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Abstract In one dimension, nodal locations that are distinct are necessary
and sufficient to ensure that a unique polynomial interpolant exists for data
provided at a set of nodes, i.e. that the set of nodes is unisolvent. In multiple
dimensions however, unisolvency for a polynomial interpolant of degree p is
not ensured even with nodal locations that are distinct and a set of n nodes,
with n equal to the cardinality of a set of polynomial basis functions of at most
degree p. In this paper a set of equations is derived for simplices of one to three
dimensions with symmetrical nodal distributions to identify a combination of
symmetry orbits that can provide a unisolvent set of nodes. The results suggest
that there is a unique combination of symmetry orbits that can provide a uni-
solvent set of nodes for each degree of polynomial interpolant. Consequently,
all other combinations of symmetry orbits cannot provide a unisolvent set of
nodes for a degree p polynomial interpolant. This is verified numerically up to
degree 10 for triangles and degree 7 for tetrahedra. The results suggest that
the same is also true for higher-order polynomial interpolants. This signifi-
cantly reduces the number of combinations of symmetry orbits that needs to
be considered. For example, for a tetrahedron with a degree seven interpolant,
only one combination of symmetry orbits needs to be considered instead of
the 161 different combinations of symmetry orbits that provide a set of nodes
with n equal to the cardinality of the set of basis functions of at most degree
seven. For a symmetrical nodal distribution in a simplex, the conditions pre-
sented are necessary but not sufficient to have a unisolvent set of nodes for
polynomial interpolation.
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1 Introduction

1.1 Preliminaries

In this paper only polynomial interpolation is considered. Therefore, when a
unisolvent set of nodes is mentioned, it implies a unisolvent set of nodes for
polynomial interpolation.

A function might only be known at a finite set of nodes located within a
domain. The value of the function on this set of nodes, known as the data, can
be used to construct an interpolant to estimate the function elsewhere in the
domain. A polynomial interpolant of degree p, denoted as Pp, must satisfy

Pp(xi) = yi, ∀i ∈ {1, . . . , n}, (1)

where xi and yi are the coordinates and value of the data, respectively, of
the i-th node in a set of n nodes. A set of nodes is unisolvent if there is a
unique polynomial that satisfies Eq. (1). For a set of nodes to satisfy Eq. (1)
the number of nodes in the set must be equal to the cardinality of the basis,
i.e. n = N∗p,d, where

N∗p,d ≡
(
p+ d

d

)
, (2)

and d is the number of dimensions. The cardinality for one to three dimensions
is N∗p,1 = (p+ 1), N∗p,2 = (p+ 1)(p+ 2)/2, and N∗p,3 = (p+ 1)(p+ 2)(p+ 3)/6.

A set with n = N∗p,d nodes is unisolvent if and only if its Vandermonde
matrix has a non-zero determinant. In one dimension, all that is required
to have a unique polynomial interpolant are distinct nodal locations [2]. In
multiple dimensions, distinct nodal locations are necessary but are insufficient
to ensure unisolvency [2,9].

1.2 Non-unisolvency in multiple dimensions

Consider a square non-singular Vandermonde matrix with one row per node
and one column per basis function. Swapping two rows in the Vandermonde
matrix, which is the equivalent of switching the location of two nodes in a
set of nodes, changes the sign of the determinant of the matrix. Since the
determinant depends continuously on the nodal locations, the determinant
of the Vandermonde matrix varies smoothly as the locations of the nodes are
changed. Therefore, if two nodes in a simplex switch locations, the intermediate
value theorem indicates that there is at least one set of nodal locations where
the determinant of the Vandermonde matrix is zero, and thus the set of nodes is
non-unisolvent. In one dimension, two nodes cannot change locations without
having their paths cross, which is where the determinant of the Vandermonde
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(a) Switching nodal
locations with non-
intersecting paths (b) Non-unique interpolants

Fig. 1: How non-unisolvency arises in multiple dimensions.

matrix goes to zero since the nodal locations are no longer unique. However,
in multiple dimensions there is an infinite number of paths that two nodes can
take to switch locations without crossing each other, as shown in Fig. 1a.

When a set of nodes is non-unisolvent, there is not a unique polynomial
interpolant that matches the data at each of the nodes. A simple example
of this is shown in Fig. 1b. In this case, there is an infinite number of linear
interpolants since the data at the three nodes vary linearly. However, if the
data at the three nodes did not vary linearly, there would exist no linear
interpolant that satisfies Eq. (1). This concept also applies in three or more
dimensions as well as to higher order polynomial interpolants.

