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Nomenclature

Alphanumeric

a Translation of a coordinate system in the x direction

A,B,C Coefficients in the general equation of a line

b Translation of a coordinate system in the y direction

CD Drag coefficient

CL Lift coefficient

X Design variables

f Winslow smoothing function for either x or y coordinate direction

G Grid variables

Gsurf Surface mesh

J Objective function

L Lagrangian

M Mach number

Q Flow variables

C Constraints

R Flow residual

S Wetted planform area of the wing

s Scale change between coordinate systems

X, Y Transformed coordinates in physical space

Greek

ϵ Finite-difference step size

ε Nonorthorgonality angle between the axes of the two coordinate systems

ξ, η Coordinates in computational space

Ω Feasible region of the design space

ψ,λ Lagrangian multipliers for the flow and grid variables

ϕ Rotation of the axes of one coordinate system with respect to the other

ω Angle of attack

τ Linear twist

θ Rotation angle

Abbreviations

Adj Adjoint

CAD Computer-Aided Design

CFD Computational Fluid Dynamic

EGADS Engineering Geometry Aerospace Design System
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FD Finite-Difference

FFD Free-Form Deformation

Ganimede Geometry ANd Inherent MEsh DEformation

NIST National Institute for Standards and Technology

NURBS Non-Uniform Rational B-Splines

OpenCASCADE Open-source Computer Aided Software for Computer Aided Design and

Engineering

OpenCSM Open-source Constructive Solid Modeler

MDO Multidisciplinary Design Optimization

SNOPT Sparse Nonlinear OPTimizer

Subscripts

0 Origin

i, j Node indices

I. Introduction

CAD systems have robust modeling capability and are able to capture design intent.

They allow designers to create and modify shapes effortlessly in 3D simply by altering the

dimensions of the features from which they were created. The designer is able to better

understand how the product will look and function before making physical prototypes and

therefore able to avoid many design errors. Such functionality and versatility provided by

the CAD system makes it an essential tool for product design and development. Ideally,

the CAD representation of the geometry should be used directly in numerical simulations

to maintain the accuracy and integrity of the model. However, there are several issues that

prevent CAD from being widely used as a geometry parameterization tool in aerodynamic

shape optimization algorithms. First, CAD entities are usually inaccessible and thus non-

modifiable by a third-party application. Second, users have no control over the mathematical

representation or topological outcome of the model. This lack of control makes it difficult to

relate the surface mesh of the computational domain to the CAD face as it evolves during the

optimization process. Third, the complexity and unavailability of the source code makes it

difficult to obtain analytical sensitivity information required by gradient-based optimizers.

Consequently, CAD models have traditionally been translated to commonly used formats

such as IGES1 or STEP.2, 3 The translated models often contain gaps and overlaps and may

need extensive repair. This laborious, manual-intervention process typically consumes up to

80% of the total time required for Computational Fluid Dynamic (CFD) analyses4 and is a

major bottleneck in the use of CFD as a practical design tool.

In 1991, the AIAA Technical Committee on Multidisciplinary Design Optimization (MDO)

3 of 37

Surface Mesh Movement for CAD-Based Optimization



identified that one of the key areas needing development is to establish unified numerical

modeling parmeterized in terms of the design variables – a consistent vehicle geometry to be

used as a basis for all mathematical models, such that changes to the geometry are centrally

coordinated.5 To address this problem, most CAD systems began introducing toolkits such

as Autocad ObjectARX, Parasolids, the SolidWorks API, CATIA CAA, and Pro/Toolkit6, 7

for accessing geometric data, database structures, graphics systems, and native command

definition in the CAD system. This marks a major milestone, as CAD entities are now

accessible and modifiable and thus directly usable in shape optimization algorithms.

In particular, a CAD parameterization is ideal for use in multidisciplinary design op-

timization (MDO) where the geometry representation has to be consistent across different

engineering disciplines because it permits simultaneous changes in the outer skin and the

internal structural components, i.e. a modification in the outer mold shape will cause a

corresponding change in the underlying structure that is connected to it or vice versa. How-

ever, its use has been very limited thus far for two important reasons. First, CAD software

is very complex and users have no control on the mathematical definition or the number

of entities generated by a CAD program. This means that the designer cannot relate the

geometry definition to the body-fitted computational mesh, particularly the surface mesh,

and is limited to optimization problems in which the geometry can undergo only relatively

small movements.8, 9, 10 In these cases, the geometry definition does not change and the move-

ment of the surface mesh points can be “tracked” by their CAD parametric coordinates,8, 10

or regenerated entirely based on the initial topology.9 Alternatively, Nemec et al.11 used

Cartesian meshes so that mesh movement or regeneration can be avoided, but they are

limited to optimization problems where the flow is inviscid. Second, CAD systems do not

provide derivatives of surface displacements with respect to the design variables, which are

needed in the chain rule to compute the sensitivities of the objective/constraint function

with respect to design parameters. The surface sensitivity derivatives can be obtained by

differentiating the CAD modeler if the source code is available, such as in the case of the

open-source CAD engine OpenCASCADE.12 However, differentiating the source code is not

an easy task due to its size and complexity.13 At present, OpenCASCADE contains over

14, 000 classes, making differentiation a difficult undertaking. Thus far, only Kleinveld et

al.14 were successful in differentiating their in-house CAD modeler, Ganimede (Geometry

ANd Inherent MEsh DEformation), to obtain analytical sensitivity derivatives.

Yu et al.15 proposed an alternate representation of CAD models using NURBS (Non-

uniform rational B-splines), a form which CAD systems use to export their geometries. The

derivatives of the surface with respect to the design variables at any given location on the

surface are obtained by applying automatic differentiation (AD) in reverse mode to a generic

NURBS implementation. Xu et al.16 generalized this approach to 3D geometries consisting
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of multiple NURBS patches. They introduced constraints for geometric continuity across

NURBS patch interfaces to maintain a desired level of continuity of tangency and curvature

between adjacent NURBS patches when a control point on or near a patch interface is

displaced. Jones et al.13 infer the parameter sensitivity by tracing the evolution of the

hierarchical associativity of CAD features. Robinson et al.17 use the design velocity field

approach to evaluate the surface displacement over a faceted coarse surface mesh and then

interpolate on the boundary of the fine computational mesh. The use of design velocity for

optimization is well established. It can be computed for meshes of the boundary,18, 19 or

directly from the geometric CAD model.20, 21 The design velocity is a measure of the normal

displacement of the model boundary caused by a modification of the design parameter.

