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Abstract Conventional wisdom suggests that high-order finite-difference meth-
ods are more efficient than high-order discontinuous spectral-element meth-
ods on smooth meshes, but less efficient as the mesh becomes increasingly
distorted because of a significant loss of accuracy on such meshes. This pa-
per investigates the influence of mesh distortion on the relative efficiency of
different implementations of generalized summation-by-parts (GSBP) meth-
ods, with emphasis on comparing finite-difference and discontinuous spectral-
element approaches. These include discretizations built using classical finite-
difference SBP operators, with and without optimized boundary closures, as
well as both Legendre-Gauss and Legendre-Gauss-Lobatto operators. The tra-
ditionally finite-difference operators are also applied as discontinuous spectral-
element operators by selecting a fixed number of nodes per element and per-
forming mesh refinement by increasing the number of elements rather than
the number of mesh nodes. Using the linear convection equation and nonlin-
ear Euler equations as models, solutions are obtained on meshes with different
types and severity of distortion. Contrary to expectation, the results show that
finite-difference implementations are no more sensitive to mesh distortion than
discontinuous spectral-element implementations, maintaining their relative ef-
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ficiency in most cases. The results also show that the operators of Mattsson
et al. (J. Comp. Phys., 264, 2014) with optimized boundary operators are
often the most efficient for a given implementation strategy (finite-difference
or discontinuous spectral-element). While their accuracy as finite-difference
operators might be expected, their superior accuracy to LG and LGL nodal
distributions when implemented as discontinuous spectral-element operators
is not well known.

Keywords Summation-by-parts property · Finite-difference methods ·
Discontinuous spectral-element methods

Mathematics Subject Classification (2020) 65M06 · 65M60 · 65M70

1 Introduction

Summation-by-parts (SBP) is the discrete analogue of integration-by-parts.
It can therefore be used to relate the inner product of discretized functions
and partial differential equations over some domain to their solution along the
boundary of that domain. This facilitates proofs of both linear and nonlinear
stability for various discretization strategies. Numerical methods constructed
to have the SBP property are classified as SBP methods (See review papers
[19,4]). Two well-known strategies that can be used to implement SBP meth-
ods on complex domains are the multiblock finite-difference and discontinuous
spectral-element approaches. A key characteristic of the finite-difference ap-
proach is the use of multiple instances of a repeating interior point operator.
This requires a uniform nodal distribution away from boundaries in compu-
tational space, but allows the operator to grow arbitrarily large to meet res-
olution requirements. Classical SBP (CSBP) operators with a diagonal norm
implemented in the traditional manner with repeating centered difference in-
terior point operators of degree 2p and biased boundary point operators of
minimum degree p provide an example. Closely related are the optimized op-
erators of Mattsson et al. [14], which use the same repeating centered difference
interior point operators but with a non-uniform nodal spacing and optimized
coefficients near the boundary to minimize truncation error.

Alternatively, SBP methods can be implemented as spectral-element meth-
ods with a fixed number of nodes interior to an element, albeit without nec-
essarily requiring basis functions or an underlying analytical representation
of the solution in their construction [3]. This enables the use of non-uniform
nodal distributions over the entire element to optimize the efficiency of the
operator. However, it also requires new instances of the operator (and ad-
ditional interfaces) to be added to meet resolution requirements. Operators
constructed on the Legendre-Gauss (LG) and Legendre-Gauss-Lobatto (LGL)
nodal distributions are popular examples of this approach [7]. It is interesting
to note that SBP operators typically implemented in the traditional finite-
difference manner, such as the CSBP and Mattsson et al. operators, can be
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implemented as spectral-element methods with a nearly arbitrary fixed num-
ber of interior nodes per element. For example, a single instance of the interior
operator produces the minimum size of such operators.

Given the diverse nature of the manner in which SBP methods can be
implemented, it is important to develop an understanding of the advantages
of each and how their efficiency depends on the nature of the problem be-
ing solved. For example, one important factor relevant to the selection of a
method is the smoothness of the mesh. If the computational domain is very
regular, it is often possible to generate a smooth mesh in a straightforward
manner. Under these circumstances one expects finite-difference methods, i.e.
those with a repeating interior operator, to offer the lowest cost for a given
accuracy (without adaptation for example). However, when the geometry un-
der consideration is highly complex or the solution is expected to have sharp
gradients, it can be challenging to generate a sufficiently smooth mesh, and a
degree of mesh distortion must be anticipated. In this case, the use of discon-
tinuous spectral-elements is expected to lead to better accuracy per unit cost
[18]. The objective of this paper is to examine how the relative efficiency of
finite-difference and discontinuous spectral-element SBP operators is affected
by the degree of distortion of the mesh. The goal is to provide information use-
ful to the selection of a method for a given problem or class of problems. Note
here that we are leveraging the SBP property to minimize or eliminate the po-
tential differences in robustness between finite-difference and spectral-element
methods, allowing us to focus on efficiency.

This article is organized as follows: Sections 2 and 3 introduce basic no-
tation and the model equations used for this analysis: the linear convection
equation and nonlinear Euler equations. Generalized SBP (GSBP) theory ap-
plied to the model equations is presented in Section 4, along with simultaneous
approximation terms (SATs) for weak enforcement of boundary conditions and
interface coupling. Section 5 describes the different types of GSBP operators
considered in this article as well as their finite-difference and discontinuous
spectral-element implementations. Finally, Section 6 presents a discussion of
the numerical results, and the conclusions of the study are summarized in
Section 7.

2 Notation

In this article, continuous functions are represented with script uppercase char-
acters and their restriction onto a mesh is represented by lower case bold char-
acters, for example U(x, t) ∈ L2 ([xl, xr]× [0, T ]) and u = [U (x1) , . . . ,U (xN )]

T
.

Lower case bold characters are also used for general vectors, while matrices are
denoted with uppercase sans-serif characters, for example H. Exponents should

be understood as element-wise operations, for example xk =
[
xk1 , . . . , x

k
N

]T
,

with the convention that xk = 0 for k < 0. For simplicity this article presents
theory and results in two-dimensions, with the extension to three dimensions
being straightforward.
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3 Governing Equations

3.1 Linear Convection Equation

The study presented in this article is carried out predominantly using the
two-dimensional1 linear convection equation

∂U
∂t

+ βx
∂U
∂x

+ βy
∂U
∂y

= 0, ∀(x, y) ∈ Ω, t ≥ 0, (1)

with constant convection velocities βx and βy, as well as initial and boundary
conditions:

U(x, y, 0) = F(x, y), ∀(x, y) ∈ Ω, t ≥ 0,

U(x, y, t) = Bx(x, y, t), ∀(x, y) ∈ ∂Ω, t ≥ 0.

The simulation domain Ω can be discretized directly or partitioned into K
nonoverlapping blocks or elements Ωi. In either case, a time-invariant curvi-
linear coordinate transformation is applied to map the physical coordinates
(x, y) of the domain, block, or element to regular orthogonal computational
coordinates (ξ, η). The resulting equation can be written in strong conservation
form as

∂
(
J−1U

)
∂t

+
∂ (λξU)

∂ξ
+
∂ (ληU)

∂η
= 0, (2)

where variable coefficients containing the metrics of the transformation are

λξ = βx
∂y

∂η
− βy

∂x

∂η
and λη = −βx

∂y

∂ξ
+ βy

∂x

∂ξ
,

and the metric Jacobian is

J−1 =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
.

This can be recast into the skew-symmetric form as follows:

∂
(
J−1U

)
∂t

+
1

2

∂ (λξU)

∂ξ
+

1

2

∂ (ληU)

∂η
+
λξ
2

∂U
∂ξ

+
λη
2

∂U
∂η

= 0, (3)

which is the form used in this article. The skew-symmetric form is required in
general for constructing provably stable semi-discrete forms [17,16,12,5].

