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Abstract This paper extends an integrated geometry pa-
rameterization and mesh movement strategy for aerody-
namic shape optimization to high-fidelity aerostructural op-
timization based on steady analysis. This approach provides
an analytical geometry representation while enabling effi-
cient mesh movement even for very large shape changes,
thus facilitating efficient and robust aerostructural optimiza-
tion. The geometry parameterization methodology uses B-
spline surface patches to describe the undeflected design and
flying shapes with a compact yet flexible set of parameters.
The geometries represented are therefore independent of the
mesh used for the flow analysis, which is an important ad-
vantage to this approach. The geometry parameterization is
integrated with an efficient and robust grid movement al-
gorithm which operates on a set of B-spline volumes that
parameterize and control the flow grid. A simple technique
is introduced to translate the shape changes described by
the geometry parameterization to the internal structure. A
three-field formulation of the discrete aerostructural resid-
ual is adopted, coupling the mesh movement equations with
the discretized three-dimensional inviscid flow equations, as
well as a linear structural analysis. Gradients needed for op-
timization are computed with a three-field coupled adjoint
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approach. Capabilities of the framework are demonstrated
via a number of applications involving substantial geomet-
ric changes.
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Nomenclature

AoA Angle of attack
B Coordinates of a single control point
b Vector of control point coordinates
bJ b for the jig shape
b

D

b for the deflected geometry
bs Coordinates of surface control points
bsJ bs for the jig shape
bsD

bs for the deflected geometry
Ceq, Cin Equality and inequality constraint
D Inviscid drag of the wing
D0 Initial inviscid drag of the wing
fA Aerodynamic surface traction
fM Force vector in the mesh equations
fMJ fM for the jig shape
fMD

fM for the deflected geometry
fS Force vector in the structural equations
FoS Factor of safety
G Vector containing all nodes on the flow grid
GsJ Coordinates of surface grid nodes on the jig shape
G̃sD

Displaced surface coordinates as described by the
displacement transfer

J Objective function
JA Aerodynamic functional
JS Structural functional
KM Stiffness matrix for the mesh equations
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KMJ KM for the jig shape
KMD

KM for the deflected geometry
KS Stiffness matrix for the structural equations
L/D Lift-to-drag ratio of the aircraft
L Lagrangian function
l, u Lower and upper bound for an inequality

constraint
m Number of mesh movement increments
mJ m used in mesh movement for the jig shape
m

D

m used in mesh movement for the deflected
geometry

N B-spline basis functions
N̂ Number of B-spline control points in each

direction
Ne Number of elements in the structural model
neq, nin Number of equality and inequality constraints
p Order of the B-spline basis functions
q Aerodynamic state vector
r All rigid link vectors
RAS Aerostructural residual vector
RA Aerodynamic residual vector
RMJ Mesh residual vector for the jig shape
RMD

Mesh residual vector for the deflected shape
RS Structural residual vector
T B-spline knot values
u Structural state vector
uA Changes in the aerodynamic surface coordinates

due to structural deflections
v Design variables
vA Aerodynamic design variables
vG Geometric design variables
vS Structural design variables
Wi Weight of the aircraft at the beginning of cruise
Wf Wi minus the fuel weight
W Weight of the wing
W0 Initial weight of the wing
x Coordinates of a point in physical space
b Scalar parameter between 0 and 1
l Load factor in a structural element
r Positive weighting parameter for the Kreisselmeier-

Steinhauser function
s von Mises stress in a structural element
syield Material yield stress
Y A Aerodynamic adjoint vector
Y MD

Mesh adjoint vector corresponding to the flying
shape

Y MJ Mesh adjoint vector corresponding to the jig shape
Y S Structural adjoint vector
q Under-relaxation factor
° Parameteric coordinates of a point in space
x , h , z Individual parametric coordinates

1 Introduction

Future-generation aircraft must be substantially more fuel
efficient to sustain rapid growth of the aviation industry with
increasing environmental concern for greenhouse gas emis-
sions. Conventional tube-and-wing designs are highly opti-
mized and offer limited room for further improvements. Un-
conventional design options must be explored to achieve the
required amount of efficiency gain (Torenbeek and Decon-
inck, 2005). This poses a challenge with the traditional cut-
and-try approach to aircraft design because it relies heav-
ily on the knowledge and experience of the designer that
is not always available for unconventional configurations.
This challenge is being gradually overcome with numerical
optimization based on high-fidelity aerodynamic analysis.
Although computationally more expensive than low-fidelity
models, high-fidelity aerodynamic analysis accurately cap-
tures the physics of the flow under conditions where low-
fidelity models can be inaccurate.

This work is motivated by the desire to perform high-
fidelity exploratory aerostructural optimization where the
optimizer is given as much geometric freedom as possible
in order to explore a large design space. In this context, it is
often not necessary to consider all of the aspects involved in
detailed design. Exploratory optimization can require hun-
dreds and sometimes thousands of design variables. This, to-
gether with the cost of large-scale high-fidelity calculations,
makes gradient-based optimization methods the preferred
option. The cost of optimization can be further reduced by
the use of adjoint methods, where the cost of gradient calcu-
lations is almost independent of the number of design vari-
ables (Pironneau, 1974; Jameson, 1988). High-fidelity ex-
ploratory optimization is especially valuable when exploring
unconventional design concepts, enabling rapid assessment
and comparison of competing concepts.

Aerodynamic shape optimization has revealed sev-
eral promising design concepts that lead to reductions in
drag (Hicken and Zingg, 2010b; Gagnon and Zingg, 2016b).
What remains an interesting and important question is how
much of these benefits are offset by the possible increase
in structural weight. Although some recent applications of
high-fidelity aerodynamic optimization have included sim-
plified weight models (Leoviriyakit et al, 2004; Jameson
et al, 2007; Reist et al, 2013; Lyu and Martins, 2014), the
tradeoff between drag and weight is more accurately cap-
tured with full stress analysis based on aerodynamic loading.
Coupling aerodynamic and structural analysis automatically
accounts for the effects of the structural deflections on the
aerodynamic performance (Reuther et al, 1999). It also pro-
vides more accurate indication of possible structural failure,
reducing the reliance on artificial geometric constraints that
can steer the optimizer away from finding the most efficient
design (Reuther et al, 1999). Hence, optimization based on
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tightly integrated high-fidelity aerostructural analysis is an
important step towards taking full advantage of numerical
optimization. Development of such a framework for design
exploration of unconventional aircraft is the focus of this pa-
per.

Shape optimization requires a method to parameterize
the geometry of interest and a control mechanism to accom-
plish shape changes. Geometry parameterization refers to
the way that the geometry is defined in space. Perhaps the
most obvious example is the discrete parameterization tech-
nique where the geometry is defined using the individual
grid nodes. Other examples include parameterization via an-
alytical shape functions such as those proposed by Hicks and
Henne (1978), PARSEC (Sobieczky, 1998), Non-Uniform
Rational B-Spline (NURBS) (Piegl and Tiller, 1997), or its
variations such as B-spline or Bézier curves (Braibant and
Fleury, 1984). In contrast, geometry control more precisely
refers to the way shape changes are applied to the geometry
during optimization. For instance, a geometry may be pa-
rameterized by B-spline surfaces, but controlled with FFD
volumes that make changes to the B-spline control points
rather than the discrete set of surface grid nodes (Gagnon
and Zingg, 2015).

An ideal geometry parameterization describes the geom-
etry with a compact set of design variables, yet at the same
time gives the optimizer sufficient flexibility to develop
design features of interest to the designer. For gradient-
based optimization, the availability of geometric gradients
with respect to design variables is an important consid-
eration (Samareh, 2001). CAD, or computer-aided-design,
tools are powerful for creating complex geometries in air-
craft design (Samareh, 1999). A CAD-based optimization
approach uses the CAD software to make changes to the
original CAD model. However, the design variable sensitiv-
ities of the geometry are often unavailable for at least the two
following reasons: proprietary code within the CAD soft-
ware and a geometry that does not necessarily vary smoothly
due to the use of a patch topology (Samareh, 1999; Truong
et al, 2016). In contrast, CAD-free methods have been de-
veloped that do not involve the use of CAD software. These
avoid the above difficulties and also can be much simpler
to use than a CAD package because they can be tailored to
a specific application. Hence CAD-free methods can be ad-
vantageous for exploratory design studies and such a method
is presented here.

In the context of aerostructural optimization, shape
changes across disciplines must be consistently parameter-
ized to maintain the accuracy of the analysis (Samareh,
2001; Kenway et al, 2010). Additionally, design shape
changes cannot be analyzed without efficient and robust
mesh movement algorithms to deform the aerodynamic
and structural domains. The aerodynamic domain under-
goes further deformations during aerostructural analysis due

to structural deflections. This stems from the fact that the
aerodynamic analysis typically uses an Eulerian formula-
tion (Farhat et al, 1995). An efficient aerodynamic mesh
movement algorithm that is capable of handling large ge-
ometry changes is hence essential. In contrast, the struc-
tural analysis often uses a Lagrangian formulation, so that
the structural mesh movement is only executed once per de-
sign cycle for changes in the unstressed geometry. Never-
theless, the structural mesh movement should minimize the
introduction of any undesirable distortions in the structural
members, such as ribs and spars, modeled in high-fidelity
analysis.