The change in objective function caused by the perturbation of the design parameter can be

predicted using the boundary method expressed in terms of design sensitivity and is described

by Choi et al.22, 23 This method assumes that the change in performance is of first order,

which is valid for small boundary movements that are continuous over the boundary.17 If the

relationship between the design variables and nodal coordinates is linear, then the velocity

field needs to be calculated once, whereas if the relation is nonlinear, then the velocity field

must be updated at each design iteration.24

More recently, Haimes and Dannenhoffer25 created a browser-based geometry construc-

tion and manipulation tool called Engineering Sketch Pad, which, in many ways, mirrors the

functionality of modern parametric commercial CAD systems, as it is built upon OpenCSM

(which is the open-source constructive solid modeler that is in turn built upon EGADS -

the Engineering Geometry Aerospace Design System, and OpenCASCADE) that is able to

provide analytic parameter sensitivity.

Often, the effect of each design parameter is determined using the finite-difference ap-

proach.8, 11, 26, 27, 28, 9 Using this approach, the number of required geometry and surface mesh

deformations scales proportionally to the number of design variables. Furthermore, in a

Sequential Quadratic Programming optimizer such as SNOPT, during a line search, the

geometry is generally perturbed a few more times to construct a quadratic fit along the

direction of the gradient. The computational cost can become excessive for problems with

large numbers of design variables. Moreover, choosing an optimal step size to avoid trun-

cation or round-off errors can be challenging as it varies with each design variable and with

each design cycle.29 The finite-difference approach also requires the topology of the model

to remain constant, which can be hard to achieve in some cases. Despite these issues, this

approach is general and relatively straightforward to implement.

In this paper, we develop a robust surface mesh movement method that deforms the

initial structured surface mesh to fit the new CAD geometry for aerodynamic shape opti-

mization. As in our previous work,30 CATIA v5 is used to generate the CAD geometry
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and communication with the CAD software is done using a vendor-neutral Computational

Analysis PRogramming Interface called CAPRI.31 Rather than relying on the mathetical

representation of the CAD face, the mesh movement algorithm uses the discrete form pro-

vided by CAPRI to drive the algorithm and guarantee that the surface mesh lies on the CAD

face. The objectives of the algorithm are to maintain the mesh quality and characteristics

of the initial surface mesh as it adapts to the new shape during the optimization process, to

maintain geometric fidelity by ensuring that the mesh is on the CAD face, and to provide

accurate surface sensitivity derivatives of the mesh node with respect to the geometric design

variables. The background and methodology regarding surface parameterization used by the

surface mesh movement algorithm are described in the following sections. A finite-difference

method for the computation of the surface sensitivity11 is implemented. The surface mesh

movement algorithm is integrated into a three-dimensional shape optimization framework,

with a linear-elasticity volume-mesh movement algorithm,32 a Newton-Krylov flow solver for

the Euler equations,33 and a gradient-based optimizer, SNOPT.34 The validity and accuracy

of the CAD-based optimization algorithm are demonstrated through a number of verification

and optimization cases.

II. Surface Mesh Movement Algorithm

The deformation process involves the following steps:

1. Cluster the CAD faces and the corresponding CAPRI tessellation into sizable patches,

compared to the size of the mesh, to maintain consistent surface topology after each

geometry regeneration.

2. Parameterize the surface mesh and the CAPRI tessellation for each of the patches onto

the same region in the 2D plane, aligning corresponding boundaries.

3. Search for a triangle in the CAPRI tessellation that contains each of the surface nodes.

The position of the node inside the triangle, i.e. its barycentric coordinates, is calcu-

lated.

4. Determine the CAD parametric coordinates for the surface node based on the barycen-

tric coordinates and the CAD parametric coordinates of the vertices of the triangle

which enclose it. This is an important step because it guarantees that the new mesh

nodes will be on the CAD face.

5. Convert the CAD parametric coordinates of the surface nodes into physical coordinates

in 3D by interrogating the CAD program.
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In this paper, a “CAD” geometric entity is always explicitly stated so to avoid confus-

tion with mesh related entities. For example a “CAD surface” is a geometric entity,

whereas as “surface” alone is a mesh entity.

II.A. Clustering Algorithm

A clustering algorithm similar to the method of Sheffer et al.35, 36, 37 is implemented here to

ensure consistent topology as the geometry changes during shape optimization. However, the

criterion for the clustering of faces is based on the blocking scheme of the initial structured,

multi-block volume mesh. Since the mesh will generally be deformed and reused throughout

the optimization cycle, the sides of the blocks which lie on the CAD surface are used to

guide the clustering algorithm such that the boundary of the block sides coincides with

the boundary of the clustered CAD faces. For a given initial geometry and volume mesh,

the designer chooses a set of rules that will partition the CAD faces into the least number

of patches. The boundaries of these patches have to coincide with the block edges. The

patches themselves have to be sufficiently large (compared to the size of the associated

surface mesh element) and smooth so that when the surface mesh on these clustered faces is

re-parameterized, it will be least distorted. In addition, the rule has to be valid throughout

the optimization process in order to correctly relate the position of the mesh node to the

CAD surface.

II.B. Survey of Parameterization Methods

The parametrization problem is inherently difficult, as one is trying to flatten a surface from

3D to 2D in such a way as to minimize distortion.38 Generally, parametrization techniques

can be classified into two types: fixed or non-fixed boundaries in the parametric domain.

Fixed boundary methods typically use very simple formulations and are very fast.39 How-

ever, fixed boundary methods often have large distortions because the boundary shapes of

the original models can be very different from those of their flattened surfaces in the 2D

domain.38 Free-boundary techniques, which determine the boundary as part of the solu-

tion, are often slower, but typically introduce significantly less distortion. In recent years,

numerous methods for parameterizing meshes have been developed, targeting diverse param-

eter domain and focusing on minimizing the distortion of different intrinsic measures of the

original mesh.

