrete equations we proceed as in the
continuous case. First we require the following defini-
tion of stability for the semi-discrete form [72]:

Definition 4. A semi-discrete equation, with homoge-
neous data5, is called stable if it has a unique solution,
and for all h ≤ h0, where h is the mesh spacing, there
are constants K and α such that, for all f

�uh(t)||H ≤ Keαt
�f�H. (61)

With this definition we can now try and determine ap-
propriate SATs, mimicking of the continuous case, such
that the semi-discrete LCD equations are stable. Appli-
cation of the SBP-SAT method to (56) results in

duh

dt
=−Duh +D2(B)uh +SAT0 +SATN , (62)

where the additional terms, SAT0 and SAT1, are added
to weakly impose the boundary conditions at x = 0 and
x = 1, respectively. The continuous case analysis leads
us to propose the following type of SATs, where we add
the additional parameters τ0/N so that we have sufficient
degrees of freedom such that the SATs lead to a stable
semi-discrete form:

SAT0 = τ0H
−1

E0 (α0uh −Dbuh −g0e0) ,

SATN = τNH
−1

EN (αNuh +Dbuh −gNeN) ,
(63)

where for homogeneous boundary conditions g0 = gN =
0. Here the general form of the second derivative is
used, which can either be the application of the first
derivative twice, with R = 0 and Db = D1, or the
minimum-stencil operator.

Applying the discrete energy method, multiplying
(62) by uT

H and adding the transpose of this product,
results in

d||u�2
H

dt =−uT
h
�
Q+Q

T �uh

−2uT
h D

T
HDuh −2uT

h Ruh +2uT
h EDbuh

+2τ0uT
h E0 (α0uh −Dbuh −g0e0) ,

+2τNuT
h EN (αNuh +Dbuh −gNeN) .

(64)

5Analogous assumptions are made as in the continuous Definition
3.
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Expanding and rearranging results in

d||u�2
H

dt =+2uT
h D

T
HDuh −2uT

h Ruh

+2uT
h EDbuh −2τ0uT

h E0Dbuh +2τNuT
h ENDbuh

�
u2

0 −2α0τ0u2
0 −2τ0u0g0

�
+

�
−u2

N +2αNτNu2
N −2τNuNgN

�
.

(65)
We see that if τ0 = 1 and τN = 1 the term 2uT

h EDbuh
cancels, giving

d||u�2
H

dt =−2uT
h D

T
HDuh −2uT

h Ruh

�
u2

0 −2α0u2
0 −2u0g0

�
+
�
−u2

1 −2α1u2
1 +2u1g1

�
.
(66)

Before proceeding, notice that the term

−2uT
h D

T
HDuh ≈

��� ∂U
∂x

���
2

B

and that the term −2uT
h Ruh

is negative semidefinite. Now we choose α0 and αN
such that we can construct an energy estimate and
demonstrate that these parameter values coincide with
the continuous case. Integrating (66) in time, and
assuming homogeneous boundary conditions results in

�uh(t)�2
H
= �f�2

H
−2

� t
0 uT

h D
T

HDuh +uT
h Ruhdτ

+
� t

0(−1−2αN)u2
N(τ)+(1−2α0)u2

0(τ)dτ,
(67)

just as in the continuous case, for (−1− 2α1) ≤ 0 and
(1−2α0)≤ 0 we construct the estimate

�uh(t)�2
H
≤ �f�2

H
, (68)

and we conclude that the problem (62) is stable. For
simplicity, we have chosen to deal with definitions of
well-posedness and stability applicable to PDEs with
homogeneous boundary conditions and with differential
operators that do not vary in time. Moreover, we have
assumed that the initial condition is compatible with
the homogeneous boundary conditions. The analysis
can be extended to problems without these simplifica-
tions, such as non-homogeneous boundary conditions;
this brings in various definitions of stability [76, 71, 72].

7. Practical Aspects

7.1. Application to the Navier-Stokes Equations

In this section we describe the details necessary to
implement SBP-SAT schemes for the Euler and NS

equations. In curvilinear coordinates, (ξ ,η ,ζ ), the NS
equations are given by

∂ Q̂
∂τ

+
∂ Ê
∂ξ

+
∂ F̂
∂η

+
∂ Ĝ
∂ζ

= 0 (69)

where
Ê = ÊI −

1
Re ÊV

F̂ = F̂I −
1

Re F̂V

Ĝ = ĜI −
1

Re ĜV

(70)

where the subscripts I and V refer to inviscid and vis-
cous, Q̂ is the vector of conserved variables scaled by
the metric Jacobian, the vectors Êi, F̂i, Ĝi, are the in-
viscid flux vectors in curvilinear coordinates, and the
vectors ÊV , F̂V , and ĜV are the viscous flux vectors
in curvilinear coordinates (for the form of the various
vectors see [83]). Application of the one-dimensional
SBP operators to systems of equations and or multiple
dimensions necessitates the use of Kronecker products.
Given a m× n matrix C and a p× q matrix B the Kro-
necker product C⊗B is the mp×nq matrix defined by

C⊗B =




C(1,1)B . . . C(1,n)B

...
...

C(m,1)B . . . C(m,n)B



 . (71)

The various necessary operators are given by

Ĥ = Hζ ⊗Hη ⊗Hξ ⊗ I5,

Ĥξ = Iζ ⊗ Iη ⊗Hξ ⊗ I5, D̂ξ = Iζ ⊗ Iη ⊗Dξ ⊗ I5,

Ĥη = Iζ ⊗Hη ⊗ Iξ ⊗ I5, D̂η = Iζ ⊗Dη ⊗ Iξ ⊗ I5,

Ĥζ = Hζ ⊗ Iη ⊗ Iξ ⊗ I5, D̂ζ = Dζ ⊗ Iη ⊗ Iξ ⊗ I5,
(72)

where Hξ is the H−norm matrix in the ξ direction,
Dξ = H

−1
ξ Qξ is the SBP operator for the first deriva-

tive in the ξ direction and similarly for the other opera-
tors. Furthermore, the matrices Iξ , Iη , and Iζ are identity
matrices whose dimensions match the number of nodes
in the corresponding coordinate direction. The second
derivative with variable coefficients is represented in a
generic fashion:

D̂2ξ (B) = Iζ ⊗ Iη ⊗D2ξ (B)⊗ I5,

D̂2η(B) = Iζ ⊗D2η(B)⊗ Iξ ⊗ I5,

D̂2ζ (B) = D2ζ (B)⊗ Iη ⊗ Iξ ⊗ I5.

(73)
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The various cross-derivative terms, for example in the
ξ -direction, are given by

D̂ξ ,η(B) = D̂ξ BD̂η

D̂ξ ,ζ (B) = D̂ξ BD̂ζ

(74)

Finally, numerical dissipation is applied in the three di-
rections by the following operators (see Section 7.2):

ÂD,ξ = H
−1
ζ ⊗H

−1
η ⊗AD,ξ ⊗ I5

ÂD,η = H
−1
ζ ⊗AD,η ⊗H

−1
ξ ⊗ I5

ÂD,ζ = AD,ζ ⊗H
−1
η ⊗H

−1
ξ ⊗ I5

(75)

For multi-block domain decompositions, the discretiza-
tion is applied block by block, while the boundary
and interface conditions are enforced using SATs, the
form of which will be discussed shortly. With the pre-
viously defined operators the semi-discrete equations,
with boundary and interface conditions enforced with
SATs, on a single block are given as follows:

dQ̂h
dt =−D̂ξ ÊI,h − D̂η F̂I,h − D̂ζ ĜI,h+

1
Re

�
D̂2ξ

�
BÊV,h

�
+ D̂ξ ,η

�
BÊV,h

�
+ D̂ξ ,ζ

�
BÊV,h

��
vh+

1
Re

�
D̂η ,ξ

�
BF̂V,h

�
+ D̂2η

�
BF̂V,h

�
+ D̂η ,ζ

�
BF̂V,h

��
vh+

1
Re

�
D̂ζ ,ξ

�
BĜV,h

�
+ D̂ζ ,η

�
BĜV,h

�
+ D̂2ζ

�
BĜV,h

��
vh+

+ÂD,ξ Q̂h + ÂD,η Q̂h + ÂD,ζ Q̂h

+SATξ ,0 +SATξ ,N +SATη ,0 +SATη ,N+

SATζ ,0 +SATζ ,N ,
(76)

where vh, at a node in the grid, has components�
0,u,v,w,a2�, and, for example BÊV,h

is a diagonal ma-

trix whose components are determined from ÊV,h.
It is worth mentioning that the formalism presented

here, with Kronecker products, is a theoretical tool used
for the purpose of analysis. In practice, these products
are never formed and the one-dimensional operators are
applied directly at nodes in the grid.

7.1.1. SATs for the Navier-Stokes Equations
In Section 6 we demonstrated how to construct SATs

by first using the energy method to determine well-
posed data for a given PDE. The SATs were then con-
structed to mimic the well-posed boundary conditions

from the continuous case. The discrete energy method
was then applied to the semi-discrete form to specify
penalty parameters such that the resultant semi-discrete
form is stable. The energy method is typically ap-
plied to constant-coefficient problems that can be sym-
metrized. In this way, the difficulty of the analysis is
greatly reduced. However, the compressible Euler and
NS equations are nonlinear PDEs. Nevertheless, for cer-
tain classes of PDEs, which the Euler and NS equations
belong to, and with some restrictions on the solution,
it can be shown that the constant-coefficient analysis is
sufficient [76].

Here we present some example SATs for the com-
pressible Euler and NS equations. For an excellent sum-
mary and discussion of a large number of SATs for the
NS equations see [84]. The SATs are divided into invis-
cid SATs and viscous SATs.

We consider the SATs in the ξ direction. The inviscid
SATs have generic form [27]

SAT0 =−Ĥ
−1
ξ Ê0,ξ (Â

+
ξ )

�
Q̂− Q̂target

�
,

SATN = Ĥ
−1
ξ ÊN,ξ (Â

−

ξ )
�

Q̂− Q̂target

�
,

(77)

where Ê0,ξ = Iζ ⊗ Iη ⊗E0,ξ ⊗ I5, ÊN,ξ = Iζ ⊗ Iη ⊗EN,ξ ⊗

I5, and Â
±

ξ = diag[A±

ξ ,(0,0,0), . . . ,A
±

ξ ,(N,N,N)] is a block di-
agonal matrix constructed from the flux Jacobian, in the
ξ direction, at node ( j,k,m), as

A
±

ξ(i, j,k)
=

Aξ ±|A|ξ
2

, Aξ =
∂ ÊI

∂ Q̂
, (78)

while Q̂target depends on the type of SAT. For example,
at block interfaces Q̂target takes the value of the solution
in the adjoining block. For the far-field Q̂target = Q̂∞,
where Q̂∞ is the far-field state. At a wall boundary, the
inviscid SAT has Q̂target that enforces flow tangency.

In analogy with the derivation for the LCD equation,
two types of SATs are typically implemented for the vis-
cous portion of the NS equations. The first weakly en-
forces continuity of the viscous fluxes and has the gen-
eral form [29]:

SAT0 =
1

Re Ĥ
−1
ξ Ê0,ξ

�
Êv − Êv,target

�
,

SATN = −1
Re Ĥ

−1
ξ ÊN,ξ

�
Êv − Êv,target

�
.