1.3 The need for unisolvency

Interpolation using multidimensional simplices requires a unisolvent set of
nodes and it is common for all of the nodes to be in symmetry orbits [14,4].
With a unisolvent set of nodes, other interpolation aspects can be considered,
such as minimizing the interpolation error, which is the difference between the
function and an interpolant. The set of nodes that minimizes the Lebesgue con-
stant, which enters into the bounds of the interpolation error in the infinity
norm, is known as the Lebesgue nodes [3]. An alternative to Lebesgue nodes
are Fekete nodes, which seek to maximize the determinant of the Vander-
monde matrix [13]. Maximizing the determinant of the Vandermonde matrix
helps minimize the Lebesgue constant but the Lebesgue constant of a set of
Fekete nodes cannot be lower than for a set of Lebesgue nodes. Fekete and
Lebesgue nodes with all the nodes in symmetry orbits have been generated
on simplices of various dimensions for polynomial interpolants of numerous
degrees [21,1,18].

Another important area where unisolvency is important is for certain meth-
ods that approximate derivatives in order to solve partial different equations
numerically. Various methods exist where unisolvency is necessary, such as
node-based finite-element methods [6,11], flux reconstruction methods [23,
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22], and multidimensional summation-by-parts methods with operators that
have n = N∗p,d [12,17]. Various flux reconstruction operators are constructed
in a paper by Witherden and Vincent using all of the combinations of sym-
metry orbits that give n = N∗p,2. [23]. The process was subsequently repeated
by Witherden et al. in three dimensions [22]. The authors of those papers
derived flux reconstruction operators for triangles and found that over a thou-
sand symmetrical nodal distributions were non-unisolvent, or a little more
than half of all nodal distributions considered. Similarly, for tetrahedra over
a hundred symmetrical nodal distributions were derived that were found to
have non-unisolvent sets of nodes, which represent about 18% of all the sets
of nodes considered. The authors of this paper suspect that the majority of
operators that were derived with non-unisolvent sets of nodes did not use the
unique combination of symmetry orbits that can provide a unisolvent set of
nodes for triangles, which is derived in this paper.

1.4 Contributions from this paper

The presence of non-unisolvent sets of nodes in multiple dimensions is well
known [2,9]. However, there is an incomplete understanding of the necessary
conditions for a set of nodes to be unisolvent. It has been demonstrated for
example that a set of nodes is unisolvent if the nodes lie in a lattice of a
particular arrangement [5,15]. This lattice arrangement is sufficient but not
necessary to have a unisolvent set of nodes and is somewhat limiting in terms
of the nodal locations. Hesthaven and Teng [10] investigated spectral methods
on tetrahedra which require unisolvent node sets. The authors noted that the
sufficient conditions for unisolvency presented in [5] are strict and not neces-
sary and consequently did not use them. On the other hand, little is known of
the conditions that are necessary for unisolvency in multiple dimensions, other
than the requirement that all of the nodal locations be distinct. This paper
considers the conditions that are necessary, but not necessarily sufficient, to
have a unisolvent set of nodes in triangles and tetrahedra when all the nodes
are in symmetry orbits. These conditions are significantly less restrictive than
the sufficient conditions from [5,15] and thus allow for several unisolvent sets
that do not satisfy the sufficient conditions.

Roth [19] considered the interpolation properties of sets of nodes in a tri-
angle. Both Fekete and Lebesgue nodes were derived with all of the nodes in
symmetry orbits. Table 2.1 in [19] lists all of the combinations of symmetry
orbits that give n = N∗p,2 for p from 0 to 9 and indicates one combination of
symmetry orbits for each degree p that gave the “best configuration”, i.e. the
combination of symmetry orbits that was used to derive Fekete and Lebesgue
nodes. This combination of symmetry orbits was found by using an equation
that was determined empirically, but not proven. When generating Lebesgue
points on triangles for polynomial interpolation of up to degree 18, Rapetti
et al. [18] observed that only one combination of symmetry orbits provides
a Vandermonde matrix with a determinant that is non-singular, i.e. a set of
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nodes that is unisolvent. This observation suggests that there is a unique com-
bination of symmetry orbits for a triangle that can provide a unisolvent set of
nodes. In Section 3.3 a set of equations is derived to identify a combination of
symmetry orbits that can provide a unisolvent set of nodes for a triangle. It is
verified up to p = 10 that the identified combination of symmetry orbits is the
unique one that can provide a unisolvent set of nodes. In Section 3.4 a similar
approach is taken for tetrahedra and the results are verified up to p = 7.