In general, we want to preserve as much of the intrinsic qualities of a surface as we can

during its parametrization. The intrinsic qualities for a discrete surface are length, angle

and area. A length-preserving or isometric mapping is ideal in that it preserves not only

length, but also angle and area. However, it is well known that isometric mappings only
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exist in very special cases, where the surface is developable.a Therefore, many approaches

to surface parametrization attempt to find a mapping which minimizes distortion of either

angle or area, or some combination of these.40

Maps that minimize the angular distortion are called conformal, and maps that minimize

area distortion are called authalic. In theory, angular distortion can be eliminated completely

by conformal mapping, but it is impossible for conformal mappings to further eliminate

area distortion completely, except for developable surfaces. As pointed out by Floater and

Hormann,40 although authalic parameterizations are achievable, they are not very useful by

themselves, as they allow extreme angular and linear distortion. Thus, area preservation41, 42

methods are typically combined with angle preservation39 to minimize the distortion.

A common approach is to minimize a certain energy to control the distortion. A simple,

yet effective fixed-boundary parametrization method that uses linear spring energy with a

uniform spring constant was introduced by Tutte.43 Tutte’s embedding method is estab-

lished in the following steps: First, n vertices which make up a boundary segment of the

surface mesh are positioned on some convex polygon in R2. The positions of the interior

vertices are calculated so that the total energy is minimized. This energy can be represented

as a sum of the energy of a configuration of springs with one spring placed along each edge

of the surface mesh. Tutte’s method results in a sparse, diagonally-dominant linear system

that can be solved easily with any iterative method.44 Floater45 proposed a different set of

weights for the edge spring model. He generalized Tutte’s procedure to generate all pos-

sible valid embeddings of the 3D graph in the plane, given the (convex) positions of the

boundary. Floater’s shape-preserving parameterization method has the advantage that the

weights are always positive. This guarantees that the linear system derived can be solved

robustly.44 Others46, 47, 48 have developed variations of Tutte’s method, aiming for some ef-

fect related to reflecting the geometry of the mesh in the parameterization, i.e. minimizing

its metric distortion. However, some of the methods,46, 47 cannot guarantee a valid map.

Variations of harmonic energies were also optimized using discrete Laplace-Beltrami oper-

ators in.49, 47, 45, 50, 51, 48 However, harmonic maps may contain face flips which violate the

bijectivity b of a parameterization.42

II.C. Surface Mesh Parameterization Considerations

In choosing an appropriate surface mesh parameterization method, the following factors

are taken into consideration: free vs fixed boundary, robustness and numerical complexity.

Since we need to find a correspondence between the source and target surface meshes, the

asurfaces with zero Gaussian curvature, which means that it is a “surface” that can be flattened onto a
plane without distortion (i.e. “stretching” or “compressing”). Examples are cylinders and cones.

bthere is a one-to-one correspondence between the 3D surface and its parameterization
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boundaries of the surfaces in parametric space must be the same. This limits our choice

of methods to those with fixed boundaries. For simplicity, a unit square is used as the

boundary for the mapped surfaces. For our application, it is sufficient (or even desirable)

to take a square as the parametric domain, with the advantage that such a convex shape

guarantees the bijectivity of the parameterization if positive barycentric coordinates like the

mean value coordinates are used to compute the parameter points for the interior vertices.

The four edges on the surface patch can be related to the four sides of the square. For

simplicity, the parameter points are uniformly spaced on the rectangular domain. Although

some heuristic procedures for placing the boundary points have been proposed52 and tried,

having to fix the boundary vertices is already a limitation.

Most applications of a parameterization require it to be bijective (invertible). The bi-

jectivity can be local, which means that there are no triangle flips, or global, which means

that the boundary does not self-intersect. Since we use the map as a means to locate the

position of any point on the 3D surface, any technique which provides a one-to-one mapping

is sufficient. Finally, parameterization methods which require a linear solution method (as

opposed to nonlinear method) are typically significantly faster and simpler to implement, at

a cost of increased distortion. Since our problems contain hundreds of design variables and

we need to find the sensitivity of the surface with respect to each of the design variables, a

method that can provide a fast solution is required.

Tutte’s method satisfies these criteria. However, since Tutte’s method does not preserve

any intrinsic property of the mesh, we need a triangulation that has elements of uniform

length. Any non-uniformity or irregularity in the mesh will introduce distortion in the

mapping, and subsequently, the final mesh. The quality of the parameterization is directly

affected by the regularity of the triangulation, both topologically and geometrically. Topo-

logical regularity refers to meshes where the vertices have the same degree (connectivity),

and geometric regularity implies that the triangles are similar to each other in terms of

shape and size, and have vertices close to the centroid of their neighbors.39 For example, the

regularity of the triangulations shown in Figures 1(a) and 1(c) results in the smooth surface

meshes shown in Figures 1(b) and 1(d) upon inverse map. This regularity cannot be easily

obtained using CAPRI, only in cases where the boundary of a CAD face is similar to that of

a square, such as the straight portion of the wing shown in Figure 2. This regularity is lost

when the wing is given some angular deformation, such as a sweep of the leading edge, re-

sulting in distortion of the surface mesh in the region where the irregularities occurred. This

is evident in Figure 3. Section II.D describes how the CAPRI triangulation is parameterized

on a unit square using Tutte’s method.

The initial structured surface mesh is parameterized on the uv-parametric space based

on the idea of scaling, to maintain the ratio of the mesh cell with respect to the given patch.
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(a) Surface triangulation of the deformed
geometry

(b) New surface mesh

(c) Triangulation of the target surface (d) New surface mesh

Figure 1: The quality of the deformed surface mesh is dependant on the uniformity of the
triangulation.
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Figure 2: CATIA part

(a) Wing root (b) Wing tip

Figure 3: Zoomed-in view of the root and tip region on the top surface of the wing with the
surface mesh (black) overlaying the CAPRI triangulation (red). The surface mesh is slightly
distorted where the triangulation is irregular.
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To preserve the mesh spacing of the initial surface mesh, it is parameterized onto a unit

square using the arclength method, where uj is the normalized arc length given by:

u1 = 0 (1)

ujmax = 1 (2)

uj =
1

Lg

j
∑

i=2

Li j = 2, . . . , jmax−1 (3)

Li is the length of a segment between nodes j and j − 1, and Lg is the grid line length from

one side of the patch to the other:

Lg =
jmax
∑

i=2

Li (4)

A similar calculation is performed for the other parametric coordinate, vj .