(79)

This form of viscous SAT is used for the far-field, where
Êv,target = 0, and at mesh block interfaces, where Êv,target
is the value of Êv from the neighbouring block.
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The second viscous SAT weakly enforces continuity
of the conserved variables. The mesh block interface
SAT for the viscous portion of the NS equations, be-
sides requiring (79), necessitates a SAT of the form (see
Nordström et al. [29] for the derivation):

SATv,int =
σv2

JRe
Ĥ
−1
ξ Ê0,ξ B̂ξ ,int

�
Q̂v − Q̂target

�
, (80)

where, for stability σv2 ≤
1
2 , and B̂ξ ,int =

diag
�
Bξ ,int,(0,0,0), . . . ,Bξ ,int,(N,N,N)

�
is a block-diagonal

matrix; the form of Bξ ,int,( j,k,m) and the full interface
SAT term are given in Appendix C .

As a final example, to enforce a no-slip adiabatic wall
boundary condition, in addition to the Euler SAT, the
following is added [6] (see Svärd and Nordström for the
derivation [28]):

SATv,wall 1 =
σW

Re
Ĥ
−1
ξ Ê0,ξ

�
Q̂v − Q̂target

�
, (81)

where

σW ≤−
µ
�
ξ 2

x +ξ 2
y +ξ 2

z
�

2Jρ
max

�
γ

Pr
,

5
3

�
, (82)

and

Q̂target =

�
ρ,0,0,0, ρT2

γ(γ −1)

�T

. (83)

In the above approach to the wall-boundary SAT, it is
assumed that the grid-lines are perpendicular to the sur-
face. Many times this is not the case; an alternative ap-
proach is discussed by Osusky and Zingg [6].

For outflow SATs, Osusky [84] provides a procedure
based on projecting a pyramid structure behind the aero-
dynamic object, to identify points in the outflow (for an
alternative treatment see Svärd and Nordström [28]). Fi-
nally, SAT terms have been constructed for the Spalart-
Allmaras one-equation turbulence model [6].

7.2. Numerical Dissipation

Nonlinear terms in a PDE can result in the generation
of high-frequency modes. Centred-difference FD meth-
ods have no mechanism to remove such modes. Thus, it
is necessary to augment SBP methods with some mech-
anism to damp these under-resolved modes. There are
various means of doing so, such as modifying the SBP
operators so that they are upwind operators [85] or us-
ing high-order filters (see for example [42]). Typically
though, SBP schemes are augmented with artificial dis-
sipation. The added dissipation model must be care-
fully constructed such that the stability properties of the

scheme are not lost. Consider a dissipation model con-
structed as AD =H

−1
ÃD, where ÃD is symmetric, added

to a stable semi-discrete form:

duh

dt
= H

−1
Puh +H

−1
ÃDuh, (84)

where H
−1

Puh represents the SBP discretization of a
PDE. Assuming a stable semi-discrete system of equa-
tions, it is sufficient to examine the stability of the
dissipation model itself. Applying the discrete energy
method to (84) and only considering the contribution of
the dissipation model results in

d�uh�
2
H

dt
= 2uT

h ÃDuh (85)

and if ÃD is negative semi-definite, then an energy es-
timate exists. This means that, besides being of the or-
der of the discretization error or smaller, it is sufficient
to consider dissipation models constructed as H

−1
ÃD,

where ÃD is negative semi-definite.
Mattsson, Svärd and Nordström [37] were the first

to construct dissipation models specifically for SBP
schemes. For operators of order 2p on the interior, their
dissipation model has the following form:

AD =−H̃
−1

D̃
T
p MD̃p. (86)

The tilde denotes that the matrices are undivided dif-
ference approximations, and H̃ = ∆xH. Furthermore,
Dp = h−p

D̃p and is an approximation of dp

dxp of min-
imum width. Taking M as the identity matrix results
in a dissipation model that adds components of order
p near the boundary, which is sufficient for diagonal-
norm operators. However, block-norm operators have
near-boundary point operators of order 2p−1 and with
M an identity matrix (86) destroys the additional accu-
racy accrued by using block-norm operators. To remedy
this issue, Mattson, Svärd and Nordström [37] proposed
constructing the diagonal M with entries as the restric-
tion of a positive, sufficiently smooth function varying
from order of O

�
hp̂� near the boundaries to unity on the

interior, where p̂ ≥ 1. In a subsequent paper, Nordström
[38] applied similar ideas to construct dissipation mod-
els tailored to linear hyperbolic problems with variable
coefficients. Also, while deriving optimized first deriva-
tive operators, Diener et al. [31] constructed dissipation
operators up to p = 5, based on the work of [37].

Hicken and Zingg [9] and Osusky and Zingg [6] use a
generalized version of the classical scalar [86] and ma-
trix [87] dissipation models to stabilize their SBP-SAT
discretization of the Euler and NS equations.
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7.3. Curvilinear Coordinates

SBP approximations to the first derivative are one-
dimensional operators on evenly spaced nodal distribu-
tions. In order to apply the SBP method to more general
problems, a semi-structured, or multi-block, approach
is used, in which the 2-dimensional or 3-dimensional
domain is subdivided into quadrilateral or hexahedral
subdomains, respectively. Within each subdomain, the
PDE is transformed to a curvilinear coordinate system.
In this way, an SBP scheme is applied to an orthogonal,
evenly spaced grid with respect to the curvilinear coor-
dinate system. Moreover, multidimensional problems
are discretized by application of the one-dimensional
SBP operators using Kronecker products. In curvilin-
ear coordinates, only diagonal-normed SBP operators
are still provably stable (see [45]) and the present dis-
cussion is thus limited to diagonal-norm SBP operators.

Transformation of a hyperbolic system of PDEs, for
example the Euler equations, results in terms called the
transformation invariants, which are analytically satis-
fied by virtue of the commutative property of the deriva-
tive [83]. These are also known as the geometric conser-
vation laws (GCL), i.e. the surface conservation law and
the volume conservation law. In order to remain con-
servative, the computed grid metrics must satisfy these
laws within roundoff error.

Vinokur and Yee [88] derived a coordinate invariant
discrete representation of the grid metrics, which satis-
fies the surface conservation law to within roundoff er-
ror regardless of the mapping. Deng et al. [89] showed
that the coordinate invariant form of the grid metrics
has smaller discretization error versus alternatives. The
scaled form of the coordinate invariant grid metrics pro-
posed by Vinokur and Yee [88] and the Jacobian are:

ξ̂x = J−1[ξx,ξy,ξz]T = 1
2 [(rη × r)ζ − (rζ × r)η ],

η̂x = J−1[ηx,ηy,ηz]T = 1
2 [(rζ × r)ξ − (rξ × r)ζ ],

ζ̂x = J−1[ζx,ζy,ζz]T = 1
2 [(rξ × r)η − (rη × r)ξ ],

J−1 = rξ · (rη × rζ ) = rη · (rζ × rξ ) = rζ · (rξ × rη),
(87)

where rm = xmi+ ymj+ zmk, with m ∈ [ξ ,η ,ζ ]. The
derivatives xm and terms such as (rη ×r)ζ are computed
using the same SBP operator for the first derivative as
for the discretization of the PDE. Instead of the above
formulation for the Jacobian, Deng et al. [89] derived
a means of computing the Jacobian that automatically

satisfies the volume conservation law and is given by

J−1 =
1
3

��
r · ξ̂x

�

ξ
+(r · η̂x)η +

�
r · ζ̂x

�

ζ

�
. (88)

8. Variational Interpretation of SBP-SAT Schemes

When Kreiss and Scherer introduced SBP finite-
difference operators, their objective was to mimic the
stability properties of Galerkin finite-element methods
(FEMs); however, by mimicking this one property, SBP
discretizations inherit other useful properties from the
Galerkin FEM, including superconvergent functionals
and error estimates. At the heart of these properties
is the variational interpretation of SBP finite-difference
schemes and the concept of dual consistency, both of
which we discuss in this section.

8.1. SBP Quadrature and the Variational Interpretation

To illustrate the variational interpretation of SBP dis-
cretizations, we consider the one-dimensional, steady,
scalar linear convection equation. Let Ω = [xL,xR] de-
note the domain. Then our model PDE is

d
dx

(AU)−F = 0, ∀x ∈ Ω,

U −UL = 0, x = 0
(89)

where A(x) > 0 is the velocity field, U is the solution,
and the function F(x) ∈ L

2(Ω) is the source. As in ear-
lier sections, the boundary value at the inlet x = xL is
denoted UL.

The variational, or weak, form of (89) is obtained by
forming the integral inner product of the PDE with ar-
bitrary test functions and insisting that all such products
vanish. Formally, we seek a solution U ∈ W

1 such that
�

Ω
V

d
dx

(AU) dx−
�

Ω
VF dx = 0, ∀V ∈ W

1.

Applying integration by parts to the above, the varia-
tional statement can be written succinctly as

R(V,U) = 0, ∀V ∈ W
1, (90)

where we have introduced the bilinear form

R(V,U) =−

�

Ω

�
A

dV
dx

�
U dx+ (VAU)|x=1

− (VAUL)|x=0 −

�

Ω
VF dx.
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We have replaced U(0) with its boundary value UL, so
the boundary condition is imposed weakly in the varia-
tional statement.

The space W
1 denotes the Sobelev space of functions

whose derivatives are square integrable on Ω = [0,1]. In
general, the test functions V and solution U will come
from distinct spaces; for example, the space for U will
satisfy the boundary conditions, while the space for V
will satisfy the corresponding homogeneous boundary
conditions. Here, since weakly imposed boundary con-
ditions are used, the spaces can be equivalent.

To connect the weak form of the PDE to its SBP-
SAT discretization, we make use of the fact that the SBP
norm, H, defines a quadrature.

Theorem 1. Let H be a full, restricted-full, or diago-
nal weight matrix from an SBP first-derivative operator
D1 = (H−1

Q), which is a 2p-order-accurate approxi-
mation to d/dx in the interior. Then the H matrix con-
stitutes a 2p-order-accurate quadrature for integrands
U ∈C2p[0,1]. In other words

1T
Hu =

� 1

0
U dx+O(h2p),

where u is the restriction of U to the grid. Moreover, if
V

dU
dx ∈C2p[0,1], then

vT
H(D1u) =

� 1

0
V

dU
dx

dx+O(h2p),

where v is the restriction of V to the grid.

See [48] for the proof. This result is somewhat sur-
prising, because the accuracy of H as a quadrature rule
is not explicitly part of the definition of the SBP opera-
tors. While reference [48] was, to the best of our knowl-
edge, the first documented evidence and proof of this
property, we have since come to learn that practitioners
at Uppsala were also aware that H defines a quadrature
rule [90].

The quadrature defined by H allows us to approxi-
mate the integral inner product using the H-inner prod-
uct: � 1

0
VU dx = vT

Hu+O(h2p).

Consequently, we can discretize the bilinear form using
the SBP operator and its norm as follows:

R(V,U) =−(AD1v)T
Hu+vT eNeT

NAu
−vT e0eT

0 A(e0UL)−vT
Hf+O(h2p),

(91)

where

A = diag(A(x0),A(x1), . . . ,A(xN)) ,

f =
�
F(x0), F(x1), · · · , F(xN)

�T
,

(92)

and the truncation error follows for sufficiently smooth
functions. The u and v vectors appearing in the dis-
cretized bilinear form — the right-hand side of (91)
— are restrictions of the (infinite-dimensional) solution
and test function to the grid. The final discrete prob-
lem is obtained by replacing u and v by uh and vh, re-
spectively, and requiring the discretized bilinear form to
vanish for all vh ∈ RN+1. That is, we seek uh ∈ RN+1

such that

Rh(vh,uh) = 0, ∀vh ∈ RN+1,

where

Rh(vh,uh)≡−(AD1vh)
T

Huh +vT
h eNeT

NAuh

−vT
h e0eT

0 A(ULe0)−vT
h Hf.

(93)

To make the final connection to SBP-SAT discretiza-
tions, we rearrange the discrete bilinear form making
use of the properties of the SBP operator: we essential
undo the integration by parts in discrete space.