1 We expect that three-dimensional results will exhibit similar trends.
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3.2 Euler Equations

To validate whether the trends observed for linear PDEs also hold for nonlinear
PDEs, some additional simulations are carried out using the two-dimensional
Euler equations governing compressible inviscid fluid flow. In curvilinear co-
ordinates, the Euler equations can be written in strong conservation form as:

∂Q
∂t

+
∂F
∂ξ

+
∂G
∂η

= 0, (4)

where the solution and flux vector are:

Q = J−1


ρ
ρU
ρV
E

 , F = J−1


ρŨ

ρUŨ + P ∂ξ
∂x

ρVŨ + P ∂ξ
∂y

(E + P)Ũ

 , G = J−1


ρṼ

ρUṼ + P ∂η∂x
ρVṼ + P ∂η∂y
(E + P)Ṽ

 ,

(5)
ρ is the density, U and V are the flow velocities, E is the total energy per unit
volume,

P = (γ − 1)
(
E − 1

2ρ
(
U2 + V2

))
(6)

is the pressure derived from the ideal gas law, γ is the ratio of specific heat
capacities, and Ũ = U ∂ξ∂x + V ∂ξ∂y and Ṽ = U ∂η∂x + V ∂η∂y are the contravariant
velocities.

4 Spatial discretization

To discretize the linear convection and Euler equations, we apply GSBP oper-
ators, along with SATs to weakly enforce boundary and interface conditions.

Consider first the definition of a generalized summation-by-parts (GSBP)
operators for the first derivative applied to general nodal distributions [3]:

Definition 1 Summation-by-parts operator for the first derivative:
A matrix operator, Dξ ∈ RN×N , is an SBP operator of order and degree p
approximating the derivative ∂

∂ξ on the nodal distribution ξ ∈ [ξl, ξr] if

1. Dξξ
k = H−1ξ Qξξ

k = kξk−1, k = 0, 1, . . . , p;
2. Hξ, denoted the norm matrix, is symmetric positive definite;

3. Qξ + QT
ξ = Eξ where

(
ξi
)T

Eξξ
j = ξi+jr − ξi+jl , i, j = 0, 1, . . . , r, r ≥ p.

While this definition allows for arbitrary symmetric positive definite norm
matrices, the focus in this article will be on diagonal norms.

In addition, to develop proofs for linearly stable and conservative discretiza-
tions, appropriate implementation of boundary conditions and interface cou-
pling between subdomains is critical. A common approach is to use SATs,
which weakly impose these conditions. In this case, it is convenient to further
decompose Eξ from Definition 1 as [3]

Eξ = tξrt
T
ξr − tξlt

T
ξl
,
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where

tTξlξ
k = ξkl , tξrξ

k = ξkr , k = 0, 1, . . . , r.

Combining these definitions, the GSBP-SAT discretization of the skew-
symmetric form of the linear convection equation (3) is presented in terms of
two blocks with a shared interface along constant ξ. Here it is assumed that
the two blocks are conforming and have the same nodal distribution in the η
direction. The discretization in the left (L) block is

dJ−1l ul
dt

+
1

2
(Dξl ⊗ Iη) Λξlul +

1

2
(Iξl ⊗ Dη) Ληlul

+
1

2
Λξl (Dξl ⊗ Iη)ul +

1

2
Ληl (Iξl ⊗ Dη)ul =

1

2

(
H−1ξl tl,ξr ⊗Σl

) [(
tTl,ξr ⊗ Iη

)
Λξlul −

(
tTr,ξl ⊗ Iη

)
Λξrur

]
.

where Σl is a diagonal matrix of SAT coefficients, Iξl and Iη are identity ma-
trices the size of the number of nodes in the ξl and η directions, respectively,
and ⊗ denotes the tenor product. The variable coefficients λξ and λη, as well
as the metric Jacobian, are constructed as follows

Λξl = diag [βx (Iξl ⊗ Dη)yl − βy (Iξl ⊗ Dη)xl] ,

Ληl = diag [−βx (Dξl ⊗ Iη)yl + βy (Dξl ⊗ Iη)xl] ,

J−1l = diag [(Dξl ⊗ Iη)xl � (Iξl ⊗ Dη)yl − (Iξl ⊗ Dη)xl � (Dξl ⊗ Iη)yl, ] ,

where � denotes the Hadamard product. Note that the vectors xl and yl
contain the x and y locations of the nodes. Likewise, the discretization in the
right (R) block is given as

dJ−1r ur
dt

+
1

2
(Dξr ⊗ Iη) Λξrur +

1

2
(Iξr ⊗ Dη) Ληrur

+
1

2
Λξr (Dξr ⊗ Iη)ur +

1

2
Ληr (Iξr ⊗ Dη)ur =

1

2

(
H−1ξr tr,ξr ⊗Σr

) [(
tTr,ξr ⊗ Iη

)
Λξrur −

(
tTl,ξl ⊗ Iη

)
Λξlul

]
.

There are two common choices for the coefficients in the SAT matrices
Σl and Σr, symmetric and upwind. Symmetric SATs introduce no dissipation
but sometimes lead to reduced convergence rates [9,7,8]. Therefore, here we
exclusively use upwind SATs in the form

Σl =
−Λ̃ξl + |Λ̃ξl |
|Λ̃ξl |

and Σr =
−Λ̃ξr − |Λ̃ξr |
|Λ̃ξr |

,

where Λ̃ξl =
(
tTl,ξr ⊗ Iη

)
Λξl (1ξl ⊗ Iη), Λ̃ξr =

(
tTr,ξr ⊗ Iη

)
Λξr (1ξr ⊗ Iη), and 1

denotes a column vector of ones.
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For the Euler equations in divergence form, the discretization in the left
(L) block is

dJ−1l ql
dt

+ (Dξl ⊗ Iη ⊗ I4) Fξl + (Iξl ⊗ Dη ⊗ I4) Gηl =

1

2

(
H−1ξl tl,ξr ⊗Σl

) [(
tTl,ξr ⊗ Iη

)
ql −

(
tTr,ξl ⊗ Iη

)
qr
]
.

where Fξl and Gηl are the local fluxes evaluated with ql, and I4 is a 4×4 identity
matrix to account for the four solution variables per node. For simplicity we
keep the Euler equations in divergence form since we would need an entropy
stable implementation to formally guarantee stability.

The upwind SAT for the Euler equations has the form

Σl = −Ãξ + |Ãξ|

with Ãξ = 1
2Aξ

[(
tTl,ξr ⊗ Iη

)
ql +

(
tTr,ξl ⊗ Iη

)
qr

]
, Aξ being the flux Jacobian

(A = ∂G
∂Q ) evaluated at the Roe averaged state of the interface, and |Ãξ| =

X|Λ|X−1, where X is the matrix of right eigenvectors of Ãξ and |Λ| a diagonal

matrix containing the absolute values of the eigenvalues of Ãξ. The discretiza-
tion of the Euler equations in the right (R) block follows similarly, as in the
case of the linear convection equation.

5 GSBP Operators and Implementations

Spatial discretizations using GSBP operators can be constructed in a number
of different ways. This section describes the classes of operators considered in
this article and their compatibility with two different implementation strate-
gies, one typically associated with finite-difference methods, the other with
finite-element methods, including discontinuous spectral-element methods, la-
beled here FD and DSE.