II.D. Barycentric Mapping

A simple idea for constructing a parameterization of a triangular mesh is based on the spring

model, where the edges of the triangular mesh are springs that are connected at the vertices.

If the boundary of this spring network is fixed somewhere in the plane, then the interior of

this network will relax in the energetically most efficient configuration, and we can simply

assign the positions of the vertices as parameter points.52

Following the derivation given by Hormann,52 each spring is assumed to be ideal in the

sense that the rest length is zero and the potential energy is 1
2Ds2, where D is the spring

constant and s the length of the spring. For a mesh with n interior points and b boundary

points, the parameter points ui = (ui, vi), i = n + 1, . . . , n + b for the boundary vertices

pi ∈ VB of the mesh are projected onto a planar convex polygon. Then minimize the overall

spring energy:

E =
1

2

n
∑

i=1

∑

j∈Ni

1

2
Dij∥ui − uj∥

2 (5)

where Dij = Dji is the spring constant of the spring between pi and pj , with respect to the

unknown parameter positions ui = (ui, vi) for the interior points. As the partial derivative

of E with respect to ui is
∂E

∂ui

=
∑

j∈Ni

Dij(ui − uj) (6)

the minimum of E is obtained if

∑

j∈Ni

Dijui =
∑

j∈Ni

Dijuj (7)

12 of 37

Surface Mesh Movement for CAD-Based Optimization



for all i = 1, . . . , n, where n is the number of interior nodes and Ni is the number of vertex

pi’s neighbors. In other words, each interior parameter point ui is an affine combination of

its neighbors,

ui =
∑

j∈Ni

κijuj (8)

with normalized coefficients

κij =
Dij

∑

k∈Ni

Dik

(9)

that sum to 1.

By separating the parameter points for the interior and the boundary vertices in the sum

on the right hand side of Eq. 8 we get

ui −
∑

j∈Ni,j≤n

κijuj =
∑

j∈Ni,j>n

κijuj (10)

and see that computing the coordinates ui and vi of the interior parameter points ui requires

the solution of the linear systems

AU = Ū and AV = V̄ (11)

where U = (u1, . . . , un) and V = (v1, . . . , vn) are the column vectors of unknown coordinates,

Ū = (ū1, . . . , ūn) and V̄ = (v̄1, . . . , v̄n) are the column vectors with coefficients

ūi =
∑

j∈Ni,j>n

κijuj and v̄i =
∑

j∈Ni,j>n

κijvj (12)

and A = (aij)i,j=1,...,n
is the n× n matrix with elements

aij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if i = j,

−κij if j ∈ Ni,

0 otherwise.

(13)

The simplest value for the spring constant Dij = 1 goes back to the work of Tutte,43

who used it in a more abstract graph-theoretic setting to compute straight line embeddings

of planar graphs. This approach lacks the linear reproduction characteristic, which is a

production of an isometric (and thus optimal) mapping in the case where the surface is

contained in a plane so that its vertices have coordinates pi = (xi, yi, 0) with respect to

some appropriately chosen orthonormal coordinate system. In this case, the parameter

points themselves are defined using the local coordinates, i.e. ui = xi, for i = 1, . . . , n + b.
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Other researchers47, 49, 48, 53, 54 have developed various values for Dij to achieve the linear

reproduction property, which is useful for computer graphics, geometric modeling and other

applications,52 but can affect the solvability of the linear systems defined in Eq. 11. Since the

linear reproduction characteristic is inconsequential to our application, the method of Tutte

is chosen for the reparameterization of the target surface (i.e. the CAPRI triangulation).

II.E. Inverse Mapping

When a vertex p is included in a face of an input mesh f = (pi, pj , pk) in the parametric

domain, the 3D position p is calculated by a barycentric coordinate (α, β, γ):

p = αpi + βpj + γpk (14)

Before the calculation of p, we need to find a face f in which p is included. In general,

this problem can be regarded as a point location problem in the parametric domain, and

can be processed in O(logm)-time for each vertex, where m is the number of faces in the

CAPRI triangulation. Then, the calculation for the uniform subdivision fitting at each level

is processed in O(n logm)-time, where n is the number of vertices in the 3D surface patch.

In order to ensure that the surface node is on the CAD face, we obtain the coordinates of the

node in 2D using the CAD parametric coordinates of the triangle vertices, then a CAPRI

function gi qNormalToFace55 is called to obtain the corresponding physical coordinates in

3D space. For nodes lying on boundary edges, their parametric positions are obtained by

interpolating the edge vertices of the triangles which bound the nodes. This is possible

because the vertices in the CAPRI tessellation are guaranteed to be on the CAD face (for

interior nodes) and on the CAD edge (for boundary nodes). Since the gi qNormalToFace

query is needed for all surface nodes, it can be executed in a “grouped” mode where all calls

are collected and executed in a single command to minimize communication time.

II.F. Barycentric coordinates in 2D

Consider a 2D triangle whose vertices are a = (xa, ya), b = (xb, yb), c = (xc, yc) and a point

p = (x, y). Barycentric coordinates allow us to express the coordinates of p in terms of a, b,

c. More specifically, the barycentric coordinates of p are the numbers α, β and γ such that

p = α + β(b− a) + γ(c− a) (15)
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If we regroup a, b and c, we obtain

p = α + βb− βa+ γc− γa

p = (1− β − γ)a+ βb+ γc
(16)

If we define α as

α = 1− β − γ (17)

we then have

p = αa+ βb+ γc (18)

The values of α, β, γ can be determined by writing Eq. 15 in terms of the coordinates of

the various points involved to yield the following system of equations:

⎧

⎨

⎩

x = xa + β(xb − xa) + γ(xc − xa)

y = ya + β(yb − ya) + γ(yc − ya)
(19)

Once the values for α, β and γ are obtained, they are substituted in Eq. 18 to determine the

position of point p in the 3D space.