Rh(vh,uh)

= vT
h H

�
D1 (Auh)− f +H

−1e0eT
0 A(uh −ULe0)

�
.

Since the discrete residual must vanish for all vh ∈

RN+1, it follows that the quantity in the brackets must
vanish; in other words

D1 (Auh) = f −H
−1e0eT

0 A(uh −ULe0) , (94)

which we recognize as the SBP-SAT discretization of
the PDE (89).

Thus, SBP-SAT discretizations can be regarded as
a discretized variational statement. For diagonal-norm
operators, this interpretation can be easily extended
to SBP-SAT discretizations of nonlinear systems of
PDEs on multi-block curvilinear domains in 2 and 3-
dimensions; see, for example, [47].

This intimate connection with the weak form of the
PDE allows several results from the theory of Galerkin
FEMs to be generalized to SBP-SAT discretizations,
which we highlight below.

8.2. Functional Superconvergence
One consequence of the variational interpretation of

SBP-SAT schemes is its impact on integral functionals
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that depend on the numerical solution. Let G ∈C2p and
consider the functional

J (U) =
� 1

0
GU dx+α (AU)|x=1 .

The integral in this functional can be approximated by
the SBP norm:

Jh(u) = gT
Hu+αeT

NAu, (95)

where

g =
�
G(x0), G(x1), · · · , G(xN)

�T

In light of Theorem 1, we have

J (U)− Jh(u) = O(h2p).

This result is not useful in practice, because we do not
have the exact solution U or its restriction u. What is
useful, however, is that the accuracy of the functional
remains O(h2p) when u is replaced with the discrete so-
lution, uh.

Theorem 2. Let U denote the solution of the PDE (89),
and assume that the source F and velocity A are such
that U ∈C2p[0,1]. Further, let uh denote the solution to
the SBP-SAT discretization (94) using a diagonal-norm
SBP operator. If G ∈ C2p, then the discrete functional
Jh(uh), defined above, is a O(h2p) accurate approxima-
tion of the functional J (U):

J (U)− Jh(uh) = O(h2p).

See [46] for the proof. This theorem is remarkable
because uh is typically O(hp+1) at best, so the functional
has an asymptotically superconvergent rate relative to
the solution error. SBP superconvergence is not limited
to steady problems: it was recently extended to time-
dependent functionals by Berg and Nordström [49].

Superconvergent functionals can be valuable in scien-
tific and engineering applications where a functional is
the ultimate quantity of interest, rather than the solution
itself. A quintessential example is aerodynamic drag.
For a given mesh resolution, a superconvergent func-
tional can be significantly more accurate than a func-
tional whose order of accuracy is the same as the solu-
tion’s. Consequently, overall efficiency is improved.

The proof of Theorem 2 relies on the dual consis-
tency6 of the discretization (94). A discretization is

6Sometimes called adjoint consistency in the finite-element litera-
ture.

dual consistent if the discrete adjoint equation is a con-
sistent discretization of the continuous adjoint equa-
tion [91, 92]. For the linear advection equation, dual
consistency is easily achieved. Superconvergence has
also been proven for elliptic problems and has been ob-
served for more complex PDEs such as the Euler equa-
tions [47]. Ensuring dual consistency for nonlinear sys-
tems of PDEs, like the Euler and Navier-Stokes equa-
tions, is possible, but more involved; see [93, 47]. We
emphasize that dual consistency is a property of the
PDE and functional discretizations, and superconver-
gent functionals do not require the solution of an ad-
joint.

Functional superconvergence was originally ob-
served and explained in the finite-element community;
examples from the DG literature include [92] and [94].
In hindsight, the extension of such superconvergence to
SBP-SAT schemes now seems obvious, given the varia-
tional interpretation of SBP-SAT discretizations and the
accuracy of SBP quadrature.

8.3. Functional Error Estimates
The variational interpretation of SBP-SAT schemes

also has implications for functional error estimates. One
of the most effective methods for estimating functional
errors on a given mesh is the dual-weighted residual
method (or adjoint-weighted residual method). For
SBP-SAT schemes, the dual-weighted residual method
is particularly attractive.

Theorem 3. Let Dp = D
(2p,p,p+1)
1 and Dq = D

(2q,q,q+1)
1

be diagonal-norm SBP operators with p < q. Let uh ∈

RN+1 be the solution to the SBP-SAT discretization (94)
based on Dp. Let vh ∈ RN+1 be the solution to the dis-
crete adjoint equation corresponding to the primal dis-
cretization (94) and the discrete functional (95): that is,
vh satisfies

−ADpvh =−g−H
−1
p eN eT

NA(vh +αeN) .

Finally, let Rh,q denote the discrete residual (93) evalu-
ated using Dq. Then the functional error estimate

δJh,p ≡ gT (Hp −Hq)uh −Rh,q(uh,vh) (96)

is a h2p+2-order accurate approximation to the true
functional error, δJh,p ≡ Jh,p(uh)−J (U).

As with functional superconvergence, dual consis-
tency is critical to the effectiveness of the error estimate
δJh,p. If the SBP-SAT discretization is not carefully
constructed to be dual consistent, the ideal convergence
rate is lost.
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Unlike functional superconvergence, the error esti-
mate (96) requires the adjoint vh. However, this adjoint
variable is computed on the same mesh as the primal so-
lution uh. In contrast, most implementations of the dual-
weighted residual method require an approximation to
the adjoint on a refined space [95, 96, 97, 98, 99]. In the
case of (96), this approximation is obtained through the
implicit interpolation defined by the higher-order oper-
ator Dq used in Rh,q.

The proof of Theorem 3 can be found in [100], where
extensions of the result to more general PDEs are dis-
cussed and illustrated. In particular, we note that the er-
ror estimate drops to h2p+1 for PDEs with second-order
derivative operators.

9. Generalization of SBP Operators

Recently, Del Rey Fernández, Boom and Zingg [101]
generalized the classical SBP-SAT theory to encompass
a larger class of SBP operators, where the main exten-
sions are i) non-repeating interior point operators, ii)
nonuniform nodal distribution in the computational do-
main, and iii) operators that do not include one or both
boundary nodes. In this section, we give a brief review
of the theory and discuss some of the implications of
this generalization. In their work, the authors consider
SBP operators approximating the first derivative on the
interval x ∈ [α,β ], where the nodal distribution x does
not need to be uniform and does not need to include
one or both boundary nodes. They present the follow-
ing generalized definition of an SBP operator:

Definition 5. Summation-by-parts operator: An op-
erator D1 is an approximation to the first derivative of
degree q with the SBP property if

i) D1x j = H
−1

Qx j = jx j−1, j ∈ [0,q],

ii) H is a PD symmetric matrix, and

iii) Q+Q
T = Ẽ, where

�
xi�T

Ẽx j = β i+ j −α i+ j, i, j ∈
[0,r], r ≥ q.

This definition encompasses the case where both bound-
ary nodes are included, Ẽ = E for r = ∞, and uniform
nodal distributions.

To see the meaning of this new definition, consider
that IBP can be cast as

� β

α
V

∂U
∂x

dx+
� β

α
U

∂V
∂x

dx = VU|
β
α . (97)

The discrete version of the left-hand side of (97), used
in the discrete energy method to prove stability, is

vT
HDu+uT

HDv. (98)

If (98) is an approximation to VU|
β
α then it is an ap-

proximation to (97). Using Definition 5, HD = Q and
Q = Ẽ−Q

T , (98) becomes

vT
HDu+uT

HDv = vT �
Ẽ−Q

T �u+uT
Qv. (99)

Since uT
Qv is a scalar, uT

Qv = vT
Q

T u, which gives

vT
HDu+uT

HDv = vT
Ẽu, (100)

but by Definition 5, vT
Ẽu ≈ VU|

β
α , which is the sought-

after relationship.
Nodal SBP operators, through their norm matrix H,

are inextricably linked to quadrature rules and their de-
gree depends on the degree of the associated quadrature
rule. Thus, a necessary condition for an SBP operator
of degree q is that its norm matrix be associated with a
quadrature rule of at least degree q− 1, summarized in
the following theorem [101]:

Theorem 4. The norm matrix, H, of an SBP operator
of degree q that satisfies Definition 5 must be associated
with a quadrature rule of at least degree q−1.

For diagonal-norm SBP operators, necessary and suf-
ficient conditions are given in the following theorem
[101]:

Theorem 5. A quadrature rule of degree τ with pos-
itive weights for a nodal distribution x, with N + 1
nodes, is necessary and sufficient for the existence of
a diagonal-norm SBP approximation to the first deriva-
tive, D1 = H

−1
Q, that is exact for polynomials of degree

q ≤ min
�
�

τ
2�,N

�
, where N + 1 ≥ 2 is the size of D1,

where � � is the ceiling operator.

For dense-norm SBP operators, meaning non-diagonal
norm SBP operators, the following two theorems link
the existence of dense-norm SBP operators and their de-
gree to the existence and degree of a quadrature rule for
a given nodal distribution [101]:

Theorem 6. Given a nodal distribution x, with N+1
nodes, there exists an SBP operator D1 = H

−1
Q of de-

gree q ≤ N, with a dense-norm H and an associated
quadrature rule w = [w1, . . . ,wn] of degree τ ≥ q − 1
such that

� xn
x1

Fdx ≈ ∑n
k=1 wk fk, for N +1 ≥ 2.

Theorem 7. A quadrature rule w = [w1, . . . ,wn] of de-
gree τ on a nodal distribution x, such that

� xn
x1

Fdx ≈

∑n
k=1 wk fk, is necessary and sufficient for the existence

of a dense PD norm H that satisfies 1T
Hf = wf and

an associated SBP operator, D1 = H
−1

Q of degree q =
min(τ +1,N).
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As a simple example, consider the Newton-Cotes
quadrature rule on four equally spaced nodes which has
positive weights and is of degree 3. Theorem 5 guar-
antees the existence of an SBP operator with maximal
degree 2 and a PD norm:

H = ∆x





3
8 0 0 0

0 9
8 0 0

0 0 9
8 0

0 0 0 3
8




, (101)

where h is the spacing between nodes. Setting up the
accuracy equations (37) and solving gives an SBP oper-
ator of degree 2:

D1 =
1

∆x





−
4
3

3
2 0 −

1
6

−
1
2 0 1

2 0

0 −
1
2 0 1

2
1
6 0 −

3
2

4
3




, (102)

where

Q =





−
1
2

9
16 0 −

1
16

−
9

16 0 9
16 0

0 −
9
16 0 9

16
1
16 0 −

9
16

1
2




. (103)

Using the classical FD-SBP approach on four nodes it
is only possible to obtain a degree one operator, which
is

D1 =
1

∆x





−1 1 0 0
−

1
2 0 1

2 0
0 −

1
2 0 1

2
0 0 −1 1



 . (104)

The quadrature rule associated with (104) is the com-
posite trapezoidal rule, which is of degree one (order
two) and leads to

H = ∆x





1
2

1
1

1
2



 . (105)

Having constructed a generalized SBP operator, the
question becomes how to construct SATs for the impo-
sition of boundary and interface conditions. If the nodal
distribution contains both boundary nodes, then one can
take Ẽ = E, and the resultant SATs are identical in form
to those used for SBP operators. To construct SATs for

SBP operators that do not include one or both boundary
nodes, it is sufficient to consider the case where neither
boundary node is present. Suppose we have a nodal dis-
tribution x, where α < x0 <, · · ·< xN < β ; for N+1 dis-
tinct nodes, it is possible to construct a one-dimensional
interpolant of degree N. Evaluating the interpolant of U
at the boundaries yields

tT
α u ≈ U(α), tT

β u ≈ U(β ), (106)

where tα and tβ have properties

tT
α x j = α j, tT

β x j = β j, j ∈ [0,N]. (107)

These operators can be combined to form the matrix op-
erator

T = e0tT
α + eNtT

β . (108)

Taking Ẽ = T
T

ET, gives the required property for Ẽ.
With this definition of Ẽ and the interpolant operators
tα/β it is possible to construct SATs that lead to consis-
tent, conservative, stable discretizations [101].