The above challenges have been addressed in different
ways in the existing literature on high-fidelity aerostruc-
tural optimization. Farhat et al. (1995) proposed a three-field
formulation to handle the motion of the flow grid due to
structural deflections during transient aerostructural analy-
sis. The flow grid was modeled explicitly alongside the flow
and structural equations. This led to three coupled equations
in the aeroelastic problem. Maute et al. (2001) applied the
three-field formulation to aerostructural optimization based
on steady analysis involving the Euler equations and a lin-
ear structural analysis. The flow grid was modeled based
on a spring analogy. During optimization, simple geome-
try changes to the outer mold line (OML) of a wing as well
as the detailed finite-element model of the internal structure
were parameterized using a number of Coons elements. The
proposed methodology was applied to the optimization of
an Aeroelastic Research Wing (ARW2). They used a direct
method for gradient calculation. The same authors later de-
scribed an alternative methodology using a coupled adjoint
approach for gradient calculation (Maute et al, 2003). Barce-
los et al. (2008) expanded on the three-field methodology by
modeling the flow with the Navier-Stokes equations and an
algebraic turbulence model, and by using a nonlinear analy-
sis of the structures.

Reuther et al. (1999) and Martins et al. (2004; 2005)
used an OML geometry database as an interface to the opti-
mizer and between the disciplines. This allowed for the de-
sign of more general aircraft components. The flow grid was
moved by an algebraic warping algorithm which did not ap-
pear explicitly in the equations of state, resulting in a two-
field formulation. Martins et al. (2005) further described the
corresponding coupled adjoint approach for gradient calcu-
lation. In another paper (Martins et al, 2004), the design
framework was applied to the optimization of a supersonic
business jet based on the Euler equations and a linear finite-
element analysis of the structures. Kenway et al. (2010) pro-
posed a way to control the OML and the internal structure
using a free-form-deformation (FFD) technique. Deforma-
tion of the aerodynamic domain was achieved via a hybrid
linear elasticity mesh movement. Using the same geometry
parameterization and mesh movement methodology, Ken-
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way et al. (2014c) addressed the limitations in the work of
Martins et al. (2005) by coupling a more advanced Euler
solver with a fully parallel structural analysis package in
a high-fidelity aerostructural optimization framework. Ac-
curacy and efficiency of the gradient calculations were im-
proved. The described framework was used in the optimiza-
tion of a NASA Common Research Model (CRM) wing-
body-tail configuration (Kenway et al, 2014b). In a recent
publication, Kenway et al. (2014a) conducted aerostruc-
tural optimization studies based on the Reynolds-Averaged
Navier-Stokes equations with the CRM geometry.

None of the approaches summarized above use three-
dimensional B-spline patches for geometry parameteriza-
tion. This is also the case in a number of other method-
ologies not discussed above, including that of Abu-Zurayk
and Brazillon (2011) and Samareh (2000). Although B-
splines have been widely used for shape parameterization
in purely aerodynamic and structural optimization (Braibant
and Fleury, 1984; Cosentino and Holst, 1986; Schramm
and Pilkey, 1993; Anderson and Venkatakrishnan, 1997),
they are clearly lacking popularity in the field of fully cou-
pled aerostructural optimization. As Samareh (2001; 2000)
pointed out, there are a few significant challenges that have
prevented the use of B-splines for aerostructural optimiza-
tion despite the many advantages they provide for shape pa-
rameterization. For instance, it is difficult to generate grids
for the flow and structures after geometry changes. Further-
more, the complex three-dimensional models are difficult to
create outside of a CAD system. However, the successful
application of B-splines for aerodynamic shape optimiza-
tion suggests that its potential for aerostructural optimiza-
tion in the context of aircraft design should not be over-
looked (Reuther and Jameson, 1995; Bisson and Nadarajah,
2015; Masters et al, 2016). For this reason, the present pa-
per proposes to use the integrated geometry parameteriza-
tion and mesh movement of Hicken and Zingg (2010a) that
was initially presented for purely aerodynamic shape opti-
mization. This integrated approach has been shown to pro-
duce high quality flow meshes even for very large geomet-
ric changes, thus enabling optimization where the shape can
change dramatically during the optimization where other
mesh movement algorithms will often fail (Hicken and
Zingg, 2010a).

The integrated approach has two key components that
distinguish it from existing methodologies for aerostructural
optimization: an effective means for geometry parameteriza-
tion and control using B-splines, and an efficient and robust
mesh movement strategy. Both are essential in exploratory
optimization based on high-fidelity aerostructural analysis.
This approach parameterizes the grid for flow calculations
by B-spline tensor volumes. B-spline control points on the
surface of the geometry simultaneously provide effective ge-
ometry parameterization and control. There is no clear win-

ner when it comes to the best geometry parameterization,
but there are a number of inherent advantages to using B-
spline surfaces. They lead to a compact set of design vari-
ables and yet still provide a high degree of flexibility that
is crucial for exploratory optimization (Samareh, 2001). B-
spline curves of order p are known to lie within the convex
hull of p neighbouring control points, and the control points
approximate the curves (Rogers and Adams, 1990). This al-
lows for local control of shape changes and intuitive spec-
ification of geometric constraints. It also means that the B-
spline parameterization has a high surface awareness which
can be exploited for additional aerodynamic benefits during
optimization (Reuther and Jameson, 1995; Lee, 2015). As
a result, B-spline surface control points have worked well
as geometric design variables (Hicken and Zingg, 2010b;
Reist et al, 2013; Osusky et al, 2015), i.e. for both param-
eterization and control. The physical relationship between
the surface control points and the underlying geometry has
also allowed them to be used as part of a two-level FFD ap-
proach (Gagnon and Zingg, 2015), where the geometry con-
trol is provided by FFD volumes. Furthermore, the approxi-
mation power of piecewise smooth B-spline surface patches
allows complex geometries to be analytically represented
and maintained throughout optimization. The initial and op-
timized geometries are therefore always independent of the
mesh used to approximate them. The analytical geometry
description may also be used for other important purposes
such as rigorous mesh refinement studies, solution-adaptive
gridding during the solution process, and high-order mesh
generation (Hughes et al, 2005; Persson and Peraire, 2009;
Yano et al, 2011). Finally, Hicken and Zingg (2010a) were
the first to tightly integrate the geometry parameterization
via B-splines to a linear elasticity mesh movement of the
B-spline control volumes. This offers a novel way to reduce
the cost to the traditional linear-elasticity mesh movement of
the actual computational grid while maintaining grid qual-
ity. Nevertheless, it is sufficiently robust to preserve the grid
quality in the presence of large shape changes, as will be
illustrated in Section 6.1. For the above reasons, the inte-
grated geometry parameterization and mesh movement al-
gorithm is particularly well-suited for geometry parameter-
ization and control for optimization with large geometry
changes.

The integrated geometry parameterization and mesh
movement technique has been successfully applied to aero-
dynamic shape optimization of a wide range of aircraft con-
figurations involving substantial geometry changes (Hicken
and Zingg, 2010b; Gagnon and Zingg, 2015, 2016a,b).The
objective of the present paper is to extend this approach
to aerostructural optimization. The original integrated ap-
proach by Hicken and Zingg (2010a) addressed the chal-
lenges associated with creating the B-spline model and the
computational fluid dynamics (CFD) grid generation, as
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pointed out by Samareh (2000; 2001). The main contribu-
tion of this paper lies in overcoming two additional chal-
lenges. First, a new algorithm must be introduced to move
the internal structure consistently with the B-spline geome-
try. This is accomplished in Section 3.3 by a surface-based
FFD method. Second, it must also be shown that the B-
spline mesh movement presents a feasible alternative to ex-
isting methodologies in accounting for shape changes due to
structural deflections, in addition to those due to optimiza-
tion. Section 4 accomplishes this by adopting a three-field
formulation, where the mesh equations are in terms of the
B-spline control grid coordinates instead of the flow grid
coordinates. This results in a much smaller mesh problem,
which is another advantage to using the integrated approach
for aerostructural optimization. Finally, the gradient is cal-
culated using an augmented coupled adjoint approach, as
discussed in Section 5. The results presented in Section 6.1
have been carefully chosen to demonstrate the robustness of
the mesh movement scheme for analysis and optimization.
Section 6.2 illustrates the ability of the methodology to cap-
ture the correct aerostructural trends. Finally, the test case
presented in Section 6.3 is specifically designed to demon-
strate the integrated approach in the context of an aerostruc-
tural optimization problem with large geometry changes.