II.G. Surface Mesh Deformation Examples

Figure 4 illustrates the surface mesh deformation process. Given an initial structured sur-

face mesh, generated for example using a mesh generation method on the initial geometry, as

shown in Figure 4(a), and a tessellation of the deformed surface, Figure 4(b), the surface mesh

movement algorithm parameterizes them onto a unit square, shown in Figures 4(c) and 4(d),

respectively. By overlapping the parameterizations, shown in Figure 4(e), it searches for a

triangle in the tessellation that encloses each of the surface mesh points and determines the

barycentric coordinates of each of the points with respect to the coordinates of the vertices

of triangle. The coordinates of the new surface mesh, Figure 4(f), are obtained by interpo-

lating the 3D physical coordinates of the vertices of the triangles using the corresponding

barycentric coordinates. It can be seen in Figure 4(f) that the new surface mesh has similar

features (node clustering and distribution) to the tessellation. This example demonstrates

the importance of having a uniform triangulation, as any pattern or distortion introduced

by the tessellation will be transferred to the resulting surface mesh.

The second example, shown in Figure 5, involves the deformation of a dense surface mesh

that is designed for viscous flow simulations. The tessellation, Figure 5(b), is uniform, and

the characteristics of the original surface mesh, Figure 5(a), such as the clustering around

the edges and the spacing along the spanwise direction, are preserved in the deformed surface
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(a) Surface mesh of the initial geometry (b) Surface triangulation of the deformed
geometry

(c) Parameterization of the initial mesh (d) Parameterization of the triangulation

(e) Overlaying of the parameterizations (f) New surface mesh

Figure 4: Obtaining a surface mesh from a triangulation of the new surface
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mesh, shown in Figure 5(d). Though it may be hard to discern these similarities in such a

drastic transformation (from a planar wing to a wing with a winglet), this example demon-

strates the capability of the surface mesh movement algorithm to handle large deformations

while preserving the mesh quality and characteristics of the original surface mesh. Note that

Figure 5(c) is included here to convey the fact that it may not be visually apparent in which

triangle the surface mesh lies, but the algorithm can numerically handle the computation.

The third example, Figure 6, shows the mesh characteristic preservation of the algorithm

more clearly. In this case, the leading edge of the original wing is reduced by 30% chord.

It can be seen that the original and deformed mesh near the root, where the deformation

is minimal, are almost identical. The change is smooth and gradual towards the tip as the

surface mesh adapts to the new shape.

Finally, Figure 7 shows the same wing in the previous example experiencing a greater

extent of deformation whereby the chord is increased by 30%, the wing thickness is reduced

by 30%, and the span is increased by 30% in addition to a decrease of 30% in the leading

edge sweep. This example shows that CAPRI cannot always produce a tessellation with

uniform triangles. Depending on the quality and shape of the CAD face, there may be some

distortions introduced which affect the quality of the final surface mesh. This is seen in

Figures 3(a) and 3(b), where the distortion of the CAPRI triangulation (red) results in non-

smooth surface mesh (black). This necessitates the development of a smoothing algorithm

that can correct such irregularities in the surface mesh.

II.H. Winslow Smoothing Algorithm

The Winslow equations are derived from a Laplacian operator applied to the computational

coordinates, (ξ, η)

∇2ξ = ξxx + ξyy = 0

∇2η = ηxx + ηyy = 0
(20)

The equations describe a smooth distribution of computational coordinates (ξ, η) in phys-

ical space (x, y).56 The Laplace equations satisfy the max-min property, which states that

the parameter on the interior domain will not exceed the values on the boundary, i.e. the

grid lines will not cross. The Winslow equations are obtained by transformation of the un-

known variables x and y to known variables ξ and η in the computational space. For a 2D

structured mesh with mesh coordinates at the integer indices (i, j), Eq. 20 can be written as

α
∂2f

∂ξ2
− 2β

∂2f

∂ξ∂η
+ γ

∂2f

∂η2
= 0 (21)
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(a) Initial surface made up of 2 patches (b) Triangulation of the target surface

(c) Overlaying of the parameterizations (d) New surface mesh

(e) New surface mesh at root (f) New surface mesh at tip

Figure 5: Obtaining a surface mesh for a wing with a winglet
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(a) Top surface (b) Bottom surface

Figure 6: Comparing the mesh quality and characteristics of the original (black) and de-
formed (pink) meshes.

(a) CAPRI tessellation of the deformed wing (b) Deformed surface mesh

Figure 7: The wing in Figure 6 is modified by +30% chord, −30% thickness, +30% span.
Its leading edge is also swept back by 30% chord.
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which can be discretized as

α(fi+1,j−2fi,j+fi−1,j)−
β

2
(fi+1,j+1−fi−1,j+1−fi+1,j−1+fi−1,j−1)+γ(fi,j+1−2fi,j+fi,j−1) = 0

(22)

where

α =

(

∂x

∂η

)2

+

(

∂y

∂η

)2

(23)

≈
1

4

[

(xi,j+1 − xi,j−1)
2 + (yi,j+1 − yi,j−1)

2
]

(24)

β =
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η
(25)

≈
1

4
[(xi+1,j − xi−1,j)(xi,j+1 − xi,j−1) + (yi+1,j − yi−1,j)(yi,j+1 − yi,j−1)] (26)

γ =

(

∂x

∂ξ

)2

+

(

∂y

∂ξ

)2

(27)

≈
1

4

[

(xi+1,j − xi−1,j)
2 + (yi+1,j − yi−1,j)

2
]

(28)

and f is either x or y. The solution to the coordinate position at (i, j) can be obtained by

solving Eq. 22 for fi,j. Smoothing is applied to the mesh in the CAD uv-space, where each

CAD face exists in a coordinate system that is independent of the other surfaces. During

smoothing, mesh points are restricted to move within the CAD face boundary to ensure that

they remain on the CAD face. Figure 8 displays the CAPRI tessellation of a wing model in

CAD parametric coordinates, showing four CAD faces existing as independent entities (i.e.

not necessarily connected at the boundary where the connection exists in physical space):

two faces on the top surface (a big rectangular face representing the straight portion of

the wing and a much smaller parallelogrammatic face representing the tip portion) and two

on the bottom. The leading edge in Figure 8(c) in this case happens to be the common

edge between the black and purple mesh. This is coincidental, as there is no relationship in

the mapping of CAD entities. In order to smooth the mesh across patch boundaries, it is

necessary to consolidate all of the CAD faces of a patch from different coordinate systems

into one. This process is called coordinate transformation, which is described in Section II.I.