5.1 Finite-Difference Implementation

Definition 1 of a GSBP operator encompasses many known operators; how-
ever, it was originally developed as a generalization of classical finite-difference
summation-by-parts (CSBP) operators. CSBP operators are defined on a reg-
ular computational mesh, using repeating centered finite-difference stencils of
order 2p everywhere except near boundaries2, where a fixed number of special
biased finite-difference stencils are used of minimum order p. The quadrature
rules often associated with these operators are Gregory rules, which are based

2 For first derivative operators, the order and polynomial degree of the operator are the
same.



8 Pieter D. Boom et al.

on the composite trapezoidal rule with end corrections. The p = 1 CSBP
operator is:

Dx =
1

h


−1 1
− 1

2 0 1
2

. . .
. . .

. . .

− 1
2 0 1

2
−1 1

 , Hx = h


1
2

1
. . .

1
1
2

 , Qx =


− 1

2
1
2

− 1
2 0 1

2
. . .

. . .
. . .

− 1
2 0 1

2
− 1

2
1
2

 ,

where h = xR−xl
N−1 is the mesh spacing.

The minimum order p of the boundary stencils is a proven limit relative to
the interior 2p order stencils; however, it is possible to reduce the magnitude of
the leading truncation error terms [3,14,15,13]. This can be done by optimizing
the number and location of boundary nodes, as well as the coefficients of the
boundary stencils. This was first done by Mattsson et al. [14], who optimized
the location of several nodes near the boundary to minimize truncation error.
For example, one optimized p = 1 operator with boundary node locations x =
1
h [0, 0.789, 1.748, 1.748 + 1, 1.748 + 2, . . .]

T
at the left boundary is defined as

follows3:

Dx =
1

h


−1.48 1.66 −0.176
−0.572 0 0.572
0.064 −0.600 0.536

− 1
2 0 1

2
. . .

. . .
. . .

 , Hx = h


0.337

0.978
0.933

1
. . .

 ,

Qx =


− 1

2 0.559 −0.059
−0.559 0 0.559
0.059 −0.559 1

2
− 1

2 0 1
2

. . .
. . .

. . .

 .

where h = xR−xl
N−1.504 is the average mesh spacing and N − 1.504 is the location

of the last node of the mesh in computational space.
Refinement for these classes of operators (CSBP, Mattsson et al.) is often

achieved simply by increasing the instances of the repeating interior centered
finite-difference operator. For complex geometries, the domain is typically sub-
divided into multiple subdomains, or blocks, both to enable a tensor-product
structure in each block and possibly as part of a parallelization strategy. Cre-
ating a block topology that enables high mesh quality can be a difficult and
time-consuming task. However, once a block topology has been developed and
a structured mesh generated in each block, this approach has been shown to
lead to excellent computational solution efficiency [18].

3 The values presented here are rounded to 3 decimal places for the sake of space. Please
refer to [14] for higher precision values of the operator’s coefficients.
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5.2 Discontinuous Spectral-Element Implementation

In each of the previous cases, the operator can be arbitrarily expanded by in-
serting additional instances of the repeating 2p order centered finite-difference
point operator away from boundaries. However, many discontinuous spectral-
element operators can also be described using Definition 1. The simplest are
associated with Newton-Cotes quadratures, at least those with positive weights
when using diagonal norms; however, these are not often used in practice.

Similar to the finite-difference operators, the location of nodes and the
coefficients of the individual stencils can be optimized. If the merit function is
quadrature strength, then one obtains the LG and LGL nodes, where in the
latter case the first and last node are aligned with the element boundaries, and
result in 2n−1 and 2n−3 quadrature rules ( LG and LGL respectively), where
n is number of quadrature points. These nodal distributions are advantageous
for diagonal-norm SBP operators as they enable the construction of maximum
degree operators (e.g., p = n − 1). An example is the three-node Legendre-

Gauss operator on the nodal distribution x =
[
−
√

3
5 , 0,

√
3
5

]T
shown here

rounded to three decimal places:

Dx =
1

h

−3.873 5.164 −1.291
−1.291 0 1.291
1.291 −5.164 3.873

 , Hx =
h

9

5
8

5

 ,

Qx =

−1.076 1.434 −0.359
−0.574 0 0.574
0.359 −1.434 1.076

 , Ex =

−2.152 0.860 0
0.860 0 −0.860

0 −0.860 2.152

 .
where h = xR−xl

2 is the average mesh spacing. A second example is the
four-node Legendre-Gauss-Lobatto operator on the nodal distribution x =

1
h

[
−1,−

√
5
5 ,
√
5
5 , 1

]T
:

Dx =
1

h


−3 5+5

√
5

4
5−5
√
5

4
1
2

− 1+
√
5

4 0
√
5
2

1−
√
5

4
√
5−1
4 −

√
5
2 0

√
5+1
4

− 1
2

5
√
5−5
4 − 5+5

√
5

4 3

 , Hx = h


1
6

5
6

5
6

1
6

 ,

Qx =


− 1

2
5+5
√
5

24
5−5
√
5

24
1
12

− 5+5
√
5

24 0 5
√
5

12
5−5
√
5

24

5
√
5−5
24 − 5

√
5

12 0 5+5
√
5

24

− 1
12

5
√
5−5
24 − 5+5

√
5

24
1
2

 .
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where h = xR−xl
2 is the average mesh spacing. Note that the CSBP and Matts-

son et al. operators described in the previous section can also be used as dis-
continuous spectral-element operators by selecting a fixed number of interior
operators in each subdomain.

In contrast to the finite-difference implementation, h-refinement with dis-
continuous spectral-element operators requires that the number of elements be
increased. The number and topology of the subdomains in this case is largely
dictated by the desired mesh density, as well as geometric complexity to a
lesser extent. A consequence of this approach is that the number of interfaces
increases rapidly with refinement. The GSBP operators are multi-valued at
interfaces, increasing the number of solution points rapidly with discontinuous
spectral-element implementations. This also requires an additional mechanism
to couple the solution in adjacent subdomains, achieved weakly in this article
using SATs.

6 Results and discussion

6.1 Linear convection

The results presented in this subsection are for the two-dimensional linear
convection equation described in equation (1) with periodic boundary condi-
tions initially on a unit square. The convection velocities are set to unit values
βx = βy = 1 without loss of generality, and the initial condition chosen is a
sine wave given by:

U0(x, y) = sin(2πx) + sin(2πy).

The computational domain is Cartesian with ξ, η ⊂ [0, 1], with each block or
element discretized with the nodal distribution associated with the applied
operator. The properties of the operators evaluated can be found in Table 1.

Low-order Mattsson et al. operators (p = 1−4) are taken from the original
2014 paper [14] and the higher-order operators (p = 5, 6) from the subsequent
2018 paper [15], specifically those optimized for accuracy. The operator la-
beled “Circulant” is a circulant operator obtained by applying the centered
finite-difference method without lower-order boundary schemes with the or-
der selected to match the interior order of the SBP methods. This provides a
best-case scenario for evaluating the error introduced by boundary operators;
it is not intended to be seen as an option for most practical problems.

Typically after decomposing a domain into blocks or elements, significant
effort is required to place submesh nodes. In multiblock approaches this can
be done edge-by-edge by setting minimum and/or maximum node spacings
along with stretching functions, and determining how these properties vary
through the subdomain from one edge to other parallel edges. With operators
like Mattsson et al.’s that have a non-uniform nodal distribution, an addi-
tional step is required to account for this non-uniformity [2]. One strategy is
to fit the multiblock mesh with B-splines and redistribute the nodes according
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Operator min p max p minN
Bndry
node

Opt

Circulant (2,4,6,8) (2,4,6,8) N/A N/A no
CSBP (1,2,3,4,5,6) (2,4,6,8,10,12) (5,9,13,17,23,31) yes no

Mattsson et al.
[14,15]

(1,2,3,4,5,6) (2,4,6,8,10,12) (5,9,13,17,21,25) yes yes

LGL (1,2,3,4,5,6) (1,2,3,4,5,6) (2,3,4,5,6,7) yes yes
LG (1,2,3,4,5,6) (1,2,3,4,5,6) (2,3,4,5,6,7) no yes

Table 1 Description of operators. “Bndry node” denotes whether the operator includes
nodes at the boundary of the computational domain or element; and “Opt” denotes whether
or not the nodal distribution of the operator in the computational domain is optimized (as
opposed to uniform). p is used to denote the pointwise order or degree of the difference
stencils at each node in the submesh an operator, and N is used to denote the total number
of nodes in the submesh of an operator.

to the non-uniform nodal distribution. With discontinuous spectral-elements,
submesh nodal placement can be done with high-order elements, fitting bound-
aries, and imposing mesh gradients [11].