2 Aerostructural Optimization Problem Overview

An aerostructural optimization problem involves the mini-
mization of an objective function, J , with respect to a set
of design variables, v. The optimization is subject to a partial
differential equation constraint, namely the discrete steady
aerostructural equations, RAS. The optimization may also be
subject to a number of equality constraints, Ceq, and inequal-
ity constraints, Cin, which may be linear or nonlinear. The
optimization problem can be summarized as follows:

min
v

J (v, [q,u,b
D

]T ) , (1)

subject to: RAS(v, [q,u,b
D

]T ) = 0 ,

Ceq,i(v, [q,u,b
D

]T ) = 0 , i = 1, · · · ,neq

l j  Cin, j(v, [q,u,b
D

]T ) u j , j = 1, · · · ,nin

The lower and upper bounds for the jth inequality con-
straint are given by l j and u j, respectively. The aerostruc-
tural state variables are given by [q,u,b

D

]T , where q is the
flow state, u is the structural state, and b

D

is the state of
the aerodynamic grid with structural deflections. By solv-
ing RAS(v, [q,u,b

D

]T ) = 0, the state variables become a
function of v. The optimization problem is solved using
SNOPT (Gill et al, 1997; Perez et al, 2012), which is a
third-party gradient-based optimization package that is well-
suited for large-scale, nonlinear optimization problems.

Aerostructural analysis allows multidisciplinary objec-
tives, including both aerodynamic and structural function-
als, to be evaluated and minimized. Examples of objective
functions include range, fuel burn, or some linear combi-
nation of weight and drag for more specific tradeoff stud-
ies. A lift constraint specified in terms of the weight of
the aircraft is often necessary. To avoid structural fail-
ure, a Kreisselmeier-Steinhauser (KS) aggregation func-
tion (Wrenn, 1989; Akgün et al, 1999; Kennedy and Mar-
tins, 2010) is used to ensure that the von Mises stress values
of all structural elements are below the yield stress of the
material by a specified factor of safety. Constraints on the
geometry may also be included. The design variables are
categorized into geometric (i.e. vG), aerodynamic (i.e. vA),
and structural (i.e. vS) design variables. For this work, aero-
dynamic design variables consist of an angle of attack for
each load condition. Structural design variables specify the
thickness of individual structural members. To capture the
important tradeoff between weight and drag, the main load
bearing components of a wingbox are modeled, including
spars, ribs, top skin, and bottom skin. This paper uses the
coordinates of the surface B-spline control points as geo-
metric design variables, as will be discussed in Section 3.

Structural constraints such as flutter and buckling are
not currently considered. However, the purpose of this work
is not to accurately capture all realistic aspects of practi-
cal aircraft design, but to explore methodologies which can
effectively capture the important tradeoffs between weight
and drag, while enabling substantial geometric variation.
Steady-state aerostructural analysis, with structural sizing
based on the von Mises failure criterion, is sufficient for this
purpose, and it will serve as an important step towards in-
corporating unsteady and dynamic effects in the future.

3 Integrated Geometry Parameterization and Mesh
Movement

3.1 Geometry and Flow Grid Parameterization using
B-Spline Surfaces and Volumes

The integrated geometry parameterization and mesh move-
ment technique uses a B-spline tensor-product volume
which maps a point from parametric space, D = {° =
(x ,h ,z ) 2 R3|x ,h ,z 2 [0,1]}, to physical space, P ⇢ R3,
according to the following mathematical relationship

x(° ) =
N̂i

Â
i=1

N̂ j

Â
j=1

N̂k

Â
k=1

Bi jkN
(p)

i (x )N (p)
j (h)N (p)

k (z ) , (2)

where Bi jk are the coordinates of the de Boor control points,
and N (p)

i (x ), N (p)
j (h), N (p)

k (z ) are B-spline basis func-
tions of order p in each parametric coordinate direction. The
grid of B-spline control points embeds and fully describes
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the computational grid for flow calculations, given the para-
metric coordinates of all flow grid nodes in the control vol-
ume. The flow grid can be modified via changes to the B-
spline control volume, and the number of control grid nodes
is typically about two orders of magnitude fewer than the
number of flow grid nodes. Describing the state of the flow
grid in terms of B-spline control points also reduces the size
of the analysis and adjoint problems.

Hicken and Zingg (2010a) used generalized basis func-
tions that incorporate spatially varying knots, so that they
can be tailored to different edges of a geometry. Basis func-
tions in the x�direction are given by

N (1)
i (x ;h ,z ) =

⇢
1 if Ti(h ,z ) x < Ti+1(h ,z )
0 otherwise (3)

N (p)
i (x ;h ,z ) =

✓
x �Ti(h ,z )

Ti+p�1(h ,z )�Ti

◆
N (p�1)

i (x ;h ,z )

+

✓
Ti+p(h ,z )�x

Ti+p(h ,z )�Ti+1(h ,z )

◆
N (p�1)

i+1 (x ;h ,z ) ,

where Ti(h ,z ) are the knot values. Open knot vectors are
used. The first and last p knots of Ti(h ,z ) are forced to
be 0 and 1, respectively, and the internal knots follow a bi-
linear distribution. The basis functions N (p)

j (h ;x ,z ) and

N (p)
k (z ;x ,h) are defined similarly.

To create the B-spline volume, parametric coordinates
of each node in the initial flow grid are determined using
a chord-length parameterization. A chord-length-based knot
distribution is obtained by placing an equal number of nodes
within each knot interval. The B-spline control point co-
ordinates are found by a least-squares fitting of the flow
grid. The control volume has mesh spacing that resembles
a coarsened flow grid due to the nature of the knot distribu-
tion. This characteristic is exploited in the flow grid move-
ment. For the multi-block structured grids used in this work,
each block is represented by a separate control grid with co-
incident control points at the block interfaces to ensure con-
tinuity (Hicken and Zingg, 2010a).

Control points at the surface of the geometry define a set
of B-spline surface patches which analytically describe the
geometry of interest. This naturally leads to an effective ge-
ometry parameterization, where a wide range of geometries
can be specified by the optimizer via moving the surface
control points. During aerostructural analysis, surface con-
trol points additionally describe the flying shape. Therefore,
coordinates of the surface control points, bs, are functions
of vG and u.

3.2 Flow Grid Movement

Changes in the B-spline surfaces are propagated to the inte-
rior of the control volume via a linear elasticity mesh move-

ment algorithm. Large shape changes are broken into m in-
crements. Given b(i)

s , which define the force vector, f(i)M , the
vector of control point coordinates, b(i), is updated by solv-
ing, for i = 1, · · · ,m (Hicken and Zingg, 2010a):

R(i)
M (b(i�1),b(i)) = K(i)

M (b(i�1))[b(i)�b(i�1)]� f(i)M (b(i)
s ) (4)

= 0

where R(i)
M is the mesh residual and K(i)

M the stiffness matrix.
A spatially-varying Young’s modulus is used to preserve the
quality of the control grid, which makes K(i)

M a function of
b(i�1). For clarity, b(i)

s is not a subset of b(i), but rather an
input to (4) that is determined according to

b(i)
s =

i
m

⇣
b(m)

s �b(0)
s

⌘
+b(0)

s , i = 1, · · · ,m . (5)

The difference given by (b(m)
s � b(0)

s ) is the total displace-
ment of the B-spline surface control points. The solution
of (4) is found by the parallel preconditioned conjugate-
gradient (PCG) solver from the PETSc library (Balay et al,
1997). The new flow grid is simply re-evaluated according
to (2). To simplify the notation from this point on, RM refers
to the vector containing all the incremental mesh residuals,
i.e. RM = [R(1)

M ,R(2)
M , · · · ,R(m)

M ]T . A similar notation is used
for b and bs. Linear elasticity mesh movement is very ro-
bust in the presence of large shape changes. It is also much
cheaper to apply this method to the control grid instead of
the flow grid. The quality of the flow grid is nonetheless
preserved by the similarity in the mesh spacing between the
control grid and the flow grid.

In aerostructural optimization, changes in the geometry
are the combined result of changes due to optimization and
structural deflections. Changes due to optimization are mea-
sured from the initial geometry and are independent of the
aerostructural analysis. A balance between robustness and
efficiency is achieved by moving the grid in two sets of in-
crements. The grid for the jig shape is obtained by solv-
ing (4) before an analysis, using mJ increments with b(0)

set to that of the initial control grid. The reason is that us-
ing a consistent b(0) between all design iterations is neces-
sary to ensure the smoothness of the gradient. Equation (4)
is then coupled to the aerostructural analysis using another
m

D

increments to obtain the grid for the deflected geometry,
with b(0) set to b(mJ). Hence mesh movement during analy-
sis only needs to accommodate shape changes due to struc-
tural deflections. This allows for a relatively small m

D

that
is independent of the larger mJ , that might be needed to re-
flect the often larger changes in the jig shape. Grid quality is
then ensured without incurring a significant cost penalty in
the aerostructural calculations. This is particularly essential
in exploratory optimization where significant shape changes
are likely to occur. The subscripts J and

D

are used to distin-
guish between the mesh equations and variables for the jig
shape and the deflected shape.
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Fig. 1: The straight line which associates a structural mesh
node, P, with the surfaces of a wing section described by a
constant spanwise parametric coordinate h .