II.I. Coordinate Transformation of Surface Meshes

Coordinate transformation is the process of determining and applying the relationship be-

tween two sets of points on different coordinate systems.57 It is one of the fundamental

operations in computer graphics,58 and has applications in photogrammetry,59, 60 geographic

information systems57 and others. To consolidate all of the CAD faces of a patch, a trans-

formation is applied to the surfaces so that they all exist in one coordinate system. This
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(a) CATIA part (b) CAPRI triangulation in phys-
ical space

(c) CAPRI triangulation in para-
metric space

Figure 8: CAPRI tessellation of the CAD model. Figure 8(b) shows the water-tight CAPRI
triangulation of the wing in physical space. The tessellation in parametric space, Figure 8(c)
is color-coded the same way as its corresponding tessellation in physical space, Figure 8(b).
The wing itself is consisted of 2 sections, wing body (straight portion), and wing tip. It is
consisted of 4 surfaces: the wing body top (purple), wing body bottom (black), wing tip top
(red), wing tip bottom (blue). In the physical space (Figure 8(b)), the wing body top and
wing body bottom are attached at 2 edges. In the CAD parametric space (Figure 8(c)), they
are attached only on 1 edge. Furthermore, the wing tip is attached to the wing body in the
physical space. However, they exist as separate entities in the CAD parametric space.

is possible because neighboring surfaces share a common boundary. Along this boundary,

CAPRI supplies two sets of overlapping nodes belonging to each of the neighbors. By ap-

plying a coordinate transformation, we can establish a relationship between the two systems

to fit one set of coordinates into the other.

In general, there are six parameters that characterize a two-dimensional coordinate sys-

tem. These parameters are:

1. a0 = translation of the origin in the x direction

2. b0 = translation of the origin in the y direction

3. ϕ = rotation of the axes of one coordinate system with respect to the other

4. sx = scale change in the x axis

5. sy = scale change in the y axis

6. ε = nonorthorgonality angle between the axes of the two coordinate systems

Basic coordinate transformation methods can be classified based on the number of pa-

rameters involved. The four- and six-parameter transformations can be modified to become

sets of linear equations. And the formulas for computing a least-squares-based transforma-

tion are simple. For the three- and five-parameter transformations, the least-squares solution

becomes nonlinear and requires iterations until the solution converges. After experimenting
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Figure 9: The wing tip section is transformed into the parametric space of the wing span.

with the linear transformations (conformal and affine), obtained using all of the common

points between neighboring surfaces, it was determined that the surfaces can be transformed

using conformal transformation. Conformal or isogonal transformation involves two systems

that may have different scales, and is defined by four parameters: a0, b0,ϕ, sx = sy:

X = a0 + x · cosϕ− sx · y · sinϕ

Y = b0 + x · sinϕ+ sy · y · cosϕ
(29)

Eq. 29 can be expressed in terms of four coefficients (a0, b0, a1, b1):

X = a0 + a1x− b1y

Y = b0 + b1x+ a1y
(30)

In many instances, a coordinate transformation brings the neighboring surface to the

target coordinate system but the positions of the nodes need to be flipped about the line

of attachment between the two surfaces so that they do not fold onto each other. The

reflection about an arbitrary line is described in Section II.J. Coordinate transformation is

usually carried out using least squares because it provides a best fit between the coordinate

systems by analyzing all the common points simultaneously. The result of applying the above

transformations is shown in Figure 9. The original CAD parameterization can be seen in

Figure 8. We chose to transform surfaces with fewer mesh points to minimize computational

effort.

II.J. Reflection About an Arbitrary Line

The equation of the line about which the reflection is calculated is obtained using a least-

squares method. The transformation matrix for reflection about either the x− or y−axis is:
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Reflx =

⎡

⎢

⎢

⎣

1 0 0

0 −1 0

0 0 1

⎤

⎥

⎥

⎦

Refly =

⎡

⎢

⎢

⎣

−1 0 0

0 1 0

0 0 1

⎤

⎥

⎥

⎦

(31)

In general, the reflection about an arbitrary line is obtained by transforming the line to one

of the axes, reflecting in that axis, and then taking the inverse of the first transformation.

More specifically, the reflection is accomplished in five steps, as follows:

1. Translate the line to intersect the origin. For an arbitrary line Ax+By + C = 0, the

translation that maps the y-intersection, (0,−C/B), to the origin is:

Transl(A,B,C) =

⎡

⎢

⎢

⎣

1 0 0

0 1 −C/B

0 0 1

⎤

⎥

⎥

⎦

(32)

2. Rotate the line about the origin through an angle -θ to coincide with the x-axis. The

transformation matrix that describes this transformation is:

Rot(A,B,C) =

⎡

⎢

⎢

⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤

⎥

⎥

⎦

(33)

3. Apply a reflection in the x-axis.

4. Rotate about the origin by θ.

5. Translate by (0, C/B) .

The above transformations can be concatenated into one reflection matrix

Refl(A,B,C) =

⎡

⎢

⎢

⎣

1 0 0

0 1 −C/B

0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 0

0 −1 0

0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 0

0 1 C/B

0 0 1

⎤

⎥

⎥

⎦

(34)

Refl(A,B,C) =

⎡

⎢

⎢

⎣

cos2 θ − sin2 θ 2 sin θ cos θ 2C
B

sin θ cos θ

2 sin θ cos θ sin2 θ − cos2 θ −2C
B

cos2 θ

0 0 1

⎤

⎥

⎥

⎦

(35)
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Since tan θ = −A/B, it follows that cos2 θ = 1/(1 + tan2 θ) = B2/(A2 + B2), sin2 θ =

1 − cos2 θ = A2/(A2 + B2), and sin θ cos θ = tan θ cos2 θ = −AB/(A2 + B2). Substituting

these expressions into Eq. 35 yields

Refl(A,B,C) =

⎡

⎢

⎢

⎣

B2−A2

A2+B2 − 2AB
A2+B2 − 2AC

A2+B2

− 2AB
A2+B2

A2−B2

A2+B2 − 2BC
A2+B2

0 0 1

⎤

⎥

⎥

⎦

(36)

The above matrix can be scaled by a factor of A2 + B2 to remove all the denominators in

the entries to yield

Refl(A,B,C) =

⎡

⎢

⎢

⎣

B2 −A2 −2AB −2AC

−2AB A2 −B2 −2BC

0 0 A2 +B2

⎤

⎥

⎥

⎦

(37)

II.K. Surface Mesh Smoothing Example

Figures 10 and 11 compare the original and smoothed meshes after 2 iterations. In this

case, the leading edge of the wing shown in Figure 8(a) has been swept back by 30% chord.