In this paper, the distorted meshes are obtained by applying analytical
perturbations to the computational mesh directly. These transformations are
described later in Table 4. This approach enables the methods to be com-
pared directly, without having to account for the variety and complexity of
mesh generation strategies. The metrics of the transformations are computed
numerically using the same operators used for discretization following the ap-
proach of Diener et al [6]. It is expected that the error introduced by the
metric computation will be on the same order as the operator used for the
discretization.

The solutions are integrated from t = 0 to t = 1 (one full period) using
the standard explicit fourth-order Runge-Kutta time-marching method and
3.2× 104 time steps for the finest meshes. The number of time steps is halved
on successively coarser meshes. With this choice, the error from the time-
marching method is found to be negligible relative to the error from the spatial
discretization.

For each simulation, the solution error is evaluated using the global norm of
the discretization, Hg, assembled from the local element norm matrices scaled
by the appropriate transformation Jacobian on each element. Therefore, the
error of the simulation is computed relative to the exact solution of the PDE
as

||ug − uexact||Hg =
√

(ug − uexact)THg(ug − uexact),

where uexact is the vector constructed by evaluating the analytical solution at
mesh nodes.

6.1.1 Cartesian meshes

As a baseline, the operators and implementation strategies are applied on a
uniform Cartesian mesh. This is the ideal case of a smooth mesh, allowing an
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evaluation of the performance degradation of each method as a function of
the different mesh distortions. Tables 2 and 3 display rankings of the methods
tested (higher in the table is better). Two separate columns are shown in each
subtable ranking the methods for:

1. A minimally stringent error tolerance: the region of the convergence
plots with the largest error, where the discretizations may not exhibit their
design order; and

2. The asymptotic behavior: the region of the convergence plots where
the mesh spacing is sufficiently small that the methods exhibit their design
order, i.e. the error is dominated by the leading error term.

The tolerances are reduced as the order increases to account for the change
in accuracy of the methods on the given meshes. The tables display the rank-
ing based on the required 1) number of nodes4; 2) number of floating-point
operations to evaluate the discrete equations; and 3) number of floating-point
operations multiplied by spectral radius of the full discretization under consid-
eration, including the specific operator used in the discretization and all of the
SATs. The values used to determine the ranking in the tables are estimated
values required to achieve a prescribed error tolerance, and are obtained via
interpolation of the raw data. Some values are extrapolated from the data,
though they are largely restricted to the optimized Mattsson et al. operators
at the minimally stringent tolerance and other operators in the asymptotic
region. The circulant operator is included as a best-case reference to quantify
the effect of the numerical boundary operators and SATs. The use of float-
ing point operations and spectral radius, rather than CPU time, is done to
minimize the influence of software implementation choices on the results.

The results show that the optimized Mattsson et al. operators are nearly
always the most efficient GSBP operator, independent of implementation. This
is further supported by plotting the data (See Figure 1 for example or the
Supplementary Files), which show that any lower ranking in the tables is due
to a negligible difference, with two exceptions.

The first exception is the circulant discretizations, which do not have sub-
domain boundaries, eliminating the need for low-order boundary point oper-
ators and SATs. The discretizations are not SBP, nor of broad practical use;
however, they highlight the penalty incurred by other methods at every sub-
domain boundary. This is the same reason the Mattsson et al. discretizations
perform so well relative to other schemes: 1) they minimize the truncation
error of the lowest-order boundary point operators; and 2) facilitate the use of
larger elements, and therefore fewer SATs, in discontinuous spectral-element
implementations. It is also the reason why finite-difference discretizations al-
ways become the most efficient, for a particular operator, in the asymptotic
region: 1) fewer low-order point operators; and 2) fewer SATs.

4 Figures show the square root of the number of nodes; accounting for the simulations
being in two dimensions. This is to enable reference convergence slopes to be added to the
figures.
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# nodes FLOPs λmax × FLOPs
p = 1

100 10−3

LG LG
CirI CirI

CSBP Mat.
CSBP CSBP
Mat. Mat.
LGL CSBP
Mat. LGL

p = 1
100 10−3

CirI CirI
LG Mat.

CSBP CSBP
CSBP LG
Mat. Mat.
Mat. CSBP
LGL LGL

p = 1
100 10−3

CirI CirI
CSBP Mat.
CSBP CSBP
Mat. Mat.
LG LG

Mat. CSBP
LGL LGL

p = 2
10−1 10−4

LG Mat.
Mat. Mat.
Mat. CirI
CirI LG

CSBP CSBP
CSBP CSBP
LGL LGL

p = 2
10−1 10−4

CirI CirI
Mat. Mat.
Mat. Mat.

CSBP CSBP
CSBP CSBP
LGL LGL
LG LG

p = 2
10−1 10−4

CirI CirI
Mat. Mat.
Mat. Mat.

CSBP CSBP
CSBP CSBP
LGL LGL
LG LG

FD
DSE

p = 3
10−3 10−5

CirI CirI
Mat. Mat.
Mat. Mat.
LG LG

LGL CSBP
CSBP LGL
CSBP CSBP

p = 3
10−3 10−5

CirI CirI
Mat. Mat.
Mat. Mat.
LGL CSBP

CSBP LGL
CSBP CSBP

LG LG

p = 3
10−3 10−5

CirI CirI
Mat. Mat.
Mat. Mat.

CSBP CSBP
LGL CSBP

CSBP LGL
LG LG

Table 2 Efficiency ranking of operators (p = 1 to p = 3) applied to the linear convec-
tion equation simulation on Cartesian meshes relative to an estimate of the required: (left)
number of nodes (middle) number of floating point operations to evaluate the RHS (right)
number of floating point operations to evaluate the RHS multiplied by spectral radius of
the discretization.

The second exception to the dominance of the Mattsson et al. operators is
with respect to the required number of nodes for p = 1 LG, which is signif-
icantly lower than all other p = 1 methods at all error tolerances. However,
this advantage quickly disappears once the additional computational work as-
sociated with the SATs is taken into account. SATs for the LG method require
extrapolation of the solution from all nodes in adjacent elements since the op-
erator does not include points on the boundary of the element. This additional
cost makes the LG method no more efficient than the finite-difference opera-
tors (CSBP, Mattsson et al.) implemented as discontinuous spectral-elements.