The generalization of the SBP concept proposed by
Del Rey Fernańdez, Boom and Zingg [101] allows for
a large class of operators to be considered SBP opera-
tors, for example nodal-based pseudo-spectral operators
on Gauss, Gauss-Lobatto and Gauss-Radau quadrature
points used in some discontinuous Galerkin schemes,
and enables the rigorous development of SATs for such
operators. Moreover, the generalization provides a
straightforward means of deriving novel SBP opera-
tors on nearly arbitrary nodal distributions, by first con-
structing a quadrature rule.

10. Additional Topics

10.1. Nonlinear Conservation Laws

Like any finite-difference method, SBP-SAT schemes
can be used to discretize nonlinear conservation laws;
however, additional considerations are necessary to
maintain their stability properties. We have already dis-
cussed one aspect of these considerations, namely nu-
merical dissipation. In this section we expand on the
use of SBP operators for nonlinear PDEs, addressing
the stable discretization of nonlinear convective terms.

The issues presented by nonlinear conservation laws
are not unique to SBP operators, and there is a vast lit-
erature on this subject. Our aim here is to highlight how
SBP operators have been adapted to handle these issues.

To begin, we use the inviscid Burgers equation to il-
lustrate the pitfalls of using SBP operators directly, i.e.
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without changing the form of the convective term. Con-
sider the time-dependent inviscid Burgers equation

∂U
∂ t

+
∂
∂x

�
1
2
U

2
�
= 0, ∀x ∈ Ω,

U(x,0)> 0, ∀x ∈ Ω,

U(xL, t)−UL(t) = 0, ∀ t ∈ [0,T ],

(109)

where Ω = [xL,xR] and T > 0. To simplify the boundary
conditions, we have assumed that the initial condition is
strictly positive; this is not necessary in general.

Using integration by parts, it is straightforward to
show that a solution to (109) satisfies

d
dt

�

Ω

1
2
U

2 dx =−
1
3
U

3(xR, t)+
1
3
U

3
L .

As in the linear case, we observe that energy, U2/2,
grows only due to transport through the boundaries. In
particular, if UL = 0 and the initial condition is strictly
positive, then the energy decreases with time.

Now consider a naive SBP-SAT semi-discretization
of the Burgers equation given by

duh

dt
+

1
2

D1 (Auh) =−
1
2

H
−1e0 eT

0 A(uh −ULe0) ,

where

A = diag(uh) = diag(u0,u1, . . . ,uN) .

If we apply the standard energy method to this semi-
discretization, we find

d
dt

�
1
2
�uh�

2
H

�
+

1
4

uT
h
�
QA+AQ

T �uh

=−
1
2

u2
0(u0 −UL).

In the constant linear-convection case, where A =
diag(a), we can replace QA+AQ

T with A(EN −E0).
For the nonlinear advection velocity above — and spa-
tially varying coefficients in general — we cannot pro-
ceed, because Q and A do not commute.

The solution to this problem is to discretize the con-
vective terms using the skew-symmetric form, or canon-
ical splitting, proposed by Olsson and Oliger [39]. The
skew-symmetric operator is a particular linear combina-
tion of the divergence form of the convective terms,

∂
∂x

�
1
2
U

2
�
≈

1
2

D1 (Auh) ,

and the advective, or primitive, form of the convective
terms,

U
∂U
∂x

≈ AD1uh.

In the continuous case, with a smooth solution, the di-
vergence and advective forms are identical; however,
they are not equivalent in the discrete case: 1

2 D1 (Auh)�
AD1uh, in general.

A general convex combination of the divergence and
advective convective forms is given by

α 1
2

D1 (Auh)+(1−α)AD1uh,

and the skew-symmetric convective operator is obtained
by setting α = 2/3. Thus, the skew-symmetric dis-
cretization of the inviscid Burger’s equation is given by

duh

dt
+

1
3

AD1uh +
1
3

D1 (Auh)

=−
2
3

H
−1e0eT

0 A(uh −ULe0) .

Notice that we have also updated the SAT penalty pa-
rameter to be consistent with the skew-symmetric form.
Applying the energy method here we find

d
dt

�
1
2
�uh�

2
H

�
+

1
6

uT
h
�
Q

T +Q
�

Auh

+
1
6

uT
h A

�
Q

T +Q
�

uh =−
2
3

u2
0(u0 −UL).

To obtain this intermediate equation, we tacitly assumed
that H commutes with A. This is true for diagonal-norm
SBP operators, but not for more general H. Using the
additional property that A commutes with E0 and EN ,
the above simplifies to

d
dt

�
1
2
�uh�

2
H

�
+

1
3

uT
h A(EN −E0)uh =−

2
3

u2
0(u0 −UL),

and so

d
dt

�
1
2
�uh�

2
H

�
=−

1
3

u3
N +

1
3

u0U
2
L −

1
3

u0(u0 −UL)
2.

The first two terms on the right-hand-side mimic the
continuous case, while the third term, − 1

3 u0(u0 −UL)2,
is a small damping term on the order of the solution
error. Thus, using the skew-symmetric splitting, the
method is stable.

The concept of a skew-symmetric operator can be
extended to nonlinear systems if the system admits an

22



entropy variable that permits symmetrization of the Ja-
cobians; see, for example, [102] and [39]. Yee et al.
[41] and Sandham et al. [40] were among the first to
use this entropy-splitting concept in the context of high-
order SBP operators. See also the paper by Kitson et al.
[103]. However, suitable entropy-stable SATs for the
skew-symmetric approach remains an active area of re-
search.

The skew-symmetric form solves one problem, but it
has to the potential to introduce another: lack of dis-
crete conservation. Discrete conservation is required by
the Lax-Wendroff theorem to ensure that discontinuities
are accurately captured: if an SBP-SAT discretization is
not discretely conservative, then shocks will not be pre-
dicted correctly. Fortunately, Fisher et al. [43] recently
proved the remarkable result that the skew-symmetric
form discretized using SBP operators yields a discretely
conservative scheme.

10.2. Other Extensions

The difficulty of generating multi-block grids around
arbitrary geometries has motivated research into so-
called meshless methods. A natural question in this
context is whether or not SBP operators can be defined
on point clouds rather than using tensor-product defi-
nitions. Kitson et al. [103] initiated such an inquiry
in an important and often overlooked article. For 1-
dimensional periodic grids, they showed that it is indeed
possible to construct diagonal-norm SBP operators on
non-smooth nodal distributions, but there are some sig-
nificant caveats:

1. The coefficients in the SBP operator become glob-
ally coupled;

2. The bandwidth is increased (e.g. a second-order
operator has a bandwidth of 5 rather than 3, in gen-
eral), and;

3. For a given bandwidth and target accuracy, there
exist grids for which no positive-definite H exists.

Recently, Chiu et al. [104] presented two methods to
construct SBP operators on point clouds. They consid-
ered second-order operators, and their results confirm
that larger stencils are necessary (9 points on average
rather than 5 in 2-dimensions). It remains to be seen
if high-order diagonal-norm SBP operators on arbitrary
point distributions 1) exist for practical, high-Reynolds
number grids; 2) are worth the additional cost of solving
the coupled problem to find the coefficients, and; 3) are
efficient, despite the larger stencil size.

Reichert et al. [105] used an expanded definition of
SBP operators proposed and developed in [106, 107,

108], with Q+Q
T = diag[QL,0, . . . ,0,QR], where QL/R

are symmetric matrices. With this definition and spe-
cially constructed interpolants, they derived SBP opera-
tors that allow for overlapping domains.

Nordström and Lundquist [109] extended the use of
SBP operators to the discretization of time. They proved
that with initial and block-interface conditions applied
using SATs, the resultant time-marching method is un-
conditionally stable. Other notable contributions in-
clude stable and accurate interpolation operators [110]
and the method for locally adapting the order of accu-
racy in [111].

One major difficulty in computational fluid dynam-
ics is the solution of problems with strong discontinu-
ities. A viable strategy that has developed for deal-
ing with such flows is high-order weighted essentially
non-oscillatory (WENO) schemes. These schemes use
a weighted combination of point operators to construct
a discrete approximation to the derivative. Thus, away
from discontinuities, WENO schemes benefit from the
resolving power of higher-order point operators while
being essentially non-oscillatory near discontinuities. In
a first of several papers, Yamaleev and Carpenter [112]
extended the SBP concept to WENO schemes for scalar
and linear hyperbolic systems on periodic domains.
They applied their energy-stable WENO (ESWENO)
schemes to several one-dimensional hyperbolic prob-
lems, including the quasi-one-dimensional nozzle prob-
lem, finding that the proposed ESWENO to be more
accurate than available alternatives (see also [113]).
This method was then later extended to non-periodic
problems [114, 115]. Furthermore, Fisher and Carpen-
ter [44] combined their previous work on ESWENO
schemes and split-form conservative SBP operators for
split-form conservation laws [43] to construct entropy
stable WENO schemes.

11. Conclusions

SBP operators have a number of advantageous prop-
erties that make them an important option for higher-
order spatial discretization of partial differential equa-
tions. This paper provides a thorough review of SBP-
SAT methods with an emphasis on the methodology
for deriving operators and their application to practical
problems in computational fluid dynamics. In addition,
generalizations of the SBP-SAT approach are reviewed,
based in a variational interpretation and the close con-
nection to quadrature rules. These generalizations pro-
vide a unification with several other methods.

SBP-SAT schemes have reached a level of maturity
where they are regularly applied to practical problems
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in computational fluid dynamics, both steady and un-
steady. The combination of SBP-SAT schemes with
a parallel Newton-Krylov-Schur algorithm has proven
to be a particularly powerful approach. Nevertheless,
there remain numerous avenues for future research re-
lated to SBP-SAT schemes. These include the use of the
skew-symmetric form and entropy splitting, solution-
adaptive meshing, including p and h refinement, and
SBP schemes in time, just to name a few. In particu-
lar, the generalizations reviewed provide numerous op-
portunities for important extensions of the SBP concept,
for example to unstructured meshes.
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Appendix A. Diagonal-Norm SBP Operators for the
First Derivative

In this appendix we provide Matlab scripts for
computing the undivided difference diagonal norm SBP
operators for the first derivative, for p ∈ [2,4]. The
inputs are the number of nodes, n, and the various free
parameters. Note that optimized values are used by
default and must be commented out to use other values
for the free parameters.

Script for D(4,2,:)
1 operator

function [H,D1]=D1_4(n)

h11 = 17.d0/48.d0; h22 = 59.d0/48.d0; h33 = 43.d0/48.d0; h44 = 49.d0/48.d0;

q11 = -1.d0/2.d0; q12 = 59.d0/96.d0; q13 = -1.d0/12.d0; q14 = -1.d0/32.d0;

q23 = 59.d0/96.d0; q24 = 0.d0;q34 = 59.d0/96.d0;

%setting up H and D1

H = eye(n,n);

H(1,1) = h11;H(n,n) = h11;H(2,2) = h22;H(n-1,n-1) = h22;

H(3,3) = h33;H(n-2,n-2) = h33;H(4,4) = h44;H(n-3,n-3) = h44;

Q = zeros(n,n);

Q(1,1) = q11;Q(1,2) = q12;Q(1,3) = q13; Q(1,4) = q14;

Q(2,1) = -q12; Q(2,3) = q23; Q(2,4) = q24;Q(3,1) = -q13;Q(3,2) = -q23;

Q(3,4) = q34; Q(3,5) = -1.d0/12.d0;Q(4,1) = -q14;Q(4,2) = -q24;

Q(4,3) = -q34; Q(4,5) = 2.d0/3.d0; Q(4,6) = -1.d0/12.d0;

%internal nodes

for i =5:n-4

Q(i,i-2:i+2) = ...