The smoothing procedure changes the orginal spacing, i.e. the original characteristics, of the

mesh. Thus, the number of iterations should be kept to a minimum. Fortunately, smoothing

is 2D is extremely effective and usually a few iterations are sufficient.

III. Gradient Computation

This section presents examples to examine whether accurate gradients can be obtained

using the proposed CAD-based geometry parameterization and surface mesh movement al-

gorithm when integrated with a flow solver,33 volume-mesh mover32, 61 and optimizer.34 The

baseline wing used for all cases is a straight, rectangular wing with a NACA0018 airfoil

profile. The wing has a half span of eight meters and a chord of two meters. All of the

optimization results presented are computed on a 1, 040, 000 node mesh with an H-topology

consisting of 16 blocks. The farfield boundary is approximately 20 chords from the wing,

and the off-wall spacing of the mesh is 10−3 m. Although the same mesh is used for all op-

timization cases, the CAD geometry is slightly different in the number of spanwise sections,

as required by the problem.
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(a) Top surface (b) Bottom surface

Figure 10: Smoothed surface mesh (orange) overlaying the unsmoothed mesh (black) shown
in Figure 7(b)

(a) Top surface (b) Bottom surface

Figure 11: Zoomed-in view of the tip region of the smoothed surface mesh (orange) overlaying
the unsmoothed mesh (black) shown in Figure 7(b)
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III.A. Discrete-Adjoint Gradient Computation

The optimization problem can be posed as minimizing the design objective, J , with respect

to the design variables, X , the grid, G, and the conservative flow field variables, Q, within a

feasible region of the design space Ω, subject to the constraint that the flow solver and grid

movement equations must have converged (i.e the flow residual, R, and the grid movement

residual, r, are zero):

min
X

J (X , Q,G)

s.t. R(X , Q,G) = 0 ∀ X ∈ Ω

r(G,Gsurf(X )) = 0

(38)

where Gsurf is the surface mesh of the solid boundary.

In general, there may be other constraints, C(X , Q), associated with the design variables

or flow conditions; these are considered separately by the optimizer and are not shown here

as part of this augmented adjoint formulation. To enforce the constraints in Eq. 38, let the

Lagrangian, L, be defined as follows:

L(X , Q,G,ψ,λ) = J (X , Q,G) + ψTR(X , Q,G) + λTr(G,Gsurf(X )) (39)

where λ and ψ are Lagrange multipliers. Setting each of the partial derivatives of the

Lagrangian to zero then provides optimality conditions for the objective function:

∂L

∂λ
= 0 = r (40)

∂L

∂ψ
= 0 = R (41)

∂L

∂Q
= 0 =

∂J

∂Q
+ ψT∂R

∂Q
(42)

∂L

∂G
= 0 =

∂J

∂G
+ λT

∂r

∂G
+ ψT∂R

∂G
(43)

∂L

∂X
=
∂J

∂X
+ ψT∂R

∂X
+ λT

∂r

∂Gsurf

∂Gsurf

∂X
(44)

Eqs. 40 and 41 represent the residuals of the linear elasticity mesh movement algorithm and

the flow, respectively, while Eqs. 42 and 43 represent the discrete adjoint equations for the

flow simulation and mesh movement, respectively.

A number of approaches can be taken to find a solution to these optimality conditions

to minimize the Lagrangian, including possibilities such as solving for all of the variables

simultaneously—the approach that defines simultaneous analysis and design (SAND).62 Us-

ing this one-shot approach, a large-scale solver sets the entire gradient of the Lagrangian
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to zero. The sequential approach taken here delegates the computation to the existing spe-

cialized solvers. For a given X , Eq. 40 can be solved using the mesh movement code to

yield G. Using that solution, the flow solver can be used to solve Eq. 41 to yield Q. The

linear systems in Eqs. 42–43 can then be solved in the order they appear to give ψ and each

λ. The size of these linear systems is independent of the number of design variables. In

cases where nonlinear aerodynamic constraints, such as lift or pitching moment are used,

additional adjoint gradient computation has to be performed for each of the constraints.

The evaluation of ∂Gsurf

∂X
in Eq. 44, which is the sensitivity of the surface grid with re-

spect to the design variables, is determined using the finite-difference method of Nemec and

Aftosmis.11

III.B. Computation of Surface Sensivity

The surface sensitivity procedure uses the coordinates of the surface mesh in the parameter-

ized CAD (2D) space. For each CAD face, the CAD parameterized (u, v) coordinates of the

surface grid are normalized such that u, v ∈ [0, 1]. The procedure involves the generation of a

surface grid for the CAD model to reflect the current values of the design variables, thereby

obtaining a baseline model. Then two additional model regenerations and surface mesh

movements are obtained for each design variable, which correspond to the plus and minus

perturbations. The normalized (u, v) values on the perturbed model are re-scaled by their

new (u, v) range from which the corresponding physical coordinates (x, y, z) can be queried

from the CAD system. This procedure is very general in that it can be applied to all CAD

entities (faces, curves, points), regardless of the method of construction. It is also efficient

since the query is done in the parameter space, assuming that the face topologies of baseline

and perturbed models are the same. This is a reasonable assumption considering the size of

the perturbation. In fact, this condition is checked every time to ensure the validity of the

gradients. Changes in topology may necessitate a systematic reduction in the stepsize. In the

worst case where changes in the topology are unavoidable, the finite-difference calculations

may have to be one-sided or the optimzation procedure may have to be restarted.

The size of the perturbation is chosen based on trial and error. It is 0.002% for most

design variables except control point and sectional displacement design variables where a

value of 0.0002 mm is used. The accuracy of the derivative with respect to the latter design

variables seems to be more sensitive to the step size.

III.C. Verification of Gradient Accuracy

The total gradient calculated using the adjoint method, i.e. ∂L
∂X

in Eq. 44, is compared

with that calculated using central differencing to ensure that it is sufficiently accurate for
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Figure 12: Objective and constraint gradients as a function of step size for the angle of
attack and tip twist design variables.

gradient-based optimization algorithms. The gradient accuracy verification test problem is a

lift-constrained drag-minimization of the NACA 0018 wing shown in Figure 8(a). The Mach

number is M = 0.50. The design variables are the linear twist, τ , of the wing and the angle

of attack, ω. This problem is formulated as:

min
ω,τ

CDS

s.t. CLS = (CLS)ref
(45)

where CL and CD are the coefficients of lift and drag, respectively, and S the wetted planform

area of the wing. The reference or target lift, (CLS)ref , is set to the initial value of 1.0153,

and Sref = 4.249 units squared.