Next we compare the operators other than the optimized Mattsson et al.
operators. For p = 1, operators using the same implementation strategy gener-
ally have similar performance, with results generated with the finite-difference
approach slightly more efficient than the discontinuous spectral-element ap-
proach. The two exceptions to this are the significantly fewer nodes required
by p = 1 LG, though this does not translate to noticeably higher efficiency
when considering the number of floating point operations, as noted earlier,



14 Pieter D. Boom et al.

# nodes FLOPs λmax × FLOPs
p = 4
10−4 10−7

CirI CirI
Mat. Mat.
Mat. Mat.
LG LG

LGL LGL
CSBP CSBP
CSBP CSBP

p = 4
10−4 10−7

CirI CirI
Mat. Mat.
Mat. Mat.
LGL LGL

CSBP CSBP
CSBP CSBP

LG LG

p = 4
10−4 10−7

CirI CirI
Mat. Mat.
Mat. Mat.
LGL LGL

CSBP CSBP
CSBP CSBP

LG LG

p = 5
10−5 10−7

Mat. Mat.
Mat. Mat.
LG LG

LGL LGL

p = 5
10−5 10−7

Mat. Mat.
Mat. Mat.
LGL LGL
LG LG

p = 5
10−5 10−7

Mat. Mat.
Mat. Mat.
LGL LGL
LG LG

FD
DSE

p = 6
10−8 10−10

Mat. Mat.
Mat. Mat.
LG LG

LGL LGL
CSBP CSBP
CSBP CSBP

p = 6
10−8 10−10

Mat. Mat.
Mat. Mat.
LGL LGL
LG LG

CSBP CSBP
CSBP CSBP

p = 6
10−8 10−10

Mat. Mat.
Mat. Mat.
LGL LGL

CSBP CSBP
LG LG

CSBP CSBP

Table 3 Efficiency ranking of operators (p = 4 to p = 6) applied to the linear convec-
tion equation simulation on Cartesian meshes relative to an estimate of the required: (left)
number of nodes (middle) number of floating point operations to evaluate the RHS (right)
number of floating point operations to evaluate the RHS multiplied by spectral radius of
the discretization.

and consistently poor performance of p = 1 LGL relative to all metrics. The
latter is primarily due to the fact that the operator only has p = 1 stencils,
i.e. it has no higher order stencils on the interior of the operator, and the high
number of SATs required relative to the size of the operator.

For p = 2, CSBP is the next most efficient operator after Mattsson et al.,
independent of implementation, followed by LGL. These two methods have
more-or-less equal performance for p = 3, then LGL becomes more efficient
than CSBP for p = 4 and above. LG remains the least efficient scheme for
p = 2 through p = 4, then has similar performance to CSBP at p = 5 and
above. This highlights the increasingly poor performance of CSBP schemes as
the order increases.

The results also highlight the value of optimizing the location and coef-
ficients of the boundary stencils. These modifications, though small in the
finite-difference context, have an enormous impact on the performance of the
schemes. The plotted data (See Figure 1 for example or the Supplementary
Files), show that for these Cartesian simulations, Mattsson et al.’s operators
initially achieve a rate of convergence higher than the expected p+ 1, creating
significant separation from the other methods, before recovering the expected
rate well into the most stringent accuracy region.
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Fig. 1 Convergence of linear convection equation simulation on Cartesian mesh for p = 3
operators

6.1.2 Mesh distortions

We now investigate the impact of mesh distortion on the relative efficiency and
robustness of the operators and implementation strategies using global trans-
formations to create distorted meshes. Three different transformations, found
in Table 4 and shown in Figure 2, are applied to accomplish this. The prop-
erties of meshes with 25 and 385 unique nodes in each spatial dimension are
provided in Tables 5 and 6. This includes the maximum ratio of edge lengths
in any one cell5 of a mesh (aspect ratio), the maximum ratio of sequential
edge lengths in a mesh, for example edges from node i to (i + 1) and (i + 1)
to (i+ 2) or edges from node j to (j + 1) and (j + 1) to (j + 2) (stretching),
and the maximum ratio of cell diagonals in any one cell of a mesh (skewness).

5 The term cell is used here to indicate the quadrilateral formed by 4 nodes in a mesh
with indices (i, j), (i+ 1, j), (i+ 1, j + 1), and (i, j + 1) - not a spectral-element.
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Name Transformation α

Sinusoidal x = ξ + α1 sin(2πη)
α1 = ±0.15,±0.158

perturbation y = η + |α1| sin(2πξ)

Sinusoidal x = ξ + α2 sin2(2πξ)
α2 = 0.15, 0.158

stretching y = η + α2 sin2(2πη)
Transformation x = ξ + α3 sin(πξ) sin(πη)

α3 = 0.2
from Ref. [5] y = η + α3 exp(1− η) sin(πξ) sin(πη)

Table 4 Global mesh transformations

Fig. 2 Meshes for global transformations using 25-node CSBP nodal distribution: sinu-
soidal perturbation (top; α1 = ±0.158); sinusoidal stretching (bottom left α2 = 0.158) and
transformation from Ref. [5] (bottom right α3 = 0.2)

The study was carried out for the discontinuous spectral-element operators
using both curved submeshes, where the nodes within the element are placed
according to the transformation applied to the nodal distribution associated
with the operator, and linear submeshes, where only the corners of the element
are placed according to the transformation, and the remaining nodes within the
element are linearly interpolated according to the nodal distribution associated
with the element.

Normally meshes are generated to mirror the complex features of the solu-
tion such that suitable resolution is achieved throughout the flow domain. In
contrast, these meshes have been created solely to examine the effect of mesh
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Max Max Max
Transformation Operator Aspect ratio Stretching Skewness

Sinusoidal CSBP 53.4 1.09 > 0.99
perturbation Mattsson et al. (p4) 104.3 1.86 > 0.99
(α1 ± 0.158) LGL (p4) - curved submesh 78.5 2.07 > 0.99

LGL (p4) - linear submesh 9.7 1.90 0.90
Sinusoidal CSBP 37.5 5.88 0
stretching Mattsson et al. (p4) 47.7 8.11 0

(α2 ± 0.158) LGL (p4) - curved submesh 48.5 8.71 0
LGL (p4) - linear submesh 11.2 1.90 0

Transformation CSBP 4.6 1.2 0.81
from Ref. [5] Mattsson et al. (p4) 6.6 1.89 0.81
(α3 ± 0.2) LGL (p4) - curved submesh 8.5 2.27 0.82

LGL (p4) - linear submesh 12.0 1.90 0.82

Table 5 Properties of meshes constructed for select operators with 25 unique nodes per
spatial dimension

Max Max Max
Transformation Operator Aspect ratio Stretching Skewness

Sinusoidal CSBP 136.5 1.01 > 0.99
perturbation Mattsson et al. (p4) 303.2 1.89 > 0.99
(α1 ± 0.158) LGL (p4) - curved submesh 249.5 1.91 > 0.99

LGL (p4) - linear submesh 267.0 1.90 > 0.99
Sinusoidal CSBP 268.0 1.31 0
stretching Mattsson et al. (p4) 267.1 1.93 0

(α2 ± 0.158) LGL (p4) - curved submesh 513.9 2.46 0
LGL (p4) - linear submesh 373.9 1.90 0

Transformation CSBP 4.7 1.01 0.82
from Ref. [5] Mattsson et al. (p4) 6.5 1.89 0.82
(α3 ± 0.2) LGL (p4) - curved submesh 8.8 1.92 0.82

LGL (p4) - linear submesh 8.9 1.90 0.82

Table 6 Properties of meshes constructed for select operators with 385 unique nodes per
spatial dimension

distortion on the accuracy of the operators under study for a uniformly and
smoothly varying solution.

Tables 7 and 8 show the efficiency ranking of methods applied to meshes
with extreme sinusoidal perturbations (α1 = 0.158), which is representative of
results obtained for other sinusoidally perturbed meshes.

The first observation is that using a linear submesh in the discontinuous
spectral-element strategy appears to have a significant advantage over curved
submeshes. Viewing the plotted data (See Figure 3 for example or the Sup-
plemental Files), the impact of this increases with order, but diminishes with
increased refinement. These results are due in part to the linear submesh creat-
ing a more even distribution of submesh nodes (reduced clustering) and reduc-
ing the maximum angles between mesh lines. Since the solution is uniformly
and smoothly varying, this makes sense - the largest and most distorted cells
are increasingly regularized and the growth of the smallest cells has minimal
impact on the integrated error. As the meshes are refined, the difference be-
tween the linear and curved submeshes diminishes, yielding similar efficiency.
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# nodes FLOPs λmax × FLOPs
p = 1
10−1 10−3

LG LG
LG LG

Mat. CirI
CirI Mat.
Mat. CSBP
Mat. Mat.