[1.d0/12.d0,-2.d0/3.d0,0.d0,2.d0/3.d0,-1.d0/12.d0];

end

%bottom portion of the matrix

for i = 1:6

for j = 1:6

Q(n-(i-1),n-(j-1)) = -Q(i,j);

end

end

D1 = inv(H)*Q;

Script for D(6,3,:)
1 operator

function [H,D1]=D1_6(n,q56)

% optimized value comment out to use other values

q56 =5591070156686698065364559.d0/7931626489314500743872000.d0;

h11 = 0.13649d5 / 0.43200d5; h22 = 0.12013d5 / 0.8640d4;

h33 = 0.2711d4 / 0.4320d4; h44 = 0.5359d4 / 0.4320d4;

h55 = 0.7877d4 / 0.8640d4; h66 = 0.43801d5 / 0.43200d5;

q11 = -1.d0/2.d0;q12 = -0.953d3 / 0.16200d5 + q56;

q13 = 0.715489d6 / 0.259200d6 - (4.d0 * q56);

q14 = -0.62639d5 / 0.14400d5 + (6.d0 * q56);

q15 = 0.147127d6 / 0.51840d5 - (4.d0 * q56);

q16 = -0.89387d5 / 0.129600d6 + q56;

q23 = -0.57139d5 / 0.8640d4 + (10.d0 * q56);

q24 = 0.745733d6 / 0.51840d5 - (20.d0 * q56);

q25 = -0.18343d5 / 0.1728d4 + (15.d0 * q56);

q26 = 0.240569d6 / 0.86400d5 - (4.d0 * q56);

q34 = -0.176839d6 / 0.12960d5 + (20.d0 * q56);

q35 = 0.242111d6 / 0.17280d5 - (20.d0 * q56);

q36 = -0.182261d6 / 0.43200d5 + (6.d0 * q56);

q45 = -0.165041d6 / 0.25920d5 + (10.d0 * q56);

q46 = 0.710473d6 / 0.259200d6 - (4.d0 * q56);

q47 = 1.d0/6.d1;q57 = -3.D0/2.d1; q58 = 1.d0/6.d1;

%setting up H and D1

H = eye(n,n);

H(1,1) = h11;H(n,n) = h11;H(2,2) = h22;H(n-1,n-1) = h22;

H(3,3) = h33;H(n-2,n-2) = h33;H(4,4) = h44;H(n-3,n-3) = h44;

H(5,5) = h55;H(n-4,n-4) = h55;H(6,6) = h66;H(n-5,n-5) = h66;

Q = zeros(n,n);

Q(1,1) = q11;Q(1,2) = q12;Q(1,3) = q13; Q(1,4) = q14;

Q(1,5) = q15; Q(1,6) = q16;Q(2,1) = -q12; Q(2,3) = q23;

Q(2,4) = q24; Q(2,5) = q25;Q(2,6) = q26;Q(3,1) = -q13;Q(3,2) = -q23;

Q(3,4) = q34; Q(3,5) = q35;Q(3,6) = q36;

Q(4,1) = -q14;Q(4,2) = -q24;Q(4,3) = -q34; Q(4,5) = q45;

Q(4,6) = q46; Q(4,7) = q47;Q(5,1) = -q15; Q(5,2) = -q25;

Q(5,3) = -q35; Q(5,4) = -q45;Q(5,6) = q56; Q(5,7) = q57;

Q(5,8) = q58;Q(6,1) = -q16; Q(6,2) = -q26;Q(6,3) = -q36; Q(6,4) = -q46;

Q(6,5) = -q56; Q(6,7) = 3.d0/4.d0;Q(6,8) = -3.d0/2.d1; Q(6,9) = 1.d0/6.d1;

%internal nodes

for i =7:n-6

Q(i,i-3:i+3) = ...

[-1.d0/6.d1, 3.d0/2.d1, -3.d0/4.d0, 0.d0, 3.d0/4.d0, -3.d0/2.d1, 1.d0/6.d1];

end

%bottom portion of the matrix

for i = 1:9

for j = 1:9

Q(n-(i-1),n-(j-1)) = -Q(i,j);

end

end

D1 = inv(H)*Q;

Script for D(8,4,:)
1 operator

function [H,D1]=D1_8(n,q16,q17,q47)

% optimized value comment out to use other values

q16 = 0.08314829949122060462305047907908720666335d0;

q17 = -0.9521334029619388274601963790830716099197d-2;

q47 = -0.3510216710115618609017136924794334791187d-1;

h11 = 0.1498139d7 / 0.5080320d7; h22 = 0.1107307d7 / 0.725760d6;

h33 = 0.20761d5 / 0.80640d5; h44 = 0.1304999d7 / 0.725760d6;

h55 = 0.299527d6 / 0.725760d6; h66 = 0.103097d6 / 0.80640d5;

h77 = 0.670091d6 / 0.725760d6; h88 = 0.5127739d7 / 0.5080320d7;

q11 = -1.d0/2.d0;

q12 = 0.59065123d8 / 0.91445760d8 + q16 / 0.3d1 + 0.2d1 / 0.3d1 * q17;

q13 = 0.771343d6 / 0.10160640d8 - 0.8d1 / 0.5d1 * q16 - 0.3d1 * q17;

q14 = -0.8276887d7 / 0.20321280d8 + (3.d0 * q16) + (5.d0 * q17);

q15 = 0.17658817d8 / 0.91445760d8 - 0.8d1 / 0.3d1 * q16 - 0.10d2 / 0.3d1 * q17;

q18 = -0.1394311d7 / 0.182891520d9 - q16 / 0.15d2 - q17 / 0.3d1;

q23 = q47 / 0.45d2 + 0.14d2 / 0.3d1 * q16 + 0.77d2 / 0.9d1 * q17 - 0.14866699d8 /

0.130636800d9;

q24 = 0.18734719d8 / 0.13063680d8 - 0.35d2 / 0.3d1 * q16 - 0.175d3 / 0.9d1 * q17 -

q47 / 0.9d1;

q25 = -0.2642179d7 / 0.3265920d7 + 0.35d2 / 0.3d1 * q16 + 0.140d3 / 0.9d1 * q17 +

0.2d1 / 0.9d1 * q47;

q26 = 0.1736509d7 / 0.13063680d8 - 0.14d2 / 0.3d1 * q16 - 0.14d2 / 0.9d1 * q17 -

0.2d1 / 0.9d1 * q47;

q27 = -0.13219d5 / 0.1244160d7 - 0.35d2 / 0.9d1 * q17 + q47 / 0.9d1;

q28 = 0.1407281d7 / 0.114307200d9 + q16 / 0.3d1 + 0.13d2 / 0.9d1 * q17 - q47 /

0.45d2;

q34 = -0.3056891d7 / 0.4354560d7 + (14.d0 * q16) + 0.70d2 / 0.3d1 * q17 + q47 /

0.3d1;

q35 = 0.765701d6 / 0.653184d6 - 0.56d2 / 0.3d1 * q16 - 0.245d3 / 0.9d1 * q17 -

0.8d1 / 0.9d1 * q47;

q36 = -0.238939d6 / 0.414720d6 + 0.42d2 / 0.5d1 * q16 + 0.7d1 * q17 + q47;

q37 = 0.754291d6 / 0.21772800d8 + 0.14d2 / 0.3d1 * q17 - 0.8d1 / 0.15d2 * q47;

q38 = 0.762499d6 / 0.22861440d8 - 0.2d1 / 0.3d1 * q16 - 0.20d2 / 0.9d1 * q17 + q47

/ 0.9d1;

q45 = -0.10064459d8 / 0.26127360d8 + 0.35d2 / 0.3d1 * q16 + 0.175d3 / 0.9d1 * q17

+ 0.10d2 / 0.9d1 * q47;

q46 = 0.62249d5 / 0.77760d5 - (7.d0 * q16) - 0.35d2 / 0.3d1 * q17 - 0.5d1 / 0.3d1

* q47;

q48 = -0.8276887d7 / 0.91445760d8 + 0.2d1 / 0.3d1 * q16 + 0.10d2 / 0.9d1 * q17 -

0.2d1 / 0.9d1 * q47;

q56 = 0.792095d6 / 0.2612736d7 + 0.7d1 / 0.3e1 * q16 + 0.70d2 / 0.9d1 * q17 +

0.10d2 / 0.9d1 * q47;

q57 = -0.42403d5 / 0.207360d6 - 0.35d2 / 0.9d1 * q17 - 0.8d1 / 0.9d1 * q47;

q58 = 0.13906657d8 / 0.182891520d9 - q16 / 0.3d1 + 0.5d1 / 0.9d1 * q17 + 0.2d1 /

0.9d1 * q47;

q59 = -1.d0/280.d0;

q67 = 0.1360207d7 / 0.1741824d7 + 0.7d1 / 0.3d1 * q17 + q47 / 0.3d1;

q68 = -0.289189d6 / 0.1866240d7 + q16 / 0.15d2 - 0.7d1 / 0.9d1 * q17 - q47 / 0.9d1;

q69 = 4.d0/105.d0;q610 = -1.d0/280.d0;

q78 = 0.16676111d8 / 0.21772800d8 + 0.2d1 / 0.9d1 * q17 + q47 / 0.45d2;

q79 = -1.d0/5.d0;q710 = 4.d0/105.d0;q711 = -1.d0/280.d0; q89 = 4.d0/5.d0;

q810 = -1.d0/5.d0; q811 = 4.d0/105.d0; q812 = -1.d0/280.d0;
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%setting up H and D1

H = eye(n,n);

H(1,1) = h11;H(n,n) = h11;H(2,2) = h22;H(n-1,n-1) = h22;H(3,3) = h33;H(n-2,n-2) =

h33;

H(4,4) = h44;H(n-3,n-3) = h44;H(5,5) = h55;H(n-4,n-4) = h55;H(6,6) =

h66;H(n-5,n-5) = h66;

H(7,7) = h77;H(n-6,n-6) = h77;H(8,8) = h88;H(n-7,n-7) = h88;

Q = zeros(n,n);

Q(1,1) = q11;Q(1,2) = q12;Q(1,3) = q13; Q(1,4) = q14;Q(1,5) = q15; Q(1,6) = q16;

Q(1,7) = q17; Q(1,8) = q18;Q(2,1) = -q12; Q(2,3) = q23; Q(2,4) = q24; Q(2,5) = q25;

Q(2,6) = q26; Q(2,7) = q27;Q(2,8) = q28;Q(3,1) = -q13;Q(3,2) = -q23;

Q(3,4) = q34; Q(3,5) = q35;Q(3,6) = q36; Q(3,7) = q37;Q(3,8) = q38;

Q(4,1) = -q14;Q(4,2) = -q24;Q(4,3) = -q34; Q(4,5) = q45;Q(4,6) = q46; Q(4,7) = q47;

Q(4,8) = q48;Q(5,1) = -q15; Q(5,2) = -q25;Q(5,3) = -q35; Q(5,4) = -q45;

Q(5,6) = q56; Q(5,7) = q57;Q(5,8) = q58; Q(5,9) = q59;Q(6,1) = -q16; Q(6,2) = -q26;

Q(6,3) = -q36; Q(6,4) = -q46;Q(6,5) = -q56; Q(6,7) = q67;Q(6,8) = q68; Q(6,9) =

q69;

Q(6,10) = q610;Q(7,1) = -q17; Q(7,2) = -q27;Q(7,3) = -q37; Q(7,4) = -q47;

Q(7,5) = -q57; Q(7,6) = -q67;Q(7,8) = q78; Q(7,9) = q79;Q(7,10) = q710; Q(7,11) =

q711;

Q(8,1) = -q18; Q(8,2) = -q28;Q(8,3) = -q38; Q(8,4) = -q48;Q(8,5) = -q58; Q(8,6) =

-q68;

Q(8,7) = -q78; Q(8,9) = q89;Q(8,10) = q810; Q(8,11) = q811;Q(8,12) = q812;

%internal nodes

for i =9:n-8

Q(i,i-4:i+4) = ...