The second-order finite-difference approximation of a given objective is

dJ

dX
=

J (X + ϵX )− J (X − ϵX )

2ϵ
+O(ϵ2) (46)

where ϵ is the finite-difference step size. A step size study was conducted to determine a

suitable step size for each design variable using the initial conditions, where the twist is

−0.5◦ and angle of attack is 2.75◦. Figure 12 shows the total gradient for the objective and

constraint as a function of the step size used. Based on this study, step sizes of 10−2 and

10−6 are chosen for the twist and angle of attack design variables, respectively, to obtain the

finite-difference gradients.

The objective function and constraint accuracy are presented in Table 1 for the first

iteration. The agreement between the adjoint and centered-difference gradient values is

excellent. Small differences of approximately 1% for both design variables are attributed

to numerical errors of the finite-difference operation. Figure 13 compares the optimization

convergence histories for the finite-difference and adjoint methods. Both have approximately
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Table 1: Gradient accuracy for the lift-constrained drag-minimization problem.

Design variable Method Objective gradient Constraint gradient

Angle of attack
Adjoint -0.0040671 -0.1786727

Finite difference -0.0040655 -0.1812989

Tip twist
Adjoint 0.0086162 0.4000044

Finite difference 0.0086163 0.4061264
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Figure 13: Convergence history for the finite difference (FD) and adjoint (Adj) methods.

the same degree of convergence and yield nearly identical results: The final angle of attack of

3.09◦ is higher than the initial in order to maintain the lift while a slightly lower negative final

twist angle of 1.25◦ is added to minimize the induced drag. These results are consistent with

those published in the literature.33, 63 Note that the optimality reported here is a measure of

the gradient convergence provided by SNOPT, which takes constraint gradients into account,

while the feasibility describes how well the optimizer is able to meet the constraint. Finally,

the merit function, also reported by SNOPT, is an augmented Lagrangian merit function.

When the constraints are satisfied, the merit function is equal to the objective. For example,

for the objective function defined in Eq. 45, the merit function will equal the coefficient of

drag times the wetted wing planform area at convergence.

Finally, the objective function for different values of the twist angle with the angle of

attack chosen to satisfy the above lift constraint is calculated so as to map out the feasible

region of the design space, shown in Figure 14. It can be seen that the minimum drag is at

τ = −1.25◦, which confirms the optimization results shown in Figure 13(b) and verifies that

the optimum was found.
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III.D. Simultaneous Wave and Induced Drag Reduction

This test case validates the use of twist, sweep angle and airfoil thickness by the optimizer to

reduce the wave and induced drag that is present on the original unswept wing in transonic

flow conditions with M = 0.76. Table 2 shows the upper and lower limits set for each

of the design variables. The objective is to minimize the drag while maintaining a lift of

(CLS)ref = 2.125.

Figures 15 and 16 show the Mach number contours and sectional coefficient of pressure

distribution over the initial and optimized wings. The optimizer has swept the wing back

to the limit set at the beginning of the optimization in an attempt to reduce the wave drag.

A strong shock was present over much of the initial wing, but is significantly weakened in

the optimized wing. The thickness is also reduced to the minimum allowable value in order

to reduce the wave drag, while a negative twist angle of 3.1◦ is added to reduce the induced

drag. Finally, the angle of attack is increased to 6.03◦ to maintain the required lift. Note

also how, other than a slight distortion at the tip, the characteristics of the initial surface

mesh are generally preserved in the final mesh, as seen in Figure 15.

Figure 17 shows the convergence histories for the wave drag reduction case. The optimizer

is able to reduce the optimality by about 5 orders of magnitude, achieving an overall reduction

of drag of 47% from an initial value of 0.1946 to the final value of 0.1029, while achieving

the specified lift. An optimality reduction of five orders of magnitude is only possible if

gradients are computed accurately. This example demonstrates that the proposed surface

mesh movement algorithm preserves mesh quality and enables accurate gradient computation

even under substantial shape changes.
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Table 2: Upper and lower limits for the design variables in the wave drag reduction problem

Design variable Lower limit Initial Value Upper limit Units

Sweep -25 0 25 ◦ (rel. to the init. sweep)

Tip twist -15 0 15 ◦ (rel. to the init. twist)

Airfoil thickness -33 0 10 % (initial thickness)

Angle of attack -5.25 3.75 8.75 ◦

Figure 15: Contours of Mach number on the surface of the initial (left) and optimized (right)
wing.

IV. Conclusions

We have presented a surface mesh movement technique for three-dimensional CAD-based

aerodynamic shape optimization. The new surface mesh is guaranteed to lie on the CAD ge-

ometry and have the same general characteristics (mesh density and spacing) as the original

surface mesh even for large shape changes. The procedure is efficient in that once the new

geometry is created and a corresponding tessellation obtained, no subsequent communication

with the CAD description is required to determine the surface mesh points in CAD para-

metric space. All calculations are done in two dimensions. The discrete adjoint equations

have been augmented to include volume and surface mesh sensitivities, ensuring efficiency

and accuracy in the gradient computations. The CAD surface sensitivity derivatives are ob-

tained using centered-difference approximations where the deformed surface is obtained for

positive and negative perturbations of the geometry and the difference calculated. The three-

dimensional perturbed surface meshes are determined from their scaled uv-coordinates. This
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Figure 16: Sectional Cp distribution over the initial (black) and optimized (red) wing.
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Figure 17: Convergence history for the wave drag reduction case with 4 design variables.

method is straightforward and efficient, as it incurs no additional calculations by the CAD

software in going from parametric to three-dimensional space. The validity and accuracy of

the algorithm for three-dimensional aerodynamic shape optimization with CAD geometries

on multi-block structured grids are demonstrated. In particular, it has been shown that

the surface mesh movement algorithm can handle very large changes in the geometry while

maintaining the initial mesh quality and geometric fidelity.
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