The symmetry orbits for lines, triangles and tetrahedra that are used in the
proofs are presented in Section 2. Section 3 demonstrates that some combina-
tions of symmetry orbits cannot provide a set of nodes that is unisolvent. To
have Lagrange nodes there needs to be at least one combination of symmetry
orbits that provides a unisolvent set of nodes in a simplex for each polynomial
degree. This is confirmed in Section 3, where it is demonstrated that there is
a unique combination of symmetry orbits that can provide a unisolvent set
of nodes for simplices of one to three dimensions. Finally, Section 4 demon-
strates that even with the required combination of symmetry orbits to have a
unisolvent set of nodes, non-unisolvency can still arise. Hence the conditions
provided are necessary, but not sufficient for unisolvency.

2 Symmetry orbits

In this section we discuss barycentric coordinates and present the different
symmetry orbits for simplices. We also discuss the use of integration and in-
terpolation weights.

2.1 Construction of the symmetry orbits

Barycentric coordinates are indispensable when considering symmetry orbits
for simplices. Barycentric coordinates provide the locations of nodes in an el-
ement relative to all of its vertices. For simplices, which have one more vertex
than the number of dimensions, there is one more barycentric coordinate than
there are dimensions. However, barycentric coordinates for simplices are made
unique by enforcing the condition

∑d+1
i=1 λi = 1 where λi is the barycentric

coordinate with respect to the i-th vertex. The barycentric coordinate of only
one node per symmetry orbit is required since the coordinates of all the other
nodes in the same symmetry orbit can be found by permuting the barycentric
coordinates of that node. Table 1 lists the different symmetry orbits for sim-
plices of one to three dimensions. The format for the names of the symmetry
orbits is Sn,d, where n indicates the number of nodes in the symmetry orbit
and d is the dimension of the simplex.

An alternative perspective to the use of barycentric coordinates is that
symmetry orbits arise as the orbits of one point under the action of all the
affine transformations of a simplex on itself. For example, if a node is placed
at each of the vertices of a simplex, such as a triangle, then this set of nodes
forms a symmetry orbit since it is invariant for all affine transformations.
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Table 1: Barycentric coordinates of simplex symmetry orbits, where n is the
number of nodes in each symmetry orbit (λi 6= λj ,∀i 6= j).

Simplex Barycentric group Barycentric coordinates n

Line S1,1

(
1
2
, 1
2

)
1

S2,1 Perm(λ1, 1 − λ1) 2

Triangle S1,2

(
1
3
, 1
3
, 1
3

)
1

S3,2 Perm(λ1, λ1, 1 − 2λ1) 3
S6,2 Perm(λ1, λ2, 1 − λ1 − λ2) 6

Tetrahedron S1,3

(
1
4
, 1
4
, 1
4
, 1
4

)
1

S4,3 Perm(λ1, λ1, λ1, 1 − 3λ1) 4

S6,3 Perm
(
λ1, λ1,

1−2λ1
2

, 1−2λ1
2

)
6

S12,3 Perm
(
λ1, λ2,

1−λ1−λ2
2

, 1−λ1−λ2
2

)
12

S24,3 Perm(λ1, λ2, λ3, 1 − λ1 − λ2 − λ3) 24

With the exception of the centroid symmetry orbit, there are several lo-
cations where the nodes can be located within one symmetry orbit. This is
demonstrated in Fig. 2 where several distinct groups of nodes are shown that
are in the same symmetry orbit.

When we consider a combination of symmetry orbits we are looking for a
unisolvent set of nodes with an integer number of symmetry orbits such that
n = N∗p,d. For example, if we consider the combination of symmetry orbits
with two S3,2 symmetry orbits then we have n = N∗2,2 = 6. The nodes in these
two symmetry orbits could be anywhere in the symmetry orbit, such as at the
black circles, the blue squares, or the red diamonds in Fig. 2a. Alternatively,
we can get n = N∗p,d = 6 with one S6,2 symmetry orbit and the nodes could
be, for example, at the black circles or blue squares in Fig. 2b.