[1.d0/280.d0, -4.d0/105.d0, 1.d0/5.d0, -4.d0/5.d0, 0.d0, 4.d0/5.d0, -1.d0/5.d0,

4.d0/105.d0, -1.d0/280.d0];

end

%bottom portion of the matrix

for i = 1:12

for j = 1:12

Q(n-(i-1),n-(j-1)) = -Q(i,j);

end

end

D1 = inv(H)*Q;

Appendix B. SBP Operators for the Second Deriva-
tive with Variable Coefficients

In this Appendix we provide the general form for the
SBP operator for the second derivative with variable
coefficients for p ∈ [3,4], while a Matlab script is
provided for the operator with p = 2. The script has
as input the number of nodes, n, and a vector with the
variable coefficients, b. The script returns an undivided
difference approximation. The free parameters are by
defualt set to optimized values and must be commented
out to use other values.

The operator D̃
(6,3,:)
2 (B) has form

D̃
(6,3,:)
2 (B) =−H

−1

�
D
(6,3,:)
1

�T
HBD

(6,3,:)
1

−
H
−1

80h

�
D̃
(2,1,:)
4,3

�T
C
(3)
4 BD̃

(2,1,:)
4,3 −

H
−1

100h

�
D̃
(2,1,:)
5,3

�T
C
(3)
5 BD̃

(2,1,:)
5,3

−
H
−1

720h

�
D̃
(2,1,:)
6,3

�T
C
(3)
6 BD̃

(2,1,:)
6,3 +H

−1
EBD

(:,≥4,:)
b

(B.1)

The matrix D̃
(2,1,:)
4,3 is defined by a 6×9 block, the entries

of which are denoted by d4,i, j, and an interior repeating
point operator given as

• d4, j,1 =−d4, j,6 −5d4, j,7 −15d4, j,8 −35d4, j,9 +1,

• d4, j,2 =−4+5d4, j,6 +24d4, j,7 +70d4, j,8 +160d4, j,9,

• d4, j,3 = 6−10d4, j,6 −45d4, j,7 −126d4, j,8 −280d4, j,9,

• d4, j,4 =−4+10d4, j,6 +40d4, j,7 +105d4, j,8 +224d4, j,9,

• D4, j,5 = 1−5d4, j,6 −15d4, j,7 −35d4, j,8 −70d4, j,9, for j ∈ [1,6].

• Internal point operator:
� 1

3 ,−1,1,− 2
3 ,1,−1, 1

3

�

The matrix D̃
(2,1,:)
5,3 is defined by a 6×9 block, the entries

of which are denoted by d5,i, j, and an interior repeating
point operator given as

• d5, j,1 =−1+d5, j,7 +6d5, j,8 +21d5, j,9,

• d5, j,2 = 5−6d5, j,7 −35d5, j,8 −120d5, j,9,

• d5, j,3 =−10+15d5, j,7 +84d5, j,8 +280d5, j,9,

• d5, j,4 = 10−20d5, j,7 −105d5, j,8 −336d5, j,9,

• d5, j,5 =−5+15d5, j,7 +70d5, j,8 +210d5, j,9,

• d5, j,6 = 1−6d5, j,7 −21D5, j,8 −56d5, j,9, for j ∈ [1,6].

• Internal point operator:
�
−

1
2 ,2,−

5
2 ,0,

5
2 ,−2, 1

2

�
.

The matrix D̃
(2,1,:)
6,3 is defined by a 6×9 block, the entries

of which are denoted by d6,i, j, and an interior repeating
point operator given as

• d6, j,1 = 1−d6, j,8 −7d6, j,9,

• d6, j,2 =−6+7d6, j,8 +48d6, j,9,

• d6, j,3 = 15−21d6, j,8 −140d6, j,9,

• d6, j,4 =−20+35d6, j,8 +224d6, j,9,

• d6, j,5 = 15−35d6, j,8 −210d6, j,9,

• d6, j,6 =−6+21d6, j,8 +112d6, j,9,

• d6, j,7 = 1−7d6, j,8 −28d6, j,9, for j ∈ [1,6].

• Internal point operator: [1,−6,15,−20,15,−6,1].

The operator D̃
(8,4,:)
2 (B) has form

D̃
(6,3,:)
2 (B) =−H

−1

�
D
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1
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1

−
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C
(4)
7 BD̃

(2,1,:)
7,4 −

H
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C
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(:,≥5,:)
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(B.2)

The matrix D̃
(2,1,:)
5,4 is defined by a 8×12 block, the en-

tries of which are denoted by d5,i, j, and an interior re-
peating point operator given as

• d5, j,1 = −
1

56 + 1
56 d5, j,10 + 3

28 d5, j,11 + 3
8 d5, j,12 −

3
8 d5, j2 −

3
28 d5, j,3 −

1
56 d5, j,4,

• d5, j,5 = 5
4 −

9
4 d5, j,10 −

25
2 d5, j,11 −

165
4 d5, j,12 −

35
4 d5, j,2 −

15
2 d5, j,3 −

15
4 d5, j,4,

• d5, j,6 = −4 + 9d5, j,10 + 48d5, j,11 + 154d5, j,12 + 21d5, j,2 + 16d5, j,3 +
6d5, j,4,

• d5, j,7 = 5−15d5, j,10 −75d5, j,11 −231d5, j,12 −21d5, j,2 −15d5, j,3 −5d5, j,4,

• d5, j,8 = −
20
7 + 90

7 d5, j,10 +
400
7 d5, j,11 + 165d5, j,12 + 10d5, j,2 +

48
7 d5, j,3 +

15
7 d5, j,4,

• d5, j,9 =
5
8 −

45
8 D5, j,10−

75
4 d5, j,11−

385
8 d5, j,12−

15
8 d5, j,2−

5
4 d5, j,3−

3
8 d5, j,4

for j ∈ [1,8].

• Internal point operator:
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28



The matrix D̃
(2,1,:)
6,4 is defined by a 8×12 block, the en-

tries of which are denoted by d6,i, j, and an interior re-
peating point operator given as

• d6, j,1 =
7

33 d6, j,5 +d1633d6, j,6 +
20
33 d6, j,7 +

16
33 d6, j,8 +

7
33 d6, j,9 +

4
33 ,

• d6, j,10 =−
1
6 d6, j,5 −

25
42 d6, j,6 −

25
21 d6, j,7 −

5
3 d6, j,8 −

5
3 d6, j,9 +

5
42 ,

• d6, j,11 =
1
6 d6, j,5 +

4
7 d6, j,6 +

15
14 d6, j,7 +

4
3 d6, j,8 +d6, j,9 −

1
7 ,

• d6, j,12 =
1
22 −

1
22 d6, j,5 −

5
33 d6, j,6 −

3
11 d6, j,7 −

7
22 d6, j, j8 −

7
33 d6, j,9,

• d6, j,2 =−
1
2 −

7
6 d6, j,5 −

5
2 d6, j,6 −3d6, j,7 −

7
3 d6, j,8 −d6, j,9,

• d6, j,3 =
5
7 +

5
2 d6, j,5 +

100
21 d6, j,6 +

75
14 d6, j,7 +4d6, j,8 +

5
3 d6, j,9,

• d6, j,4 =−
5
14 −

5
2 d6, j,5−

25
7 d6, j,6−

25
7 d6, j,7−

5
2 d6, j,8−d6, j,9, for j ∈ [1,8].

• Internal point operator:
� 3

10 ,−
7
5 ,

12
5 ,− 9

5 ,1,−
9
5 ,

12
5 ,− 7

5 ,
3
10

�

The matrix D̃
(2,1,:)
7,4 is defined by a 8×12 block, the en-

tries of which are denoted by d7,i, j, and an interior re-
peating point operator given as

• d7, j,1 =
1
8 d7, j,10 +d7, j,11 +

9
2 d7, j,12 −

1
8 d7, j,2 −

1
8 ,

• d7, j,3 =
7
2 −

9
2 d7, j,10 −35d7, j,11 −154d7, j,12 −

7
2 d7, j,2,

• d7, j,4 =−14+21d7, j,10 +160d7, j,11 +693d7, j,12 +7d7, j,2,

• d7, j,5 =−
189
4 d7, j,10 −350d7, j,11 −1485d7, j,12 −

35
4 d7, j,2 +

105
4 ,

• d7, j,6 =−28+63d7, j,10 +448d7, j,11 +1848d7, j,12 +7d7, j,2,

• d7, j,7 =
35
2 −

105
2 d7, j,10 −350d7, j,11 −1386d7, j,12 −

7
2 d7, j,2,

• d7, j,8 =−6+27d7, j,10 +160d7, j,11 +594d7, j,12 +d7, j,2,

• d7, j,9 =
7
8 −

63
8 d7, j,10 −35d7, j,11 −

231
2 d7, j,12 −

1
8 d7, j,2 for j ∈ 1,8].

• Internal point operator:
�
−

1
2 ,3,−7,7,0,−7,7,−3, 1

2 ]
�
.

The matrix D̃
(2,1,:)
8,4 is defined by a 8×12 block, the en-

tries of which are denoted by d8,i, j, and an interior re-
peating point operator given as

• d8, j1 = 1−d8, j,10 −9d8, j,11 −45d8, j,12,

• d8, j,2 =−8+9d8, j,10 +80d8, j,11 +396d8, j,12,

• d8, j,3 = 28−36d8, j,10 −315d8, j,11 −1540d8, j,12,

• d8, j,4 =−56+84∗d8, j,10 +720d8, j,11 +3465d8, j,12,

• d8, j,5 = 70−126d8, j,10 −1050d8, j,11 −4950d8, j,12,

• d8, j,6 =−56+126d8, j,10 +1008d8, j,11 +4620d8, j,12,

• d8, j,7 = 28−84d8, j,10 −630d8, j,11 −2772d8, j,12,

• d8, j,8 =−8+36d8 j, j10 +240d8, j,11 +990d8 j, j12,

• d8, j,9 = 1−9d8, j,10 −45d8, j,11 −165d8, j,12, for j ∈ [0,8].

• Internal point operator: [1,−8,28,−56,70,−56,28,−8,1].

Appendix B.1. Script for D(4,2,:)
2 (B) operator

function [D2]=D2_4(n,b)

% optimizdd solution

Db5 = .7572547503753819696617548765192041577064d0;

Db6 = -.2137262481230901516912826929382111115051d0;

c32 = 0.d0;c33 = 0.d0;

c34 = 3.537514766710830037910752698007451731610d0;

c41 = 0.d0;c42 = 0.d0;c43 = 0.d0;

c44 = 0.7385501622485695586677787025911214676886d-2;

d325 = 32.51048471738421604519286254254722933186d0;

d326 = -7.620858146195750192324493816504335027386d0;

d335 = -13.88777502260632966138966870205827213699d0;

d336 = 3.468933822141331092700263415569337869041d0;

d345 = -0.7823237972910208591778157593262697095161d-2;

d346 = .1374085563591570998874444470862136095142d0;

d416 = 4.229344891548268383217258212685349574041d0;

d426 = 9.579016877423331087022080485160204772741d0;

d436 = 23.25697672941185239293966264033611499384d0;

d446 = 146.1284822111720230230691538908767591180d0;

% optimum family of solutions

c31 = 1030347.d0/286552.d0-c32-c33-c34;

d315=(34.d0*(675.d0+8428.d0*d325*c32+8428.d0*d335*c33+8428.d0*d345*c34))/...