3.3 Structural Mesh Movement

The structural model remains fixed during aerostructural
analysis, but shape changes described by the B-spline sur-
faces must be translated consistently to the structural model
for accurate force and displacement transfer. Despite the
flexibility offered by B-spline surfaces, FFD provides a sim-
pler and more effective way to move the structural model
because it is geometric fidelity independent (Sederberg and
Parry, 1986; Kenway et al, 2010). A surface-based FFD
method is hence developed which parameterizes the space
enclosed by the B-spline surfaces and allows it to act as an
FFD volume in moving the structures. This method is suit-
able for any geometry with a well-defined leading and trail-
ing edge in the B-spline surface parameterization, and is suf-
ficient for many aerostructural design applications. It can be
modified to handle more general geometries.

Given a point P on the structural model, the surface-
based FFD method begins by associating it with two points
U and L, on the upper and lower surfaces of the geometry,
respectively. This is illustrated in Figure 1. The coordinates
of U and L are given by

U(x1,h) =
N̂ j

Â
j=1

N̂k

Â
k=1

N j(x1)Nk(h)B jkN̂m
, (6)

L(x2,h) =
N̂ j

Â
j=1

N̂k

Â
k=1

N j(x2)Nk(h)B jk1 ,

where x1, x2 and h are the chordwise and spanwise para-
metric coordinates of U and L on the B-spline surfaces, and
B jkN̂m

and B jk1 are the corresponding surface control points.
The points P, U , and L are collinear so that the coordinates
of P can be described by a parametric distance ` as follows:

U(x1,h)+ ` [L(x2,h)�U(x1,h)]�P = 0 . (7)

The appropriate U and L are found for each P at the start of
an optimization. The values of x1, x2, h and ` are then fixed
for the remainder of the optimization, and the coordinates of
P become a function of the B-spline surface control points.
Since U and L share the same h , P will always remain in the
same spanwise section traced by a constant h . In order to as-
sociate each P with a unique pair of (U, L), two constraints

are defined based on vector dot products:

Let:

8
><

>:

�!
UP =U(x1,h)�P
�!
LP = L(x2,h)�P
�!
C = T E(h)�LE(h)

, then:

(�!
UP ·�!C = 0
�!
LP ·�!C = 0

. (8)

Equation (8) requires that the line UPL (see Figure 1), along
which P is parameterized, to be normal to the chord defined
by the leading edge, LE, and trailing edge, TE, of the same
h . For most structural layouts, this ensures that UPL is close
to being tangent to the ribs and spars and is aligned with
the direction in which sectional shape changes are defined.
This can reduce the amount of unwanted distortions intro-
duced to the structural components during shape changes.
The surface-based FFD method effectively defines an FFD
control volume directly from the B-spline surfaces, but it
imposes few restrictions on the number and distribution of
control points on the upper and lower surfaces.

The surface-based FFD approach can be applied to most
geometries that are relevant to the static aerostructural de-
sign of an aircraft. For future extensions to more complex
geometries, such as a split-tip wing where a straight line
through U , P and L may not exist for all P, the search of
U and L is programmed as a minimization problem solved
by SQP (Nocedal and Wright, 2006). The cost of associating
all points on the structural model with the B-spline geometry
definition is negligible in comparison to the aerostructural
optimization. Re-evaluation of the new structural geometry
involves simple algebraic expressions and is extremely ef-
ficient. Geometric sensitivities of the structural mesh points
with respect to the surface control points can be easily ob-
tained using the chain rule.

4 Steady-State Aerostructural Analysis

The present methodology adopts a three-field formulation
of the discrete steady aerostructural equations. The mesh
equations, RMD

, appear explicitly in the aerostructural resid-
ual, RAS, along with the aerodynamic equations, RA, and the
structural equations, RS:

RAS =

2

4
RA(q,b

D

)
RS(q,u,b

D

)
RMD

(u,b
D

)

3

5= 0 . (9)

A two-field formulation of RAS, which consists only of the
aerodynamic and structural equations, treats the flow grid
as an intermediate variable. This leads to an explicit de-
pendence of RA on u, or ∂RA/∂u 6= 0. It can be recovered
from (9) by solving RMD

= 0 for every change in u. Eval-
uating ∂RA/∂u also requires the partial derivative of the
flow grid, G, with respect to u. However, this term cannot
be easily obtained for the present mesh movement strategy
because the mesh nodes are implicitly coupled to u via the
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surface control points according to (4). It is therefore more
efficient and straightforward to use a three-field formulation.

The present aerostructural framework is constructed
over existing aerodynamic, structural and mesh movement
modules. The solution to (9) is obtained via a nonlinear
block Gauss-Seidel method, which involves sub-iterations
using existing solution routines within each module. Results
obtained by aerostructural analysis are validated with exper-
imental data from the HIRENASD project, as shown in Ap-
pendix A.

4.1 Aerodynamic Analysis

The Euler equations governing compressible inviscid flow
are discretized on the multi-block structured mesh using
second-order summation-by-parts finite-difference opera-
tors (Hicken and Zingg, 2008). The use of simultaneous-
approximation terms simplifies interface solution coupling
and boundary treatments, while maintaining solution accu-
racy and time stability. The discrete steady aerodynamic
equations are written as

RA(q,b
D

) = 0 . (10)

Equation (10) has an explicit dependence on G, which is in
turn a function of b

D

. Given b
D

, (10) is solved for q by an
efficient parallel implicit Newton-Krylov-Schur algorithm.

4.2 Structural Analysis

The structural analysis is provided by the Toolkit
for the Analysis of Composite Structures (TACS)
(Kennedy and Martins, 2014a,b). The present work
assumes a linear constitutive relationship, and geo-
metric nonlinearity is not considered. The structural
components are modeled using second-order mixed inter-
polation of tensorial components (MITC) shell elements
(Dvorkin and Bathe, 1984), resulting in the following
equations:

RS(q,u,b
D

) = KSu� fS(q,b
D

) = 0 . (11)

The force vector, fS, in this case is a result of aerodynamic
loading, the magnitude and direction of which are explicit
functions of q and b

D

. Given fS, (11) is solved by GMRES
preconditioned by a direct Schur method.

TACS also calculates the structural mass and stress con-
straint. The stress constraint requires the load factor, lk, in
every element k, to satisfy lk = FoS⇥(sk/syield) 1, where
sk is the von Mises stress in the element, syield is the yield
stress of the material, and FoS is a factor of safety. The
number of constraints is reduced by aggregating the fail-
ure criteria from groups of elements using a Kreisselmeier-
Steinhauser (KS) function (Wrenn, 1989; Akgün et al, 1999;

Kennedy and Martins, 2010), so that gradient calculation
using the coupled adjoint method remains efficient. With
lmin = min{lk}, the KS function is given by:

KS = lmin �
1
r

ln

(
Ne

Â
k=1

exp [�r(lk �lmin)]

)
, (12)

where Ne is the number of elements and r is a positive
weighting parameter specified by the user.

4.3 Force and Displacement Transfer

The aerodynamic, structural, and mesh equations are cou-
pled by the transfer of forces and displacements at the
aerostructural interface. The interface includes flow grid
nodes on the parts of the geometry which are not assumed
rigid, and structural nodes adjacent to the aerodynamic sur-
face. The present framework uses a rigid link method in
TACS (Kennedy and Martins, 2014a). The rigid link vec-
tors are created at the start of optimization, where each flow
grid node at the interface is paired with the closest point on
the structural model. This allows displacements and forces
to be extrapolated between the aerodynamic and structural
grids, which may not necessarily overlap at the interface.

The rigid link method translates u into a vector of dis-
placements, uA, for all nodes at the surface of the flow grid.
The mesh movement, however, requires the displacement of
the B-spline surfaces. A discrete set of coordinates, G̃sD

, on
the deflected geometry is first obtained by adding uA to GsJ ,
which is a vector of surface grid nodes on the jig shape. A
new set of B-spline surfaces that best describes the deflected
geometry is then found by least-squares fitting. Due to the
error in fitting, surface grid coordinates described by the B-
spline surfaces may not be the same as those in G̃sD

. Some
possible implications of this error on the accuracy of the
analysis have been investigated by Zhang et al. (2015). It has
been shown that the error in displacement transfer as intro-
duced by the fitting does not affect the grid convergence of
important functionals. On the other hand, the grid smooth-
ing introduced by the fitting can improve the convergence
of the analysis in some cases. Whether or not the fitting is
desirable hence deserves further investigation.

4.4 Nonlinear Block Gauss-Seidel Iterations

Prior to an aerostructural analysis, the flow grid for the
jig shape is obtained by solving RMJ given bsJ(vG), and
the structures are moved according to Section 3.3. The ap-
propriate freestream conditions are assigned according to
vA. Structural stiffness is evaluated according to vS and
the updated structural geometry. Equation (9) is solved via
a nonlinear block Gauss-Seidel method. Aitken accelera-
tion (Irons and Tuck, 1969; Küttler and Wall, 2008) is used



High-Fidelity Aerostructural Optimization with Integrated Geometry Parameterization and Mesh Movement 9

to improve the stability and convergence of the analysis. The
relative tolerance for the aerostructural problem is typically
set to 10�7.

The nonlinear block Gauss-Seidel method allows the
flow, mesh, and structural modules to be integrated in a
straightforward manner. Nonetheless, they may suffer from
efficiency and stability issues for strongly coupled problems.
More effective monolithic methods have been proposed in
the literature to address such issues (Heil et al, 2008; Tezdu-
yar and Sathe, 2007; Bazilevs et al, 2008). The development
of more advanced solution strategies for the present work is
currently underway.