Reference simplices are used in this paper to derive the required equations.
However, the results are not limited to the reference simplices. Consider the or-
thogonal basis functions presented in [7] that are constructed using barycentric
coordinates. We can thus construct a Vandermonde matrix with these basis
functions using only the barycentric coordinates of a given set of nodes. If the
determinant of the Vandermonde matrix is non-zero, then the set of nodes is
unisolvent. We can then use their barycentric coordinates to form a unisolvent
set of nodes on simplices with different vertices.

2.2 Integration and interpolation weights for nodes in symmetry orbits

In this paper we will use both integration and interpolation weights and we
define what these entail here. Integration weights are used to integrate the
interpolant over the simplex and are used to calculate

∫
Pp(x)dΩ =

N∗p,d∑
j=1

yjwj , (3)
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(a) Symmetry orbit S3,2 (b) Symmetry orbit S6,2

Fig. 2: Symmetry orbits for triangles.

where dΩ indicates we are integrating over the simplex and wj is the integra-
tion weight for the j-th node. The interpolation weights are used to evaluate
the interpolant at a point u

Pp(u) =

N∗p,d∑
j=1

yjrj(u), (4)

where rj is the interpolation weight for the j-th node and its value depends
on the point u. To calculate the integration and interpolation weights we will
use Lagrange basis polynomials. These can be used to construct the unique
degree p interpolant for a unisolvent set of nodes

Pp(xi) =

N∗p,d∑
j=1

yj`j(xi), (5)

where `j(xi) = δij [20]. We now consider

Theorem 1 For a regular simplex with all of its nodes in symmetry orbits,
the Lagrange bases `a(·) and `b(·) are symmetric about a symmetry plane of
the simplex if xa and xb are symmetric about the same plane.

Proof We denote the plane about which xa and xb are symmetric as the k-
th symmetry plane. We use the transformation σk(x) = x̂, where x and x̂
are symmetric to one another about the k-th symmetry plane. It follows that
xa = σk(xb) = x̂b. We want to show that `a(·) and `b(·) are symmetric to
each other about the k-th symmetry plane. Consider

`a(σk(xi)) = `a(x̂i) =

{
1 if x̂i = xa

0 if x̂i 6= xa,
(6)

where it follows that, `a(σk(xi)) = `b(xi)∀ {1, 2, . . . , N∗p,d}. A polynomial of
degree p and dimension d is uniquely determined byN∗p,d points. Since `a(σk(·))
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and `b(·) are equal at N∗p,d points, it follows that they are the same polynomial.
Therefore, `a(·) and `b(·) are symmetric about the k-th symmetry plane. This
analysis can be used for each of the symmetry planes. This completes the
proof.

We now use the results from Theorem 1 to prove the following two theo-
rems.

Theorem 2 If all the nodes are in symmetry orbits in a regular simplex, then
the integration weights are identical for all of the nodes in the same symmetry
orbit.

Proof The integration of the interpolant over the simplex gives

∫
Pp(x)dΩ =

∫ N∗p,d∑
j=1

yj`j(x)dΩ

=

N∗p,d∑
j=1

yj

∫
`j(x)dΩ

=

N∗p,d∑
j=1

yjwj , (7)

where wj =
∫
`j(x)dΩ. As was demonstrated in Theorem 1, a regular simplex

with all of its nodes in symmetry orbits has Lagrange basis functions that are
symmetric to each other about the symmetry planes. Therefore, the integral
of the Lagrange basis functions, and consequently the integration weights, for
all of the nodes in the same symmetry orbit are identical. This completes the
proof.

Theorem 3 Consider a regular simplex with all of its nodes in symmetry or-
bits. The interpolation weights for nodes that are symmetric about a symmetry
plane are identical when interpolating the solution to a point on the same
plane.

Proof Let u be a point on a symmetry plane of the simplex. When we evaluate
the interpolant we find

Pp(u) =

N∗p,d∑
j=1

yj`j(u)

=

N∗p,d∑
j=1

yjrj , (8)

where rj = `j(u). It was shown in Theorem 1 that for two nodes located
symmetrically about a symmetry plane, their Lagrange basis functions are
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symmetric to each other about the same plane. Let xa and xb be two nodes
located symmetrically about the symmetry plane that u is located on. We have
`a(u) = `b(u) and therefore ra = rb. If node u is on two or more symmetry
planes, then this same process can be used to relate additional interpolation
weights. This completes the proof.