(-1030347.d0+286552.d0*c32+286552.d0*c33+286552.d0*c34);

d316 = (1462.d0*(196.d0*d326*c32+196.d0*d336*c33+196.d0*d346*c34-87.d0))/...

(-1030347.d0+286552.d0*c32+286552.d0*c33+286552.d0*c34);

% solution to Db

Db1 = -11.d0/6.d0+Db5+4.d0*Db6; Db2 = 3.d0-4.d0*Db5-15.d0*Db6;

Db3 = -3.d0/2.d0+6.d0*Db5+20.d0*Db6; Db4 = 1.d0/3.d0-4.d0*Db5-10.d0*Db6;

% construct D3

d311 = -1.d0+d315+4.d0*d316;d312 = 3.d0-4.d0*d315-15.d0*d316;

d313 = -3.d0+6.d0*d315+20.d0*d316;d314 = 1.d0-4.d0*d315-10.d0*d316;

d321 = -1.d0+d325+4.d0*d326;d322 = 3.d0-4.d0*d325-15.d0*d326;

d323 = -3.d0+6.d0*d325+20.d0*d326;d324 = 1.d0-4.d0*d325-10.d0*d326;

d331 = -1.d0+d335+4.d0*d336;d332 = 3.d0-4.d0*d335-15.d0*d336;

d333 = -3.d0+6.d0*d335+20.d0*d336;d334 = 1.d0-4.d0*d335-10.d0*d336;

d341 = -1.d0+d345+4.d0*d346;d342 = 3.d0-4.d0*d345-15.d0*d346;

d343 = -3.d0+6.d0*d345+20.d0*d346;d344 = 1.d0-4.d0*d345-10.d0*d346;

% construct D4

d411 = 1.d0-d416;d412 = -4.d0+5.d0*d416;d413 = 6.d0-10.d0*d416;

d414 = -4.d0+10.d0*d416;d415 = 1.d0-5.d0*d416;d421 = 1.d0-d426;

d422 = 5.d0*d426-4.d0;d423 = 6.d0-10.d0*d426;d424 = -4.d0+10.d0*d426;

d425 = 1.d0-5.d0*d426;d431 = 1.d0-d436;d432 = -4.d0+5.d0*d436;

d433 = 6.d0-10.d0*d436;d434 = -4.d0+10.d0*d436;d435 = 1.d0-5.d0*d436;

d441 = 1.d0-d446;d442 = -4.d0+5.d0*d446;d443 = 6.d0-10.d0*d446;

d444 = 10.d0*d446-4.d0;d445 = 1.d0-5.d0*d446;

M11 = zeros(1,4);

M11(1) = 0.12d2 / 0.17d2 + d311 ^ 2 * c31 / 0.18d2 + d411 ^ 2 * c41 / 0.48d2;

M11(2) = 0.59d2 / 0.192d3 + d321 ^ 2 * c32 / 0.18d2 + d421 ^ 2 * c42 / 0.48d2;

M11(3) = 0.1d1 / 0.129d3 + d331 ^ 2 * c33 / 0.18d2 + d431 ^ 2 * c43 / 0.48d2;

M11(4) = 0.3d1 / 0.3136d4 + d341 ^ 2 * c34 / 0.18d2 + d441 ^ 2 * c44 / 0.48d2;

M12 = zeros(1,4);

M12(1) = -0.59d2 / 0.68d2 + d311 * c31 * d312 / 0.18d2 + d411 * c41 * d412 /

0.48d2;

M12(2) = d321 * c32 * d322 / 0.18d2 + d421 * c42 * d422 / 0.48d2;

M12(3) = -0.59d2 / 0.1032d4 + d331 * c33 * d332 / 0.18d2 + d431 * c43 * d432 /

0.48d2;

M12(4) = d341 * c34 * d342 / 0.18d2 + d441 * c44 * d442 / 0.48d2;

M13 = zeros(1,4);

M13(1) = 0.2d1 / 0.17d2 + d311 * c31 * d313 / 0.18d2 + d411 * c41 * d413 / 0.48d2;

M13(2) = -0.59d2 / 0.192d3 + d321 * c32 * d323 / 0.18d2 + d421 * c42 * d423 /

0.48d2;

M13(3) = d331 * c33 * d333 / 0.18d2 + d431 * c43 * d433 / 0.48d2;

M13(4) = -0.59d2 / 0.3136d4 + d341 * c34 * d343 / 0.18d2 + d441 * c44 * d443 /

0.48d2;

M14 = zeros(1,4);

M14(1) = 0.3d1 / 0.68d2 + d311 * c31 * d314 / 0.18d2 + d411 * c41 * d414 / 0.48d2;

M14(2) = d321 * c32 * d324 / 0.18d2 + d421 * c42 * d424 / 0.48d2;

M14(3) = 0.59d2 / 0.1032d4 + d331 * c33 * d334 / 0.18d2 + d431 * c43 * d434 /

0.48d2;

M14(4) = d341 * c34 * d344 / 0.18d2 + d441 * c44 * d444 / 0.48d2;

M15 = zeros(1,4);

M15(1) = d311 * c31 * d315 / 0.18d2 + d411 * c41 * d415 / 0.48d2;

M15(2) = d321 * c32 * d325 / 0.18d2 + d421 * c42 * d425 / 0.48d2;

M15(3) = -0.1d1 / 0.129d3 + d331 * c33 * d335 / 0.18d2 + d431 * c43 * d435 /

0.48d2;

M15(4) = 0.1d1 / 0.49d2 + d341 * c34 * d345 / 0.18d2 + d441 * c44 * d445 / 0.48d2;

M16 = zeros(1,4);

M16(1) = d311 * c31 * d316 / 0.18d2 + d411 * c41 * d416 / 0.48d2;

M16(2) = d321 * c32 * d326 / 0.18d2 + d421 * c42 * d426 / 0.48d2;

M16(3) = d331 * c33 * d336 / 0.18d2 + d431 * c43 * d436 / 0.48d2;

M16(4) = -0.1d1 / 0.392d3 + d341 * c34 * d346 / 0.18d2 + d441 * c44 * d446 /

0.48d2;

M22 = zeros(1,4);

M22(1) = 0.3481d4 / 0.3264d4 + d312 ^ 2 * c31 / 0.18d2 + d412 ^ 2 * c41 / 0.48d2;

M22(2) = d322 ^ 2 * c32 / 0.18d2 + d422 ^ 2 * c42 / 0.48d2;

M22(3) = 0.3481d4 / 0.8256d4 + d332 ^ 2 * c33 / 0.18d2 + d432 ^ 2 * c43 / 0.48d2;

M22(4) = d342 ^ 2 * c34 / 0.18d2 + d442 ^ 2 * c44 / 0.48d2;

M23 = zeros(1,4);

M23(1) = -0.59d2 / 0.408d3 + d312 * c31 * d313 / 0.18d2 + d412 * c41 * d413 /

0.48d2;
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M23(2) = d322 * c32 * d323 / 0.18d2 + d422 * c42 * d423 / 0.48d2;

M23(3) = d332 * c33 * d333 / 0.18d2 + d432 * c43 * d433 / 0.48d2;

M23(4) = d342 * c34 * d343 / 0.18d2 + d442 * c44 * d443 / 0.48d2;

M24 = zeros(1,4);

M24(1) = -0.59d2 / 0.1088d4 + d312 * c31 * d314 / 0.18d2 + d412 * c41 * d414 /

0.48d2;

M24(2) = d322 * c32 * d324 / 0.18d2 + d422 * c42 * d424 / 0.48d2;

M24(3) = -0.3481d4 / 0.8256d4 + d332 * c33 * d334 / 0.18d2 + d432 * c43 * d434 /

0.48d2;

M24(4) = d342 * c34 * d344 / 0.18d2 + d442 * c44 * d444 / 0.48d2;

M25 = zeros(1,4);

M25(1) = d312 * c31 * d315 / 0.18d2 + d412 * c41 * d415 / 0.48d2;

M25(2) = d322 * c32 * d325 / 0.18d2 + d422 * c42 * d425 / 0.48d2;

M25(3) = 0.59d2 / 0.1032d4 + d332 * c33 * d335 / 0.18d2 + d432 * c43 * d435 /

0.48d2;

M25(4) = d342 * c34 * d345 / 0.18d2 + d442 * c44 * d445 / 0.48d2;

M26 = zeros(1,4);

M26(1) = d312 * c31 * d316 / 0.18d2 + d412 * c41 * d416 / 0.48d2;

M26(2) = d322 * c32 * d326 / 0.18d2 + d422 * c42 * d426 / 0.48d2;

M26(3) = d332 * c33 * d336 / 0.18d2 + d432 * c43 * d436 / 0.48d2;

M26(4) = d342 * c34 * d346 / 0.18d2 + d442 * c44 * d446 / 0.48d2;

M33 = zeros(1,5);

M33(1) = 0.1d1 / 0.51d2 + d313 ^ 2 * c31 / 0.18d2 + d413 ^ 2 * c41 / 0.48d2;

M33(2) = 0.59d2 / 0.192d3 + d323 ^ 2 * c32 / 0.18d2 + d423 ^ 2 * c42 / 0.48d2;

M33(3) = d333 ^ 2 * c33 / 0.18d2 + d433 ^ 2 * c43 / 0.48d2;

M33(4) = 0.3481d4 / 0.9408d4 + d343 ^ 2 * c34 / 0.18d2 + d443 ^ 2 * c44 / 0.48d2;

M33(5) = 0.1d1 / 0.24d2;

M34 = zeros(1,5);

M34(1) = 0.1d1 / 0.136d3 + d313 * c31 * d314 / 0.18d2 + d413 * c41 * d414 / 0.48d2;

M34(2) = d323 * c32 * d324 / 0.18d2 + d423 * c42 * d424 / 0.48d2;

M34(3) = d333 * c33 * d334 / 0.18d2 + d433 * c43 * d434 / 0.48d2;

M34(4) = d343 * c34 * d344 / 0.18d2 + d443 * c44 * d444 / 0.48d2;

M34(5) = -0.1d1 / 0.6d1;

M35 = zeros(1,5);

M35(1) = d313 * c31 * d315 / 0.18d2 + d413 * c41 * d415 / 0.48d2;

M35(2) = d323 * c32 * d325 / 0.18d2 + d423 * c42 * d425 / 0.48d2;

M35(3) = d333 * c33 * d335 / 0.18d2 + d433 * c43 * d435 / 0.48d2;

M35(4) = -0.59d2 / 0.147d3 + d343 * c34 * d345 / 0.18d2 + d443 * c44 * d445 /

0.48d2;

M35(5) = 0.1d1 / 0.8d1;

M36 = zeros(1,5);

M36(1) = d313 * c31 * d316 / 0.18d2 + d413 * c41 * d416 / 0.48d2;

M36(2) = d323 * c32 * d326 / 0.18d2 + d423 * c42 * d426 / 0.48d2;

M36(3) = d333 * c33 * d336 / 0.18d2 + d433 * c43 * d436 / 0.48d2;

M36(4) = 0.59d2 / 0.1176d4 + d343 * c34 * d346 / 0.18d2 + d443 * c44 * d446 /

0.48d2;

M44 = zeros(1,6);

M44(1) = 0.3d1 / 0.1088d4 + d314 ^ 2 * c31 / 0.18d2 + d414 ^ 2 * c41 / 0.48d2;