5 Gradient Calculation by the Coupled Adjoint Method

The coupled adjoint formulation has been previously de-
scribed by various authors (Martins et al, 2005; Maute et al,
2001). It is presented here for the current aerostructural opti-
mization methodology, using the method of Lagrange mul-
tipliers adopted by Hicken and Zingg (2010a) for aerody-
namic optimization. Consider the optimization of a func-
tional J , subject to RAS = 0 and RMJ = 0. The Lagrangian
function for this problem is

L =J (v,bJ , [q,u,b
D

]T )+Y

T
MJRMJ(v,bJ) (13)

+
⇥
Y

T
A Y

T
S Y

T
MD

⇤
2

4
RA(v,bJ , [q,bD

]T )
RS(v,bJ , [q,u,bD

]T )
RMD

(v,bJ , [u,bD

]T )

3

5 ,

where Y MJ , Y A, Y S and Y MD

are the Lagrange multipliers.
Square brackets are used around RAS = [RA,RS,RMD

]T and
[q,u,b

D

]T to indicate that they are fully coupled as a single
term. The first-order optimality conditions require that the
partial derivatives of L with respect to bJ and [q,u,b

D

]T be
zero:

∂L

∂bJ
= 0 ) (14)

Y

T
MJ

∂RMJ

∂bJ
+
⇥
Y

T
AY

T
S Y

T
MD

⇤
0

@ ∂

∂bJ

2

4
RA
RS

RMD

3

5

1

A=�∂J

∂bJ
,

∂L

∂ [q,u,b
D

]T
= 0 )

⇥
Y

T
AY

T
S Y

T
MD

⇤
0

@ ∂

∂ [q,u,b
D

]T

2

4
RA
RS

RMD

3

5

1

A=� ∂J

∂ [q,u,b
D

]T
.

Taking the transpose of the above equations leads to

2

6666666666664

∂RMJ

∂bJ

T

0 0
∂RMD

∂bJ

T

0

∂RA

∂q

T
∂RS

∂q

T
0

0
∂RS

∂u

T
∂RMD

∂u

T

∂RA

∂b
D

T
∂RS

∂b
D

T
∂RMD

∂b
D

T

3

7777777777775

2

66666664

Y MJ

Y A

Y S

Y MD

3

77777775

=

2

66666666664

0

�∂J

∂q

T

�∂J

∂u

T

� ∂J

∂b
D

T

3

77777777775

.

(15)

The derivation is completed by taking the partial derivative
of L with respect to v:

G =
∂J

∂v

T
+

∂RMJ

∂v

T
Y MJ (16)

+

 
∂RA

∂v

T
Y A +

∂RS

∂v

T
Y S +

∂RMD

∂v

T
Y MD

!
,

which is the expression for the total gradient of J with re-
spect to the design variables. The Lagrange multipliers here
are the adjoint variables. The coupled adjoint equations refer
to the block 3⇥3 system in (15), where [Y A,Y S,Y MD

]T are
coupled by the transposed Jacobian of RAS on the left-hand
side. The coupled adjoint problem is augmented by the mesh
adjoint equations for the jig shape in the first row of (15).
Gradient evaluation involves first solving (15) for all adjoint
variables, and subsequently evaluating (16).

Calculation of the partial derivative terms follows the
work of Kenway et al. (2014c), but appropriate modifica-
tions have been introduced for the three-field formulation
adopted here. To facilitate further discussion on the gradi-
ent calculation, it is convenient to distinguish between aero-
dynamic functionals, JA, and structural functionals, JS.
Aerodynamic functionals, such as lift and drag, have no ex-
plicit dependence on structural variables. Conversely, struc-
tural functionals, such as mass and the KS functions, have
no explicit dependence on aerodynamic variables. Compos-
ite functionals of interest in this work can be written in terms
of pure aerodynamic and structural functionals.

The coupled adjoint problem in (15) is solved via a linear
block Gauss-Seidel method. Each iteration solves the fol-
lowing equations in sequence:

∂RA

∂q

T
Y

(k+1)
A =�∂J

∂q

T
� ∂RS

∂q

T
Y

(k)
S (17)

KSY
(k+1)
S =�∂J

∂u

T
� ∂RMD

∂u

T
Y

(k)
MD

(18)

∂RMD

∂b
D

T
Y

(k+1)
MD

=� ∂J

∂b
D

T
� ∂RA

∂b
D

T
Y

(k+1)
A � ∂RS

∂b
D

T
Y

(k+1)
S ,

(19)
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where k is the iteration number. The iterations are repeated
until the residual norms of all equations drop below a speci-
fied tolerance relative to their initial values.

The flow adjoint equation in (17) is not significantly
modified from the two-field formulation described in Ken-
way et al. (2014c). The term (∂ fA/∂q)T , as needed for
(∂RS/∂q)T

Y S, is analytically differentiated for the present
framework. Equation (17) is solved by a flexible variant
of GCROT preconditioned in the same manner as the flow
equations (Hicken and Zingg, 2010a). The transposed flow
Jacobian, (∂RA/∂q)T , is computed by a combination of an-
alytical and complex-step differentiation, and stored.

With a three-field formulation, the aerodynamic forces
are explicit functions of b

D

instead of u. For this rea-
son, (∂JA/∂u)T is zero in (18). Similarly, contributions
of the following forces in the structural Jacobian, i.e.
(∂ fS/∂u)T (∂RS/∂ fS)T

Y

(k)
S , are also zero. The effects of u

on the mesh movement are included in

∂RMD

∂u

T
Y MD

=
∂uA

∂u

T
∂ G̃sD

∂uA

T
∂bsD

∂ G̃sD

T
∂RMD

∂bsD

T
Y MD

, (20)

where all terms are differentiated analytically. In particu-
lar, (∂bsD

/∂ G̃sD

)T is obtained by differentiating the linear
least-squares surface fitting. The last term, (∂uA/∂u)T is
computed in TACS (Kennedy and Martins, 2014a). Equa-
tion (18) is solved by the same routines as in structural anal-
ysis due to the symmetry of KS.

In the mesh adjoint equation in (19), (∂JS/∂b
D

)T is
zero. Furthermore, (∂JA/∂b

D

)T and (∂RA/∂b
D

)T
Y A are

obtained by differentiating with respect to the flow grid,
G, then completing the chain rule by (∂G/∂b

D

)T from
the B-spline volume definition. The term (∂RS/∂b

D

)T
Y S

accounts for the contribution of G, as a function of b
D

,
in the surface traction calculation and in the force trans-
fer (Kennedy and Martins, 2014a), and is analytically differ-
entiated. All partial derivative terms on the right-hand side
of (19) are only non-zero with respect to b(m

D

)
D

. Hence (19)
is solved as the following m

D

equations:

For i = m
D

: (21)
 

∂R(m
D

)
MD

∂b(m
D

)
D

!T

Y

(m
D

)
MD

=� ∂J

∂b(m
D

)
D

T

� ∂RA

∂b(m
D

)
D

T
Y A �

∂RS

∂b(m
D

)
D

T
Y S ,

For i = m
D

�1, · · · ,1 :
 

∂R(i)
MD

∂b(i)
D

!T

Y

(i)
MD

=�
 

∂R(i+1)
MD

∂b(i)
D

!T

Y

(i+1)
MD

,

where each equation is solved by the parallel PCG solver in
PETSc (Balay et al, 1997).

After solving the coupled adjoint problem, the mesh ad-
joint equation for the jig shape is solved for Y MJ . Control
grid coordinates for the jig shape, bJ , only appear in RMD

.
The jig shape mesh adjoint equation is hence reduced to

∂RMJ

∂bJ

T
Y MJ =�∂RMD

∂bJ

T
Y MD

. (22)

More specifically, b(mJ)
J is involved in the calculation of the

stiffness, KMD

, and the implicit force vector, fMD

, in RMD

.
Equation (22) then translates to the following mJ equations:

For i = mJ : (23)
 

∂R(mJ)
MJ

∂b(mJ)
J

!T

Y

(mJ)
MJ =�

 
∂R(1)

MD

∂b(mJ)
J

����
f(1)MD

!T

Y

(1)
MD

+
m

D

Â
j=1

 
∂ f( j)

MD

∂b(mJ)
J

!T

Y

( j)
MD

,

For i = mJ �1, · · · ,1 :
 

∂R(i)
MJ

∂b(i)
J

!T

Y

(i)
MJ =�

 
∂R(i+1)

MJ

∂b(i)
J

!T

Y

(i+1)
MJ ,

which are solved in a similar fashion as (19).
Equation (16) can be simplified for aerodynamic and

structural design variables as follows:

GA =
∂J

∂vA

T
+

∂RA

∂vA

T
Y A , (24)

GS =
∂J

∂vS

T
+

∂RS

∂vS

T
Y S .