CSBP Mat.
CSBP CSBP
CSBP CSBP
LGL LGL

p = 1
10−1 10−3

CirI CirI
CSBP Mat.
Mat. CSBP
Mat. LG
Mat. LG

CSBP Mat.
CSBP Mat.

LG CSBP
LG CSBP

LGL LGL

p = 1
10−1 10−3

Mat. Mat.
CSBP CirI
CirI LG
LG Mat.

Mat. LG
LG CSBP

Mat. Mat.
CSBP CSBP
CSBP CSBP
LGL LGL

p = 2
10−3 10−4.5

Mat. Mat.
CirI CirI
Mat. Mat.
Mat. Mat.
LG LG
LG LG

CSBP CSBP
CSBP CSBP
CSBP CSBP
LGL LGL
LGL LGL

p = 2
10−3 10−4.5

CirI CirI
Mat. Mat.
Mat. Mat.
Mat. Mat.

CSBP CSBP
CSBP CSBP
CSBP CSBP
LGL LGL
LGL LGL
LG LG
LG LG

p = 2
10−3 10−4.5

CSBP Mat.
Mat. CirI

CSBP Mat.
CirI Mat.
Mat. CSBP
Mat. CSBP
LG CSBP

LGL LGL
LG LG

LGL LGL
CSBP LG

FD
DSE (lin)
DSE (crv)

p = 3
10−3 10−5

Mat. CirI
CirI Mat.
LG Mat.

Mat. Mat.
Mat. LG
LG LG

LGL LGL
CSBP CSBP
LGL LGL

CSBP CSBP
CSBP CSBP

p = 3
10−3 10−5

Mat. CirI
CirI Mat.
Mat. Mat.
Mat. Mat.
LGL LGL

CSBP CSBP
LGL LGL

CSBP CSBP
LG CSBP

CSBP LG
LG LG

p = 3
10−3 10−5

Mat. Mat.
CirI CirI
LGL Mat.

CSBP CSBP
LG Mat.

Mat. LGL
Mat. LG

CSBP LGL
CSBP CSBP
LGL CSBP
LG LG

Table 7 Efficiency ranking of operators (p = 1 to p = 3) applied to the linear convection
equation simulation on sinusoidally perturbed meshes (α1 = 0.158) relative to an estimate
of the required: (left) number of nodes (middle) number of floating point operations to
evaluate the RHS (right) number of floating point operations to evaluate the RHS multiplied
by spectral radius of the discretization.

Another factor influencing the higher relative efficiency of linear submeshes is
the lower spectral radius for a given number of elements, which is driven by
the same mechanisms discussed above.

Using linear submeshes in the discontinuous spectral-element implementa-
tion yields a similar efficiency ranking as compared to the uniform undistorted
mesh, Mattsson et al.’s operators being the most efficient, CSBP being next
most efficient at low order and becoming increasingly poor with increased or-
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# nodes FLOPs λmax × FLOPs
p = 4
10−4 10−6

Mat. CirI
CirI Mat.
LG Mat.

Mat. Mat.
Mat. LG
LGL LGL
LG LG

CSBP CSBP
LGL LGL

CSBP CSBP
CSBP CSBP

p = 4
10−4 10−6

Mat. CirI
CirI Mat.
LGL Mat.
Mat. Mat.
Mat. LGL
LGL LGL

CSBP CSBP
LG LG

CSBP CSBP
CSBP LG

LG CSBP

p = 4
10−4 10−6

Mat. Mat.
LGL CirI
CirI LGL

CSBP CSBP
LG Mat.

Mat. Mat.
Mat. LG
LGL LGL

CSBP LG
CSBP CSBP

LG CSBP

p = 5
10−5 10−7

Mat. Mat.
LG LG

LGL Mat.
Mat. Mat.
Mat. LGL
LG LG

LGL LGL
CSBP CSBP
CSBP CSBP
CSBP CSBP

p = 5
10−5 10−7

Mat. Mat.
LGL Mat.
Mat. LGL
Mat. Mat.
LGL LGL
LG LG

CSBP CSBP
LG LG

CSBP CSBP
CSBP CSBP

p = 5
10−5 10−7

Mat. Mat.
LGL LGL
LG LG

CSBP Mat.
Mat. Mat.
Mat. CSBP
LGL LGL
LG LG

CSBP CSBP
CSBP CSBP

FD
DSE (lin)
DSE (crv)

p = 6
10−4 10−7

Mat. Mat.
LG LG

LGL LGL
Mat. Mat.
Mat. Mat.
LG LG

LGL LGL
CSBP CSBP
CSBP CSBP
CSBP CSBP

p = 6
10−4 10−7

Mat. Mat.
LGL LGL
LGL Mat.
Mat. Mat.
Mat. LGL
LG LG

CSBP CSBP
LG LG

CSBP CSBP
CSBP CSBP

p = 6
10−4 10−7

Mat. Mat.
LGL LGL
LG LG

CSBP Mat.
Mat. Mat.
Mat. CSBP
LGL LGL
LG LG

CSBP CSBP
CSBP CSBP

Table 8 Efficiency ranking of operators (p = 4 to p = 6) applied to the linear convection
equation simulation on sinusoidally perturbed meshes (α1 = 0.158) relative to an estimate
of the required: (left) number of nodes (middle) number of floating point operations to
evaluate the RHS (right) number of floating point operations to evaluate the RHS multiplied
by spectral radius of the discretization.

der, and LGL being more efficient than LG at and above p = 2, and CSBP at
and above p = 3. Comparing the relative efficiency of operators using finite-
difference or curved submesh discontinuous spectral-element implementations,
they are noticeably less efficient than using linear submeshes, but follow the
same trends as the Cartesian results.

Tables 9 and 10 show the efficiency ranking of methods applied to meshes
with extreme sinusoidal stretching (α2 = 0.158). In this case, most trends
are again similar to the cases above. A significant difference seen in the plot-
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Fig. 3 Convergence of linear convection equation simulation on sinusoidally perturbed
meshes (α1 = 0.158) for p = 3 operators

ted data (See Figure 4) is that p = 6 LGL using curved submeshes exhibits
very similar efficiency to the Mattsson et al. schemes on curved elements. Fur-
thermore, the impact of large finite-difference-compatible elements discussed
previously is amplified, resulting in LGL becoming the most efficient scheme
on curved elements at the least stringent error tolerances.

The final set of simulations using the transformation presented in Ref [5]
produces similar results to the Cartesian case, with the exception of the cir-
culant operators. The transformation introduces a slope discontinuity in the
mesh at the periodic boundary, which severely reduces the convergence rate
of the circulant operators that span the boundary. However, because the slope
discontinuity is located at a subdomain boundary in both the finite-difference
and discontinuous spectral-element strategies, and hence handled using a SAT,
the other SBP schemes retain their default relative convergence performance.
This has been demonstrated for multiblock finite-difference SBP discretiza-
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Fig. 4 Convergence of linear convection equation simulation on sinusoidally stretched
meshes (α2 = 0.158) for p = 6 operators

tions in the past [10]. Therefore, as long as slope discontinuities in the mesh
are located at block boundaries, the multiblock finite-difference implementa-
tions can handle this type of mesh as can a discontinuous spectral-element
implementation.
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# nodes FLOPs λmax × FLOPs
p = 1
10−1 10−3

LG LG
LG LG

Mat. CirI
CirI Mat.