3 Interpolation with symmetry orbits

Some helpful relations that are used in the following subsections to derive
equations are

b∑
k=0

k =
b(b+ 1)

2
(9)

b∑
k=0

k2 =
b(b+ 1)(2b+ 1)

6
(10)

b∑
k=a

(−1)k =
(−1)b + (−1)a

2
(11)⌊

x

y

⌋
=
x−mod (x, y)

y
(12)

mod (x, 2) =
1− (−1)x

2
, (13)

where bxc is the floor operator, which returns the largest integer that is smaller
or equal to x, and mod (x, y) is the modulo operator, which returns the re-
mainder of x divided by y. The ceiling operator dxe, which returns the smallest
integer that is greater or equal to x, is also used in the following sections.

These equations will be used in the derivation of equations to determine
the unique combination of symmetry orbits that can provide a unisolvent set
of nodes. The derivation of equations for the line, triangle and tetrahedron
follow a similar format. For each simplex an equation will be derived by re-
quiring that n = N∗p,d. An equation is also derived to determine if there is a
node at the centroid of the simplex or not. For the triangle and tetrahedron
an additional equation is derived by considering the integration of the polyno-
mial interpolant over the simplex. Finally, for the tetrahedron, two additional
equations are derived by considering the interpolation of data from the nodes
in the symmetry orbits to other points that are on various symmetry planes.

In the derivation of the equations that involve the integration of the in-
terpolant, the number of variables (weights) and the number of equations to
consider is reduced since all the nodes are in symmetry orbits. The reduction
in the number of interpolation and integration weights that need to be con-
sidered was demonstrated in Theorems 2 and 3, while the reduction in the
number of equations is shown in subsequent theorems.
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(a) Equilateral triangle with equal
Cartesian and barycentric coordinates

 x = y

x

y

(b) Interpolation contributions
to the symmetry line x = y

Fig. 3: Symmetry lines and contributions for a triangle.

3.1 Example of a combination of symmetry orbits that cannot provide a
unisolvent set of nodes

In this subsection it is demonstrated that certain combinations of symmetry
orbits cannot provide a unisolvent set of nodes, regardless of where the nodes
are located within the symmetry orbit. A p = 2 interpolant on a triangle
requires unique nodal locations and n = N∗p,2 = 6 to be uniquely defined. The
S6,2 symmetry orbit provides the required six nodes. The parametrized x and
y nodal locations for these six nodes in the S6,2 symmetry orbit on a right
triangle with vertices at (0, 0), (1, 0), and (0, 1) are

1

3
×


1− t1 + 2t2 1 + 2t1 − t2
1− t1 − t2 1− t1 + 2t2
1 + 2t1 − t2 1− t1 − t2
1 + 2t1 − t2 1− t1 + 2t2
1− t1 − t2 1 + 2t1 − t2
1− t1 + 2t2 1− t1 − t2

 ,

where t1 and t2 are free parameters that allow the nodes to be anywhere in
the symmetry orbit when t1, t2 > 0 and t1 + t2 ≤ 1 [16]. To ensure none of
the nodes are collocated t1 6= t2 and t1, t2 6= 0. A Vandermonde matrix is
constructed with this set of nodes with the monomial basis

V =



1 1−t1+2t2
3

1+2t1−t2
3

(1−t1+2t2)
2

9
(1−t1+2t2)(1+2t1−t2)

9
(1+2t1−t2)2

9

1 1−t1−t2
3

1−t1+2t2
3

(1−t1−t2)2
9

(1−t1−t2)(1−t1+2t2)
9

(1−t1+2t2)
2

9

1 1+2t1−t2
3

1−t1−t2
3

(1+2t1−t2)2
9

(1+2t1−t2)(1−t1−t2)
9

(1−t1−t22)
9

1 1+2t1−t2
3

1−t1+2t2
3

(1+2t1−t2)2
9

(1+2t1−t2)(1−t1+2t2)
9

(1−t1+2t2)
2

9

1 1−t1−t2
3

1+2t1−t2
3

(1−t1−t2)2
9

(1−t1−t2)(1+2t1−t2)
9

(1+2t1−t2)2
9

1 1−t1+2t2
3

1−t1−t2
3

(1−t1+2t2)
2

9
(1−t1+2t2)(1−t1−t2)

9
(1−t1−t2)2

9


. (14)

The rank of this Vandermonde matrix is five, and thus the determinant is zero.
This indicates that the set of nodes is non-unisolvent for any value of t1 and
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t2. In fact, rank(V) can be lower but not greater for certain values of t1 and t2.
It was previously observed and demonstrated that this symmetry orbit cannot
provide a unisolvent set of nodes for a p = 2 interpolant [8]. Other examples
can be demonstrated for both triangles and tetrahedra with combination of
symmetry orbits that give n = N∗p,d but cannot provide a unisolvent set of
nodes. Sections 3.2, 3.3 and 3.4 demonstrate a method of determining which
combinations of symmetry orbits can provide a unisolvent set of nodes.