Gradients with respect to geometric design variables, vG,
are computed differently for the augmented coupled ad-
joint approach here from other two- and three-field for-
mulations ((Martins et al, 2005; Kenway et al, 2014c;
Kennedy and Martins, 2014a; Maute et al, 2003). The terms
(∂RA/∂vG)T

Y A and (∂JA/∂vG)T are both zero. The grid
dependence of RA and JA is instead expressed through the
two mesh adjoint terms in (16), where

∂RMJ

∂vG

T
Y MJ =

∂bsJ

∂vG

T
∂RMJ

∂bsJ

T
Y MJ , (25)

∂RMD

∂vG

T
Y MD

=
∂ G̃sD

∂vG

T
∂bsD

∂ G̃sD

T
∂RMD

∂bsD

T
Y MD

. (26)

Equations (25) and (26) differ in that bsJ is an explicit
function of vG, while bsD

depends on vG via fitting the
discrete deflected geometry in G̃sD

. Furthermore, evalua-
tion of (∂ G̃sD

/∂vG)T accounts for changes in both the jig
shape and the rigid link vectors (Kenway et al, 2014c).
Both (∂RS/∂vG)T

Y S and (∂JS/∂vG)T need to account for
changes in the structural geometry as a result of shape opti-
mization (Martins et al, 2005; Kennedy and Martins, 2014a).
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Fig. 2: Illustration of the ability of the integrated geometry parameterization to handle substantial geometry changes. The
right-most figure shows the new geometry and its pressure coefficient contour under structural deflection, which is superim-
posed on the undeflected geometry.

This involves differentiating (7) for each point on the struc-
tural model with respect to bsJ , which is a function of vG.

Zhang et al. (2015) verified the gradient computed us-
ing the augmented coupled adjoint approach via compar-
ison with a second-order finite-difference approximation.
The majority of the gradient values considered have a min-
imum relative error on the order of 10�8. This shows that
the present methodology is capable of computing accurate
gradients.

6 Application to Aerostructural Analysis and
Optimization

6.1 Analysis of a C-Wing

To demonstrate the capability of the integrated geometry pa-
rameterization and mesh movement to handle large shape
changes, a planar wing geometry is manually deformed
into a user-specified C-wing geometry using the integrated
methodology, and aerostructural analysis based on the Eu-
ler equations is performed on the resulting geometry. Al-
though the optimization studies in the subsequent sections
also involve large geometry changes, this is a more extreme
example that presents a particularly challenging mesh move-
ment problem in both the flow and structure grids. The initial
and new undeflected geometries are shown in Figure 2 and
have the RAE 2822 airfoil. The aerodynamic grid consists of
193,536 nodes and 112 blocks. Each block is parameterized
by 6⇥6⇥6 control points. The surface geometry consists of
20 surface patches, which leads to 30 surface control points
in the spanwise direction and 12 in the chordwise direction.
The structural model has 30,473 second-order MITC shell
elements; it is shown in blue with the initial geometry and

the undeflected C-wing. It is evident that the surface-based
FFD successfully moved the internal structure without dis-
torting the individual components.

The aerostructural analysis of the C-wing uses a Mach
number of 0.785 at an AoA of 0.0� and assumes an altitude
of 35,000 feet. The material used for the structures is based
on the 7075 Aluminum with a Poisson’s ratio of 0.33 and
Young’s modulus of 70GPa. All structural components in
the wing have a thickness of 7.5mm. These parameters are
chosen to induce a realistic structural deflection in the wing,
which is observed in the final geometry shown on the right
in Figure 2.

6.2 Inviscid Transonic Wing Sweep Optimization

There is a fundamental tradeoff between weight and drag
in the design of aircraft wings. For instance, at transonic
speeds, increasing the quarter-chord sweep angle of a wing
reduces the wave drag, but the corresponding increase in the
weight may overshadow the drag benefit in such a way that
the resulting range is reduced. The main objective of this
section is to investigate whether the current framework is
able to capture this important tradeoff correctly in the con-
text of an aerostructural optimization of a conventional pla-
nar wing.

The choice of the objective function in optimization in-
fluences the final optimized design. In the practical design of
aircraft wings, the objective is carefully chosen based on the
design requirements for a particular aircraft. However, for
the purpose of this study, only the tradeoff between weight
and drag is of interest. For this reason, the objective function
has the form

J = b

D
D0

+(1�b )
W
W0

, (27)
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Z

Fig. 3: The outer mold line of the initial wing with the struc-
tural components inside the wingbox.

X

Y

Z

Fig. 4: Grid resolution of the surface and symmetry plane
for the fine optimization mesh.

where b is a parameter between zero and unity, D is the in-
viscid drag of the wing in cruise, W is the calculated weight
of the wing satisfying the structural failure constraints at a
2.5g load condition, and D0 and W0 are the respective initial
values. As b is varied from zero to unity, the emphasis on
drag in the objective function is increased while reducing the
emphasis on weight. Three values for b have been chosen:
0.50, 0.75, and 1.00.

There are two lift constraints; one corresponds to the
cruise load condition, the other to the 2.5g load condition.
The cruise Mach number is 0.785 at an altitude of 35,000
feet, while the Mach number for the 2.5g load condition
is 0.798 at an altitude of 12,000 feet. Since the weight of
the wing is a function of the structural thickness values,
it changes over the course of the optimization. The total
weight of the aircraft is assumed to be equal to the com-
puted weight of the wing plus a fixed weight of 785,000N.
This fixed weight is estimated based on the maximum take-
off weight of a Boeing 737-900 discounted by the approxi-
mate wing weight. The approximate wing weight is equal to
7% of the maximum takeoff weight.

The stresses on the wing due to the aerodynamic loads at
the 2.5g load condition are aggregated using three KS func-
tions with an aggregation parameter of 30.0. There is one
KS function for the ribs and spars, one for the top skin, and
one for the bottom skin of the wing. These KS functions are
constrained to ensure structural integrity of the wing. The
material is based on the 7075 Aluminum with a Poisson’s ra-
tio of 0.33 and Young’s modulus of 70GPa. The yield stress
is 434MPa, and a safety factor of two is applied. The reduc-
tion in the thickness-to-chord ratio of the wing is limited to
10% of the initial value.

The aerostructural optimizations are initiated with a pla-
nar wing geometry based on the Boeing 737-900 planform.

Figure 3 shows the layout of the wing and the structures in-
side the wingbox. Initially, a coarse CFD grid is used with
193,536 nodes and 112 blocks. Once the optimizer satisfies
the nonlinear constraints on this coarse mesh, the optimiza-
tion is restarted using a finer mesh with 653,184 nodes and
112 blocks. Figure 4 shows the grid resolution of the surface
and symmetry plane for the fine mesh. Each block is param-
eterized with 6⇥ 6⇥ 6 control points. The upper and lower
surfaces of the wing are parameterized with 10 B-spline sur-
face patches. The structures mesh has 30,473 second-order
MITC shell elements.

The initial airfoil is the RAE 2822. The optimizer is free
to change the tip twist and section shape at 16 spanwise
stations in addition to the quarter-chord sweep angle. Each
spanwise station is parameterized by 24 control points, 14 of
which are design variables. The remaining 10 control points
are fixed to ensure curvature continuity on the surface of the
wing. The sweep angle is varied in such a way that the initial
span of the wing is maintained. The total number of geomet-
ric design variables is equal to 226. Furthermore, there are a
total of 156 structural design variables which determine the
thickness of structural components inside the wingbox. Fi-
nally, there are two angle of attack design variables; one for
cruise, the other for the 2.5g load condition.

As b is varied from 0.5 to 1.0, i.e. as more emphasis is
placed on drag and less on weight, the optimizer should take
advantage of the available freedom to increase the sweep
angle of the wing in order to reduce drag. As a result, the
sweep angles of the optimized designs should increase with
increasing b . Figure 5 shows the planform of the three opti-
mized wings. The wing with b = 1.0 has a 16% lower drag
and a 49% higher weight than the wing with b = 0.5. It
is clear that the optimizer has produced the expected trend.
This demonstrates that the present aerostructural optimiza-
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Fig. 5: The planforms for the three wings show that the op-
timal sweep angle, L , increases with increasing b , i.e. in-
creasing emphasis on drag.

tion framework is capable of capturing the tradeoff between
weight and drag.

Figures 6 and 7 show the spanwise lift distributions at
the cruise and 2.5g load conditions for the b = 1.0 and
b = 0.5 cases, respectively. All lift values have been normal-
ized by the elliptical lift at the root of the wing for cruise. For
the b = 1.0 case, the cruise lift distribution closely follows
the elliptical load, while the 2.5g spanwise lift distribution is
much more triangular in comparison to cruise. This means
that the optimizer is taking advantage of aeroelastic tailor-
ing to minimize inviscid drag in cruise both by maintaining
an optimal lift distribution and increasing the quarter-chord
sweep angle. This is done while maintaining the structural
integrity of the wing at the 2.5g load condition by reducing
the tip loading. It is also insightful to examine the b = 0.5
case. With b = 0.5, the lift distributions for both the cruise
and 2.5g load conditions are triangular because the objec-
tive function is more heavily biased towards the weight of
the wing.