CSBP CSBP
Mat. Mat.
Mat. Mat.

CSBP CSBP
CSBP CSBP
LGL LGL

p = 1
10−1 10−3

CirI CirI
Mat. CSBP

CSBP Mat.
Mat. Mat.
Mat. Mat.

CSBP LG
CSBP LG

LG CSBP
LG CSBP

LGL LGL

p = 1
10−1 10−3

Mat. Mat.
CSBP CirI
CirI Mat.
LG LG

CSBP CSBP
Mat. LG
Mat. CSBP
LG Mat.

CSBP CSBP
LGL LGL

p = 2
10−1 10−4

Mat. Mat.
LG Mat.
LG Mat.

CSBP CirI
Mat. LG
Mat. CSBP
CirI CSBP
LGL LG

CSBP LGL
CSBP CSBP
LGL LGL

p = 2
10−1 10−4

Mat. Mat.
CSBP CirI
CirI Mat.
Mat. Mat.
Mat. CSBP

CSBP CSBP
LGL CSBP

CSBP LGL
LG LG
LG LGL

LGL LG

p = 2
10−1 10−4

Mat. Mat.
CSBP CSBP

LG Mat.
LGL CirI
LG Mat.

Mat. LG
Mat. CSBP
CirI LGL
LGL CSBP

CSBP LG
CSBP LGL

FD
DSE (lin)
DSE (crv)

p = 3
10−2 10−4

Mat. Mat.
LG CirI

CSBP Mat.
CirI Mat.
Mat. LG
LG LG

Mat. LGL
LGL CSBP

CSBP CSBP
LGL LGL

CSBP CSBP

p = 3
10−2 10−4

Mat. Mat.
CSBP CirI
CirI Mat.
LGL Mat.
Mat. LGL
Mat. CSBP

CSBP CSBP
LG LGL

LGL CSBP
CSBP LG

LG LG

p = 3
10−2 10−4

Mat. Mat.
CSBP CSBP
LGL CirI
LG Mat.
CirI LGL
Mat. Mat.
LGL LG
Mat. CSBP
LG CSBP

CSBP LG
CSBP LGL

Table 9 Efficiency ranking of operators (p = 1 to p = 3) applied to the linear convection
equation simulation on sinusoidally stretched meshes relative to an estimate of the required:
(left) number of nodes (middle) number of floating point operations to evaluate the RHS
(right) number of floating point operations to evaluate the RHS multiplied by spectral radius
of the discretization.
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# nodes FLOPs λmax × FLOPs
p = 4
10−2 10−6

Mat. Mat.
LG CirI

LGL Mat.
CSBP LG
CirI Mat.
Mat. LGL
Mat. LG
LG CSBP

LGL CSBP
CSBP LGL
CSBP CSBP

p = 4
10−2 10−6

Mat. Mat.
LGL CirI

CSBP Mat.
CirI Mat.
LG LGL

Mat. CSBP
Mat. LG
LGL LGL

CSBP CSBP
CSBP CSBP

LG LG

p = 4
10−2 10−6

Mat. Mat.
LGL CirI

CSBP LGL
LG Mat.

Mat. CSBP
Mat. Mat.
CirI LG
LGL CSBP
LG LGL

CSBP CSBP
CSBP LG

p = 5
10−3 10−5

Mat. Mat.
LG LG

LGL Mat.
Mat. Mat.
Mat. LGL

CSBP CSBP
LG LG

LGL LGL
CSBP CSBP
CSBP CSBP

p = 5
10−3 10−5

Mat. Mat.
LGL LGL
Mat. Mat.
Mat. Mat.
LGL CSBP

CSBP LGL
LG LG

CSBP CSBP
LG LG

CSBP CSBP

p = 5
10−3 10−5

Mat. Mat.
LGL CSBP

CSBP LGL
LG LG

LGL Mat.
Mat. Mat.
Mat. LGL
LG LG

CSBP CSBP
CSBP CSBP

FD
DSE (lin)
DSE (crv)

p = 6
10−4 10−7

Mat. Mat.
LG LG

LGL LGL
Mat. Mat.
Mat. Mat.

CSBP LG
LG LGL

LGL CSBP
CSBP CSBP
CSBP CSBP

p = 6
10−4 10−7

Mat. Mat.
LGL LGL
LG Mat.

Mat. Mat.
Mat. LGL
LGL LG

CSBP CSBP
LG LG

CSBP CSBP
CSBP CSBP

p = 6
10−4 10−7

Mat. Mat.
LGL LGL
LG CSBP

CSBP LG
Mat. Mat.
Mat. LGL
LGL Mat.
LG LG

CSBP CSBP
CSBP CSBP

Table 10 Efficiency ranking of operators (p4 to p6) applied to the linear convection equa-
tion simulation on sinusoidally stretched meshes relative to an estimate of the required: (left)
number of nodes (middle) number of floating point operations to evaluate the RHS (right)
number of floating point operations to evaluate the RHS multiplied by spectral radius of
the discretization.



24 Pieter D. Boom et al.

6.1.3 Summary of linear convection results

The simulation results from the linear convection equations yield some ex-
pected and some unexpected results. First, while a finite-difference implemen-
tation was decidedly the most efficient scheme on Cartesian meshes, this is
only true in general for the optimized schemes of Mattsson et al.. The results
obtained using CSBP schemes become increasingly less efficient relative to
LG/LGL, with the cross-over in efficiency happening around p = 3 or p = 4.
Beyond this point LGL is the second most efficient scheme after the Mattsson
et al. operator. There are free coefficients available in higher-order CSBP that
can be potentially be optimized to improve these results.

With the introduction of mesh distortion, it is not surprising that the
discontinuous spectral-element implementations with linear submeshes are the
most efficient especially at looser error tolerances. However, the optimized
schemes of Mattsson et al. applied with linear submesh elements are more
efficient than LG/LGL schemes, a finding that is to some extent unexpected.

A further unexpected and significant result is the accuracy of the finite-
difference implementations, even with the extreme mesh distortions tested.
As long as slope discontinuities in the mesh are located at block interfaces,
the multiblock finite-difference approach is as accurate as the discontinuous
spectral-element approach on highly distorted meshes.

6.2 Euler equation results

To assess whether the results obtained with linear governing equations also
hold for nonlinear equations, a smaller set of results is generated with the
Euler equations. The simulation chosen is the periodic convection of an invis-
cid isotropic vortex. The domain is again square [x, y] ∈ [0, 1] with periodic
boundaries. The initial conditions are as follows:


ρ
ρu
ρv
e

 =


(

1− 1
2M

2β2(γ − 1)e−r
2
) 1
γ−1

ρM
(

1− β y−YcR e−r
2/2
)

ρMβ x−XcR e−r
2/2

ργ

γ(γ−1) + 1
2ρ(u2 + v2)

 (7)

where ρ is the density, M = 0.5 is the Mach number, β = 0.2 is the vortex
strength, γ = 1.4 is the ratio of specific heat capacities, R = 0.05 is the
characteristic radius of the vortex, and Xc = Yc = 0.5 are the coordinates
of the vortex center. Time integration is as before with the linear convection
equation simulations, integrated from t = 0 to t = 2 (one full period).

Operators of order p = 1 to p = 4 are compared, and the spectral radius
was not taken into account (only the number of nodes and number of floating
point operations to evaluate the right-hand side). Error is evaluated using
the global norm of the discretization based on the difference in volumetric
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x-momentum (ρu) component of the solution. In this case, many of the trends
described earlier still hold (See Figure 5 for example or the Supplementary
Files). For example,

– With p = 1, LG often requires the smallest number of nodes, but rarely
the smallest number of floating point evaluations to evaluate the right-hand
side.