3.2 Lines

Since there is a unique combination of symmetry orbits that provides n = N∗p,1
for a given p, it is trivial to select the number of symmetry orbits required to
have a unisolvent set of nodes for a given p in one dimension. Nonetheless, the
methodology that is used to calculate the unique combination of symmetry
orbits that can provide a unisolvent set of nodes for two- and three-dimensional
simplices is first presented in one dimension. The equations are simple in one
dimension and simplify the generalization to two and three dimensions.

There are two symmetry orbits in one dimension: nSym,1D = [nS1,1
, nS2,1

]T ,
where nS1,1

, indicates the number oF S1,1 symmetry orbits and analogously
for nS2,1 . Two equations are derived that form a set of linear Diophantine
equations, i.e. a system of equations with integers as solutions, that is used to
solve for all the entries in nSym,1D.

3.2.1 First equation

The first equation requires that the number of nodes is equal to the cardinality,
i.e.

n = N∗p,1

[1, 2]nSym,1D = p+ 1, (15)

where 1 and 2 are the number of nodes in the symmetry orbits S1,1 and S2,1,
respectively.

3.2.2 Second equation

To ensure that no nodes are collocated, there can either be one or no centroid
symmetry orbit. To determine the value of nS1,1 we consider the following
theorem.

Theorem 4 There is a node at the centroid of a line if and only if
mod (p, 2) = 0.

Proof Eq. (15) indicates that if nS1,1
= 0, then p+ 1 must be even for nS2,1

to
be an integer. Therefore, nS1,1

is zero when p+ 1 is even and one when p+ 1
is odd. The value for nS1,1 can thus be calculated with

neq:cent. = 1−mod (p, 2) , (16)
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which completes the proof.

The equation that must be satisfied is thus

[1, 0]nSym,1D = neq:cent.. (17)

3.2.3 System of equations

Combining Eqs. (15) and (17) gives[
1 2
1 0

] [
nS1,1

nS2,1

]
=

[
N∗p,1

neq:cent.

]
. (18)

If we solve Eq. (18) we find[
nS1,1

nS2,1

]
=

[
1 2
1 0

]−1 [
N∗p,1

neq:cent.

]
=

[
0 1

1/2 1/2

] [
N∗p,1

neq:cent.

]
=

[
neq:cent.

N∗p,1+neq:cent.

2

]
. (19)

This system of equation always provides integer solutions. Consider when p
is even, then N∗p,1 is odd and neq:cent. = 1. Alternatively, if p is odd, then
N∗p,1 is even and neq:cent. = 0. Therefore, either N∗p,1 and neq:cent. are both
even or both odd. Therefore, their sum is even and divisible by two. We have
thus shown that there is a unique combination of symmetry orbits to provide
a unisolvent set of nodes in one dimension. This method is extended to two
dimensions in the following subsection.

3.3 Triangles

For a triangle there are three unique symmetry orbits:
nSym,2D = [nS1,2

, nS3,2
nS6,2

]T .

3.3.1 First equation

The first equation that is required is

n = N∗p,2

[1, 3, 6]nSym,2D =
(p+ 1)(p+ 2)

2
, (20)

where 1, 3 and 6 are the number of nodes in the symmetry orbits S1,2, S3,2,
and S6,2, respectively.
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3.3.2 Second equation

There can either be one or no node at the centroid, i.e. nS1,2 ∈ {0, 1}. The
value of nS1,2

is determined by

Theorem 5 There is a node at the centroid of a triangle if and only if
mod (p, 3) = 0.

Proof We begin by manipulating Eq. (20) to have nS1,2
on the right-hand side

[0, 1, 2]nSym,2D =
(p+1)(p+2)

2 − nS1,2

3
. (21)

In order to have integer solutions it follows that

mod

(
(p+ 1)(p+ 2)

2
, 3

)
= mod

(
nS1,2

, 3
)
. (22)

It is clear that (p + 1)(p + 2)/2 is always an integer since it is the product
of two consecutive integers, thus one of them is even and divisible by two.
If nS1,2 = 0, then either p + 1 or p + 2 is divisible by 3, which implies that
mod (p, 3) 6= 0. On the other hand, if nS1,2

= 1, then neither p + 1 nor p + 2
is divisible by 3, which implies that mod (p, 3) = 0. This completes the proof.