Figures 8 and 9 show the optimized skin thickness distri-
bution for the b = 0.5 and b = 1.0 cases, respectively. The
optimizer has increased the thickness inboard in both cases.
Furthermore, it is clear that the b = 0.5 case has lighter com-
ponents in comparison to the b = 1.0 case. Although only a
single critical structural load condition has been considered,
these results show that at least some of the correct trends in
the structural sizing of a wing have been captured.
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Fig. 6: Cruise and 2.5g load distributions along the span of
the wing for the b = 1.0 case.
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Fig. 7: Cruise and 2.5g load distributions along the span of
the wing for the b = 0.5 case.

6.3 Exploratory Aerostructural Optimization

This section demonstrates the ability of the proposed
aerostructural analysis and optimization methodology to
perform exploratory optimization with large geometric vari-
ation. The planform of the initial wing is based on the Boe-
ing 737-900 aircraft with the RAE 2822 supercritical airfoil.
Figure 10 shows the planform of the initial geometry along
with the structural layout. Two load conditions are consid-
ered: cruise and a 2.5g load case to size the structures. The
Mach number at the cruise condition is equal to 0.785 at an
altitude of 35,000 feet, while the Mach number for the 2.5g
load condition is equal to 0.798 at an altitude of 12,000 feet.

The choice of the objective function for optimization
has important implications on the characteristics of the fi-
nal optimal design. In practical design of aircraft, the objec-
tive function is chosen based on a wide range of operational
considerations in addition to the mission requirements of the
airplane. However, our main goal here is to demonstrate the
capability of the proposed methodology for conducting ex-
ploratory design optimization. As a result, an objective func-



14 Zimi J. Zhang et al.

Fig. 8 The optimized thickness distribution of
skin elements for the b = 0.5 case.

Fig. 9 The optimized thickness distribution of
skin elements for the b = 1.0 case.

Fig. 10: The outer mold line of the initial wing for the
drooped-wing case with the ribs and spars.

tion of the form

J =� L
D

log
Wi

Wf
(28)

is chosen, where L/D is the inviscid lift-to-drag ratio of the
wing, Wi is the initial weight, and Wf is Wi minus the fuel
weight. The fuel mass is estimated to be around 21,000kg.
This objective function serves as a surrogate for the Breguet
range formulation since the cruise speed and the specific fuel
consumption are assumed to be fixed. The initial weight of
the aircraft is assumed to be equal to the weight of the wing
plus a fixed weight of 785,000N. The weight of the wing
is calculated by multiplying the weight obtained from the

Fig. 11: Geometric parameterization and design variables
for the drooped-wing case.

finite-element model by a factor of 1.5 to account for the
weight of the load-bearing members that are not included
in the structural finite-element model of the wing (Kennedy
and Martins, 2014a).

Figure 11 shows the geometric parameterization and de-
sign variables used in this optimization case. The upper and
lower surfaces of the wing are each broken into 5 regions.
The optimizer is free to change the twist and dihedral angle
of each region. In addition, the z-coordinates of the B-spline
control points are allowed to vary at 10 spanwise stations
indicated by blue cubes in Figure 11. The airfoil shapes are
interpolated between every pair of control point stations in
such a way that slope continuity is maintained along the sur-
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Fig. 12: Convergence of optimality and feasibility for the
drooped-wing case.
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Fig. 13: Convergence of the merit function for the drooped-
wing case.

face of the wing. The projected span of the undeflected wing
is constrained to its initial value. There are 150 structural de-
sign variables describing the thickness of the structural com-
ponents, and two angle of attack design variables for the two
load conditions.

There are two lift constraints: one for cruise and one for
the 2.5g load condition. At each load condition, there are
three KS constraints to ensure the structural integrity of the
ribs and spars, top skin, and bottom skin of the wing. This
allows the optimizer to capture some of the important effects
of structural sizing on the aerodynamic performance of the
wing.

Due to the broad range of geometric freedom given
to the optimizer, this case is particularly challenging in
terms of optimization convergence. To mitigate some of
these challenges, the optimization is performed in two
stages. The first stage uses a coarse aerodynamic grid with
149,072 nodes. Once the optimizer satisfies the nonlinear
constraints, the optimization is continued on the finer mesh
with 458,752 nodes. The finite-element model of the struc-
tures has 30,030 second-order MITC shell elements.

Figures 12 and 13 show the convergence history for this
optimization case. Feasibility is a measure of the highest
nonlinear constraint violation, and optimality is a measure
of the gradient of the objective function and constraints. The
merit function approaches the objective function value when
the feasibility measure is small. These figures indicate that
the optimization has reached an acceptable level of conver-
gence. Figure 14 shows the evolution of the wing geometry
over the course of optimization. It demonstrates that the op-
timizer is able to assess a wide variety of unconventional
shapes during optimization, and the optimization converges
to a drooped-wing concept. The final design is able to satisfy
all nonlinear constraints to a tight tolerance while providing
an objective function improvement of approximately 4% in

Fig. 14: Functional evaluation number along with back-
view of the wing shapes analyzed during optimization. The
shapes correspond to the deflected state at the cruise condi-
tion.

comparison to an optimal planar wing of the same projected
span.

7 Conclusions and Future Work

This paper describes and characterizes the application of
the integrated geometry parameterization and mesh move-
ment algorithm of Hicken and Zingg (2010a) to high-fidelity
aerostructural optimization problems. This approach ana-
lytically describes both the undeflected geometry and the
flying shape of the design using B-spline surface control
points. It has several advantages as a geometry parameter-
ization and control technique. The geometry parameteriza-
tion enables, and is tightly integrated with, an efficient and
robust mesh movement algorithm that allows high quality
computational grids to be obtained for the aerodynamic do-
main in response to large shape changes. The present paper
demonstrates that the integrated geometry parameterization
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and mesh movement strategy can be successfully extended
to aerostructural optimization, and is suitable for use in op-
timization with large shape changes. This is achieved by in-
troducing a novel structural mesh movement strategy also
capable of handling large shape changes. A three-field for-
mulation has also been adopted to simplify the analysis and
the coupled adjoint problem, where B-spline control point
coordinates are treated as explicit state variables. Details on
the aerostructural solution procedure and the coupled adjoint
calculations specific to the new methodology have been pro-
vided.

Three examples are included to show how the present
framework performs in aerostructural applications. The first
case is the analysis of a C-wing that is manually generated
from a planar wing using the integrated geometry parameter-
ization and mesh movement methodology. This has demon-
strated the robustness of the framework in the presence of
aggressive shape changes. The framework is also applied in
a wing sweep optimization study involving a realistic num-
ber of design variables. The results of this study accurately
reflect the fundamental tradeoff between weight and drag
in aerostructural design problems. Finally, the ability of the
proposed methodology to perform exploratory optimization
is demonstrated by the application of the framework to a
case with a high degree of geometric freedom, producing a
novel drooped-wing.

Future development will include the application of the
present framework to more practical design problems and
exploratory optimization studies. The gradient calculation
will be extended to incorporate aerostructural RANS analy-
sis. More efficient and robust aerostructural solution strate-
gies, such as monolithic methods, will be sought to further
improve the effectiveness of this framework as a tool for de-
sign and exploratory optimization.
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Appendix A: Validation Based on the HIRENASD Wing

Although the individual components of the aerostructural
analysis capability have been separately validated with ex-
perimental results, it is also important to compare the static
aeroelastic analysis results with experiment. However, it is
quite difficult to find a suitable experimental study for vali-

dation. Most of the test articles used in relevant experimen-
tal studies are structurally too stiff to provide a meaningful
way of assessing the deflections. Furthermore, it is a chal-
lenge to replicate the exact experimental conditions and test
setup in many cases. Nonetheless, the HIgh REynolds Num-
ber Aero-Structural Dynamics (HIRENASD) Project does
provide some useful static aeroelastic data along with the
relevant geometries for validating the framework.

The HIRENASD Project was initiated to provide experi-
mental aeroelastic data for a large transport wing-body con-
figuration (Ballmann et al, 2006, 2008, 2009). This section
compares static aeroelastic computational results obtained
using the present framework with the HIRENASD exper-
imental data. In order to model the test conditions accu-
rately, the Reynolds-Averaged-Navier-Stokes (RANS) ca-
pability of the flow solver has been used here for the pur-
pose of the aerostructural analysis. The main objective is
to demonstrate that the correct physics are captured even
in the presence of the fitting errors. Furthermore, the re-
sults of this section motivate the future extension of the cur-
rent framework to aerostructural optimization based on the
RANS equations.

The test condition Mach number, angle of attack, and
Reynolds number are 0.80, 1.5�, and 7.0⇥106, respectively.
An aerostructural analysis is performed to obtain the com-
putational results. The one-equation Spalart-Allmaras turbu-
lence model is used to model the turbulent flow in this test
case. Osusky and Zingg (2013) provide comprehensive de-
tails on implementation, verification, and validation of the
RANS flow solver.

The flow grid has 3,548,095 nodes with an average y+

value of 0.24. The finite-element model provided by the
HIRENASD project contained solid elements. However, the
structural solver, TACS, accepts MITC shell elements only.
Furthermore, the current structural model does not include
the leading and trailing edges. Thus, an effort has been made
to ensure that the structural finite-element model used in this
analysis represents the original structure of the HIRENASD
wing as closely as possible within these constraints. The
finite-element model for the structures has approximately
38,000 second-order MITC shell elements.