M44(2) = d324 ^ 2 * c32 / 0.18d2 + d424 ^ 2 * c42 / 0.48d2;

M44(3) = 0.3481d4 / 0.8256d4 + d334 ^ 2 * c33 / 0.18d2 + d434 ^ 2 * c43 / 0.48d2;

M44(4) = d344 ^ 2 * c34 / 0.18d2 + d444 ^ 2 * c44 / 0.48d2;

M44(5) = 0.5d1 / 0.6d1;

M44(6) = 0.1d1 / 0.24d2;

M45 = zeros(1,6);

M45(1) = d314 * c31 * d315 / 0.18d2 + d414 * c41 * d415 / 0.48d2;

M45(2) = d324 * c32 * d325 / 0.18d2 + d424 * c42 * d425 / 0.48d2;

M45(3) = -0.59d2 / 0.1032d4 + d334 * c33 * d335 / 0.18d2 + d434 * c43 * d435 /

0.48d2;

M45(4) = d344 * c34 * d345 / 0.18d2 + d444 * c44 * d445 / 0.48d2;

M45(5) = -0.1d1 / 0.2d1;

M45(6) = -0.1d1 / 0.6d1;

M46 = zeros(1,6);

M46(1) = d314 * c31 * d316 / 0.18d2 + d414 * c41 * d416 / 0.48d2;

M46(2) = d324 * c32 * d326 / 0.18d2 + d424 * c42 * d426 / 0.48d2;

M46(3) = d334 * c33 * d336 / 0.18d2 + d434 * c43 * d436 / 0.48d2;

M46(4) = d344 * c34 * d346 / 0.18d2 + d444 * c44 * d446 / 0.48d2;

M46(5) = -0.1d1 / 0.6d1;M46(6) = 0.1d1 / 0.8d1;

M55 = zeros(1,7);

M55(1) = d315 ^ 2 * c31 / 0.18d2 + d415 ^ 2 * c41 / 0.48d2;

M55(2) = d325 ^ 2 * c32 / 0.18d2 + d425 ^ 2 * c42 / 0.48d2;

M55(3) = 0.1d1 / 0.129d3 + d335 ^ 2 * c33 / 0.18d2 + d435 ^ 2 * c43 / 0.48d2;

M55(4) = 0.64d2 / 0.147d3 + d345 ^ 2 * c34 / 0.18d2 + d445 ^ 2 * c44 / 0.48d2;

M55(5) = 0.3d1 / 0.4d1;M55(6) = 0.5d1 / 0.6d1;M55(7) = 0.1d1 / 0.24d2;

M56 = zeros(1,7);

M56(1) = d315 * c31 * d316 / 0.18d2 + d415 * c41 * d416 / 0.48d2;

M56(2) = d325 * c32 * d326 / 0.18d2 + d425 * c42 * d426 / 0.48d2;

M56(3) = d335 * c33 * d336 / 0.18d2 + d435 * c43 * d436 / 0.48d2;

M56(4) = -0.8d1 / 0.147d3 + d345 * c34 * d346 / 0.18d2 + d445 * c44 * d446 /

0.48d2;

M56(5) = -0.1d1 / 0.2d1;M56(6) = -0.1d1 / 0.2d1;M56(7) = -0.1d1 / 0.6d1;

M66 = zeros(1,8);

M66(1) = d316 ^ 2 * c31 / 0.18d2 + d416 ^ 2 * c41 / 0.48d2;

M66(2) = d326 ^ 2 * c32 / 0.18d2 + d426 ^ 2 * c42 / 0.48d2;

M66(3) = d336 ^ 2 * c33 / 0.18d2 + d436 ^ 2 * c43 / 0.48d2;

M66(4) = 0.1d1 / 0.147d3 + d346 ^ 2 * c34 / 0.18d2 + d446 ^ 2 * c44 / 0.48d2;

M66(5) = 0.5d1 / 0.6d1;M66(6) = 0.3d1 / 0.4d1;M66(7) = 0.5d1 / 0.6d1;

M66(8) = 0.1d1 / 0.24d2;

Mjm2 = zeros(1,5);

Mjm2(1) = 0.1D1 / 0.8D1;Mjm2(2) = -0.1D1 / 0.6D1;Mjm2(3) = 0.1D1 / 0.8D1;

Mjm2(4) = 0.d0;Mjm2(5) = 0.d0;

Mjm1 = zeros(1,5);

Mjm1(1) = -0.1D1 / 0.6D1;Mjm1(2) = -0.1D1 / 0.2D1;Mjm1(3) = -0.1D1 / 0.2D1;

Mjm1(4) = -0.1D1 / 0.6D1;Mjm1(5) = 0.d0;

Mj = zeros(1,5);

Mj(1) = 0.1D1 / 0.24D2;Mj(2) = 0.5D1 / 0.6D1;Mj(3) = 0.3D1 / 0.4D1;

Mj(4) = 0.5D1 / 0.6D1;Mj(5) = 0.1D1 / 0.24D2;

Mjp1 = zeros(1,5);

Mjp1(1) = 0.d0;Mjp1(2) = -0.1D1 / 0.6D1;Mjp1(3) = -0.1D1 / 0.2D1;

Mjp1(4) = -0.1D1 / 0.2D1;Mjp1(5) = -0.1D1 / 0.6D1;

Mjp2 = zeros(1,5);

Mjp2(1) = 0.d0;Mjp2(2) = 0.d0;Mjp2(3) = 0.1D1 / 0.8D1;

Mjp2(4) = -0.1D1 / 0.6D1;Mjp2(5) = 0.1D1 / 0.8D1;

H11 = 17.d0/48.d0; H22 = 59.d0/48.d0; H33 = 43.d0/48.d0; H44 = 49.d0/48.d0;

%sdtting up H

H = eye(n,n);

H(1,1) = H11;H(n,n) = H11;H(2,2) = H22;H(n-1,n-1) = H22;

H(3,3) = H33;H(n-2,n-2) = H33;H(4,4) = H44;H(n-3,n-3) = H44;

M = zeros(n,n);

Db = zeros(n,n);

Db(1,1:6) = b(1)*[Db1,Db2,Db3,Db4,Db5,Db6];

Db(n,n:-1:n-5) = -b(n)*[Db1,Db2,Db3,Db4,Db5,Db6];

E = zeros(n,n);

E(1,1) = -1;

E(n,n) = 1;

M(1,1:6) = [M11*b(1:4),M12*b(1:4),M13*b(1:4),M14*b(1:4),M15*b(1:4),M16*b(1:4)];

M(2,1:6) = [M12*b(1:4),M22*b(1:4),M23*b(1:4),M24*b(1:4),M25*b(1:4),M26*b(1:4)];

M(3,1:6) = [M13*b(1:4),M23*b(1:4),M33*b(1:5),M34*b(1:5),M35*b(1:5),M36*b(1:5)];

M(4,1:6) = [M14*b(1:4),M24*b(1:4),M34*b(1:5),M44*b(1:6),M45*b(1:6),M46*b(1:6)];

M(5,1:7) = [M15*b(1:4),M25*b(1:4),M35*b(1:5),M45*b(1:6),M55*b(1:7),M56*b(1:7),...

Mjp2*b(5-2:5+2)];

M(6,1:8) = [M16*b(1:4),M26*b(1:4),M36*b(1:5),M46*b(1:6),M56*b(1:7),M66*b(1:8),...

Mjp1*b(6-2:6+2),Mjp2*b(6-2:6+2)];

%intdrnal rows

for i = 7:n-6

M(i,i-2:i+2) =

[Mjm2*b(i-2:i+2),Mjm1*b(i-2:i+2),Mj*b(i-2:i+2),Mjp1*b(i-2:i+2),Mjp2*b(i-2:i+2)];

end

M(n-5,n:-1:n-7) =

[M16*b(n:-1:n-3),M26*b(n:-1:n-3),M36*b(n:-1:n-4),M46*b(n:-1:n-5),M56*b(n:-1:n-6),...

M66*b(n:-1:n-7),Mjm1*b((n-5)-2:(n-5)+2),Mjm2*b((n-5)-2:(n-5)+2)];

M(n-4,n:-1:n-6) =

[M15*b(n:-1:n-3),M25*b(n:-1:n-3),M35*b(n:-1:n-4),M45*b(n:-1:n-5),M55*b(n:-1:n-6),...

M56*b(n:-1:n-6),Mjm2*b((n-4)-2:(n-4)+2)];

M(n-3,n:-1:n-5) =

[M14*b(n:-1:n-3),M24*b(n:-1:n-3),M34*b(n:-1:n-4),M44*b(n:-1:n-5),M45*b(n:-1:n-5),...

M46*b(n:-1:n-5)];

M(n-2,n:-1:n-5) =

[M13*b(n:-1:n-3),M23*b(n:-1:n-3),M33*b(n:-1:n-4),M34*b(n:-1:n-4),M35*b(n:-1:n-4),...

M36*b(n:-1:n-4)];

M(n-1,n:-1:n-5) =

[M12*b(n:-1:n-3),M22*b(n:-1:n-3),M23*b(n:-1:n-3),M24*b(n:-1:n-3),M25*b(n:-1:n-3),...

M26*b(n:-1:n-3)];

M(n,n:-1:n-5) =

[M11*b(n:-1:n-3),M12*b(n:-1:n-3),M13*b(n:-1:n-3),M14*b(n:-1:n-3),M15*b(n:-1:n-3),...

M16*b(n:-1:n-3)];

D2 = inv(H)*(-M+E*Db);

Appendix C. Interface SAT for the NS equations

Here we summarize the interface SAT discussed in
Section 7.1.1 and give the relevant matrices (see [29]).
The interface SAT is composed of three SATs, one for
the inviscid portion of the NS equations (the Euler equa-
tions), and two from the viscous portion of the equa-
tions. Thus, the full SAT has a general form:

SAT = SATI +SATv1 +SATv2, (C.1)

where

SAT = σ0/NĤÊ0/N,ξ (A
±

ξ )
�

Q̂− Q̂2

�
, (C.2)

SAT =
σv,0/N

Re
ĤE0,ξ

�
Êv − Ê2

�
, (C.3)
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and

SATv,int =
σv2

JRe
ĤE0,ξ Bξ ,int

�
Q̂v − Q̂target

�
, (C.4)

where, for stability,σ0/N =∓1, σv,0/N =±1, and σv2 ≤
1
2 . The form of Bξ ,int is given as

Bξ ,int =





0 0 0 0 0

(−a1u−a2v−a3w) a1 a2 a3 0

(−a2u−a4v−a5w) a2 a4 a5 0

(−a3u−a5v−a6w) a3 a5 a6 0

b51 b52 b53 b54 a7





,

(C.5)
where a1 =

µ
ρ
� 4

3 ξ 2
x +ξ 2

y +ξ 2
z
�
, a2 =

µ
ρ
� 1

3 ξxξy
�
,

a3 =
µ
ρ
� 1

3 ξxξz
�
,

a4 =
µ
ρ
�
ξ 2

x + 4
3 ξ 2

y +ξ 2
z
�
, a5 =

µ
ρ
� 1

3 ξyξz
�
,

a6 =
µ
ρ
�
ξ 2

x +ξ 2
y + 4

3 ξ 2
z
�
,

a7 =
µ

ρPr
�
ξ 2

x +ξ 2
y +ξ 2

z
�
,

b52 = −a7u + a1u + a2v + a3w, b53 = −a7u + a2u +
a4v+a5w,

b51 = a7

�
−

e
ρ +

�
u2 + v2 +w2�

�
− a1u2 − a4v2 −

a6w2 −2(a2uv+a3uw+a5vw),
where Pr is the Prandtl number, µ is the viscosity,

ρ is the density, u, v, w, are the x, y, and z, velocity
components.
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