– The finite-difference implemenations are often more efficient than the dis-
continuous spectral-element approach with curved submeshes for a given
operator based on the relative to number of flops.

– The discontinuous spectral-element approach with linear submeshes has an
advantage on the coarsest meshes, as observed previously. It also is able
to handle the most extreme distortions without having to lower the time
step size, indicating that the spectral radius of these simulations may be
lower as was seen for the linear convection equation. Also as above, this
advantage diminished with mesh refinement

– For a given implementation, Mattsson et al.’s optimized operators were
nearly always the most efficient with respect to the number of flops
– The second most efficient was CSBP for p ≤ 2 and LGL for p ≥ 3

Fig. 5 Convergence of Euler’s equation simulation on sinusoidally perturbed meshes (α1 =
0.15) for p3 operators

There are some difference that can be observed in the Euler equation results,
which are as follows (See Figure 6 and the Supplementary Files):

– CSBP remains more efficient than LG relative to flops, even at p = 4,
where previously LG was equally efficient or marginally more efficient.



26 Pieter D. Boom et al.

Name Transformation
Discontinuous x = ξ

stretching y =


2η∗

1

α4
+ 0.5 for |η∗| ≤ 0.25

2η∗

(
1−

1

α4

)
−

η∗

|η∗|

(
1

α4
− 0.5

)
+ 0.5 otherwise

Exponential x = ξ

stretching y =
η∗

|η∗|

(
eα5|η∗| − 1

eα5 − 1

)
+ 0.5

Table 11 Additional global transformations, where η∗ = η − 0.5

– LGL p = 4 is often as efficient (or even marginally more efficient) than
Mattsson et al.’s operators at the coarsest mesh levels. Mattsson et al.’s
operators do eventually become more efficient at more stringent accuracy
tolerances, but the advantage is delayed.

Fig. 6 Convergence of Euler’s equation simulation on sinusoidally perturbed meshes (α1 =
0.15) for p4 operators

Some additional simulations are conducted using a discontinuous and ex-
ponential mesh stretching. The transformations used to impose this stretching
are described in Tables 11 and 12, with samples shown in Figure 7.

In the discontinuous case, the finite-difference implementations do not fail
but suffer a significant reduction in convergence rate, especially as the order
increases (See Figure 8 or the Supplemental Files). This is to be expected be-
cause the mesh metrics are computed from the nodal locations in the mesh –
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Max Max Max
Transformation Operator Aspect ratio Stretching Skewness

Discontinuous stretching
(α4 = 3)

CSBP 2 3 0

Exponential stretching
(α5 = 4) [25 unique nodes]

CSBP 11.29 1.4 0

Exponential stretching
(α5 = 4) [385 unique nodes]

CSBP 13.26 1.02 0

Table 12 Properties of meshes constructed for select operators

Fig. 7 Meshes for global transformations using 25 node CSBP nodal distribution: discon-
tinuous stretching (left); and exponential stretching (right)

a discontinuity in mesh spacing will limit the accuracy of the metric compu-
tations. However, if a block boundary is introduced at the discontinuity, the
strategy maintains the prescribed convergence rate, as well as a higher overall
efficiency relative to flops observed in other simulations - this is indicated in
the plots as FD ++SATs.

In the case of exponential mesh stretching, all simulations maintained a
similar efficiency ranking to previous (non-discontinuous) results.
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Fig. 8 Convergence of Euler’s equation simulation on discontinuously stretched meshes
(α4 = 3) for p4 operators. FD ++SATs indicates that a block boundary was introduced at
the mesh discontinuity.

6.2.1 Summary of Euler equation results

In general, the results and conclusions obtained with the linear convection
equations hold for the Euler equations. The relative efficiency rankings of the
methods are nearly the same in all cases, even if the margins are different.
This varies a little bit with the higher-order simulations where LGL is more
competitive with Mattsson et al.’s operators and CSBP performs better than
LG compared with previous results.

Extending the simulations to consider different types of mesh stretching
functions again yielded very similar ranking of the operators for a given im-
plementation strategy. In this case, finite-difference implementations require
that discontinuities be located at block interfaces to maintain a high relative
efficiency. Furthermore, the extreme exponential stretching did finally have
an effect on the relative performance of the finite-difference implementations.
While not the most efficient in all cases, it did not fail and was still competitive
with LG/LGL discontinuous spectral-element schemes.

6.3 Other considerations

There are many different aspects to consider when choosing a discretization
strategy for a new or upgraded solver. This paper concentrates on one aspect,
the impact of severe mesh distortion on the accuracy and efficiency of two
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distinct strategies, finite-difference and discontinuous spectral-element. Other
potential considerations include: generation of block or element topologies; and
placement of submesh nodes; whether or not volume dissipation is needed;
relative accuracy of superconvergent functionals; construction, implementa-
tion and impact of higher order derivatives; whether or not there is a benefit
from having basis functions, i.e. an analytical representation of the solution as
opposed to solely nodal values; mesh adaptivity strategies; representation of
boundaries; and many more. Particularly relevant to the results presented in
this paper, it has previously been shown that current volume dissipation op-
erators can have a significant impact on the accuracy of results obtained with
Mattsson et al. operators, and that the operators provide little or no benefit
with respect to functional accuracy [1].

7 Conclusions

We have compared the accuracy and efficiency of several high-order opera-
tors with the SBP property on meshes with varying degrees of distortion for
the linear convection and Euler equations in two dimensions. Some of the
operators studied have been applied as multi-block finite-difference methods
where mesh refinement is achieved by increasing the number of mesh nodes
per block with a fixed number of blocks. All of the operators have been ap-
plied in a discontinuous spectral-element manner where mesh refinement is
achieved by increasing the number of elements with a fixed number of degrees
of freedom per element. For operators that have a variable number of submesh
nodes (traditionally applied as finite-difference operators), the discontinuous
spectral-element operators of minimum size are obtained by using the min-
imum possible number of submesh nodes in each element, which typically
includes the point operators that have been modified due to their proximity
to the element boundary and one instance of the interior point operator. The
objective of this study is to understand how mesh distortion affects the accu-
racy and efficiency of such methods, in particular how mesh distortion affects
the relative accuracy of finite-difference approaches compared to discontinu-
ous spectral-element approaches, where the degrees of freedom are internal
to the element. It was anticipated that the latter would become increasingly
advantageous as mesh distortion increases.

Our results show that the accuracy of the finite-difference approach is not as
sensitive to mesh distortion as expected and hence this approach is competitive
with the discontinuous spectral-element approach even on highly distorted
meshes. This conclusion holds when the mesh, although highly distorted, can
be refined in a continuous manner. If the mesh contains a discontinuity, the
conclusion holds if a block interface is located at the discontinuity.

A second conclusion of our study is that the optimized operators of Matts-
son et al. are very efficient whether applied as finite-difference operators or as
discontinuous spectral-element operators of minimum size. While their accu-
racy as finite-difference operators may be expected, their superior accuracy to
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LG and LGL nodal distributions when implemented as discontinous spectral-
element operators is surprising.

Finally, given that the multiblock finite-difference approach characterized
by blocks of arbitrary size and the discontinuous spectral-element approach
characterized by elements of fixed size for a given degree can be comparably
efficient, this suggests that hybrid approaches combining the two could be op-
timal. For example, the number of blocks or elements affects the amount of nu-
merical dissipation resulting, for example, from upwind SATs, and a particular
block size or operator degree may be optimal for a given computer architec-
ture. Therefore, the flexibility provided by the generalize summation-by-parts
framework, specifically with multiblock finite-difference which decouples block
size, i.e. the number of nodes in a block, from the operator degree, could
be exploited to tailor the global operator for a given problem and computer
architecture.
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