Figure 15 provides a comparison of the computational
static aerostructural results with the experimental data. The
rigid-body results (where there are no structural deflections)
are also provided for reference. Figure 15 demonstrates that
the static aerostructural results obtained from the present
framework consistently show much better agreement with
the experimental data than the rigid CFD computations, es-
pecially towards the wingtip. Moreover, the computed tip
deflection of 12.6 mm is in excellent agreement with the ex-
perimental value of 12.5 mm (Chwalowski et al, 2011).



High-Fidelity Aerostructural Optimization with Integrated Geometry Parameterization and Mesh Movement 17

X

Z

Y

Cp: -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

 x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

Experiment
CFD+FEA
Rigid CFD

y/b=0.95

 x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

Experiment
CFD+FEA
Rigid CFD

y/b=0.80

Fig. 15: Comparison of experimental and computational pressure coefficient results for the HIRENASD wing geometry. The
experimental (black), static aeroelastic (blue), and rigid-wing results (red) are shown for each spanwise station.
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Küttler U, Wall WA (2008) Fixed-point fluid–
structure interaction solvers with dynamic re-
laxation. Computational Mechanics 43(1):61–
72, DOI 10.1007/s00466-008-0255-5, URL
http://dx.doi.org/10.1007/s00466-008-0255-5

Lee C (2015) A comparison of b-spline surface and free-
form deformation geometry control methods for aerody-
namic shape optimization. Master’s thesis, University of
Toronto, Toronto

Leoviriyakit K, Kim S, Jameson A (2004) Aero-structural
wing planform optimization using the Navier-Stokes
equations. In: 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Albany, New
York, AIAA-2004-4479

Lyu Z, Martins JRRA (2014) Aerodynamic shape optimiza-
tion studies of a blended-wing-body aircraft. Journal of

http://dx.doi.org/10.1002/nme.1620010306
http://dx.doi.org/10.1002/nme.1620010306
http://dx.doi.org/10.1007/s00158-014-1108-9
http://dx.doi.org/10.1007/s00158-014-1108-9
http://dx.doi.org/10.1007/s00466-008-0255-5


High-Fidelity Aerostructural Optimization with Integrated Geometry Parameterization and Mesh Movement 19

Aircraft 51(5):1604–1617, DOI 10.2514/1.C032491
Martins JRRA, Alonso JJ, Reuther JJ (2004) High-fidelity

aerostructural design optimization of a supersonic busi-
ness jet. Journal of Aircraft 41(3):523–530

Martins JRRA, Alonso JJ, Reuther JJ (2005) A coupled-
adjoint sensitivity analysis method for high-fidelity aero-
structural design. Optimization and Engineering 6:33–62

Masters DA, Poole DJ, Taylor NJ, Rendall T, Allen CB
(2016) Impact of shape parameterisation on aerodynamic
optimisation of benchmark problem. In: 54th AIAA
Aerospace Sciences Meeting, San Diego, CA, 2016-1544

Maute K, Nikbay M, Farhat C (2001) Coupled ana-
lytical sensitivity analysis and optimization of three-
dimensional nonlinear aeroelastic systems. AIAA Journal
39(11):2051–2061

Maute K, Nikbay M, Farhat C (2003) Sensitivity analy-
sis and design optimization of three-dimensional non-
linear aeroelastic systems by the adjoint method. Inter-
national Journal for Numerical Methods in Engineer-
ing 56(6):911–933, DOI 10.1002/nme.599, URL http:

//dx.doi.org/10.1002/nme.599

Nocedal J, Wright SJ (2006) Numerical Optimization, 2nd
edn. Springer, New York

Osusky L, Buckley H, Reist T, Zingg DW (2015) Drag
minimization based on the Navier-Stokes equations using
a Newton-Krylov approach. AIAA Journal 53(6):1555–
1577, DOI 10.2514/1.J053457

Osusky M, Zingg DW (2013) Parallel Newton-Krylov-
Schur solver for the Navier-Stokes equations dis-
cretized using summation-by-parts operators. AIAA Jour-
nal 51(12):2833–2851, DOI 10.2514/1.J052487

Perez RE, Jansen PW, Martins JRRA (2012) pyOpt:
A Python-based object-oriented framework for nonlin-
ear constrained optimization. Structures and Multidis-
ciplinary Optimization 45(1):101–118, DOI 10.1007/
s00158-011-0666-3

Persson PO, Peraire J (2009) Curved mesh generation and
mesh refinement using lagrangian solid mechanics. In:
47th AIAA Aerospace Sciences Meeting including The
New Horizons Forum and Aerospace Exposition, Or-
lando, Florida

Piegl L, Tiller W (1997) The NURBS Book, 2nd edn. Mono-
graphs in Visual Communication, Springer-Verlag Berlin
Heidelberg, DOI 10.1007/978-3-642-59223-2

Pironneau O (1974) On optimum design in fluid mechanics.
Journal of Fluid Mechanics 64(1):97–110

Reist TA, , Zingg DW (2013) Aerodynamic shape opti-
mization of a blended-wing-body regional transport for a
short range mission. In: 31st AIAA Applied Aerodynam-
ics Conference, San Diego, CA, 2013-2414

Reuther J, Jameson A (1995) A comparison of design vari-
ables for control theory based airfoil optimization. Tech.
rep., NASA

Reuther JJ, Alonso JJ, Martins JRRA, Smith SC (1999) A
coupled aero-structural optimization method for complete
aircraft configurations. In: AIAA 37th Aerospace Sci-
ences Meeting, pp 99–0187

Rogers DF, Adams JA (1990) Mathematical elements for
computer graphics. McGraw-Hill, New York

Samareh J (2000) Multidisciplinary aerodynamic-structural
shape optimization using deformation (massoud). In: 8th
AIAA Symposium on Multidisciplinary Analysis and Op-
timization, Long Beach, California, 2000-4911

Samareh JA (1999) Status and future of geometry modeling
and grid generation for design and optimization. Journal
of Aircraft 36(1):97–104, DOI 10.2514/2.2417

Samareh JA (2001) Survey of shape parameterization tech-
niques for high-fidelity multidisciplinary shape optimiza-
tion. AIAA Journal 39(5):877–884, DOI 0.2514/2.1391

Schramm U, Pilkey WD (1993) Structural shape optimiza-
tion for the torsion problem using direct integration and
b-splines. Computer Methods in Applied Mechanics and
Engineering 107(1):251–268

Sederberg TW, Parry SR (1986) Free-form deformation of
solid geometric models. In: SIGGRAPH ’86 Proceedings
of the 13th Annual Conference on Computer Graphics and
Interactive Techniques, Dallas, Texas, pp 151–160

Sobieczky H (1998) Flexible wing optimisation based
on shapes and structures. In: Fujii K, Dulikravich
GS (eds) Recent Development of Aerodynamic Design
Methodologies, Notes on Numerical Fluid Mechanics
(NNFM), vol 65, Vieweg Verlag, pp 71–88, DOI 10.1007/
978-3-322-89952-1 4

Tezduyar TE, Sathe S (2007) Modelling of fluidstructure
interactions with the spacetime finite elements: Solution
techniques. International Journal for Numerical Methods
in Fluids 54(6-8):855–900, DOI 10.1002/fld.1430, URL
http://dx.doi.org/10.1002/fld.1430

Torenbeek E, Deconinck H (eds) (2005) Innovative Configu-
rations and Advanced Concepts for Future Civil Aircraft.
VKI Lecture Series, von Karman Institute for Fluid Dy-
namics

Truong A, Zingg DW, Haimes R (2016) Surface Mesh
Movement Algorithm for Computer-Aided-Design-
Based Aerodynamic Shape Optimization. AIAA Journal
54(2):542–556, DOI 10.2514/1.J054295

Wrenn GA (1989) An indirect method for numerical op-
timization using the Kreisselmeier–Steinhauser function.
Tech. Rep. CR-4220, NASA

Yano M, Modisette J, Darmofal D (2011) The importance of
mesh adaptation for higher-order discretizations of aero-
dynamic flows. In: 20th AIAA Computational Fluid Dy-
namics Conference, Honolulu, Hawaii, 2011-3852

Zhang ZJ, Khosravi S, Zingg DW (2015) High-fidelity
aerostructural optimization with integrated geome-
try parameterization and mesh movement. In: 56th

http://dx.doi.org/10.1002/nme.599
http://dx.doi.org/10.1002/nme.599
http://dx.doi.org/10.1002/fld.1430


20 Zimi J. Zhang et al.

AIAA/ASCE/AHS/ASC Structures, Structural Dynam-
ics, and Materials Conference, Kissimmee, FL, 2015-
1132


	Introduction
	Aerostructural Optimization Problem Overview 
	Integrated Geometry Parameterization and Mesh Movement 
	Steady-State Aerostructural Analysis
	Gradient Calculation by the Coupled Adjoint Method
	Application to Aerostructural Analysis and Optimization
	Conclusions and Future Work