An equation that returns one if mod (p, 3) = 0, and zero otherwise is given
by

neq:cent. = 1−
⌈

mod (p, 3)

3

⌉
. (23)

The equation that must be satisfied is thus

[1, 0, 0]nSym,2D = neq:cent.. (24)

3.3.3 Third equation

If a set of nodes is unisolvent, then there exists a unique interpolant and its
integral over the triangle can thus be calculated. The unique interpolant of
degree p can be constructed with N∗p,d basis functions, such as monomials. In
order to integrate the unique interpolant exactly, each individual basis function
must be integrated exactly, which gives N∗p,d equations. There is an equal
number of variables since each node has an integration weight. However, we
can reduce the number of equations and variables we need to consider since
all the nodes are in symmetry orbits. This is considered in

Theorem 6 If all of the nodes are in symmetry orbits and the triangle has
the same Cartesian and barycentric coordinates, then only the basis functions
xaybzc with a ≥ b ≥ c ≥ 0 and a + b + c = p need to be considered for the
integration of the basis functions over the triangle.
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Proof A triangle with matching Cartesian and barycentric coordinates, such as
the one in Fig. 3a, is equilateral, which means its symmetry lines align with the
symmetry planes x = y, x = z and y = z. Furthermore, as a result of Theorem
2, all the nodes in the same symmetry orbit share the same integration weight.
The monomials in two dimensions are xayb with a+ b ≤ p, which is equivalent
to xaybzc with a + b + c = p. We use the symmetry plane x = y for our
example and we consider both nodes that are on one of the symmetry planes
and pairs of nodes that are located symmetrically about a symmetry plane,
which would be in the same symmetry orbit. The coordinates of the nodes on
the symmetry plane are (xi, xi, zi), and the coordinate of the other nodes are
(xj , yj , zj), and (yj , xj , zj). Sx=y and Sx 6=y are the sets for the nodes that are
and are not on the symmetry plane x = y, respectively. The integration of the
basis function xaybzc over the triangle is given by∑
i∈Sx=y

wix
a+b
i zci +

∑
j∈Sx 6=y

wj(x
a
j y

b
jz

c
j+yaj x

b
jz

c
j ) =

∫ 1

0

∫ 1−y

0

xayb(1−x−y)cdx dy,

(25)
which is identical to the equation for the integration of the basis xbyazc. There-
fore, only basis functions with a ≥ b need to be considered. The analysis can
be repeated with the symmetry planes x = z and y = z, which indicates that
only basis functions with a ≥ b ≥ c ≥ 0 need to be considered, which is the
desired result.

The result of Theorem 6 is to limit the values that a, b and c can take to

p− b− c = amin = a = amax = p− b− c (26)

c = bmin ≤ b ≤ bmax =

⌊
p− c

2

⌋
(27)

0 = cmin ≤ c ≤ cmax =
⌊p

3

⌋
. (28)

The total number of equations that remain is

neq:elem =

cmax∑
c=cmin

bmax∑
b=bmin

1

=

cmax∑
c=0

(bmax + 1− bmin)

=

cmax∑
c=0

−6c+ (2p+ 3) + (−1)p+c

4

=
(2p+ 3) (cmax + 1)− 3cmax(cmax + 1) + (−1)p 1+(−1)cmax

2

4

=
2(p2 + 6p+ 9)− 2mod (p, 3)

2
+ 3(−1)p

(
1 + (−1)b

p
3 c
)

24
. (29)
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Since all the nodes in a symmetry orbit share the same weight for the integra-
tion over the simplex, the equation that must be satisfied is

[1, 1, 1]nSym,2D ≤ neq:elem. (30)

We have proven that only the subset of basis functions with a ≥ b ≥ c ≥ 0
needs to be considered. However, Theorem 6 does not rule out that there are
additional basis functions that do not need to be considered, which is why
there is an inequality. Nonetheless, the results to be presented in Section 3.3.4
suggest that Eq. (30) is an identity for a unisolvent set of nodes, i.e.

[1, 1, 1]nSym,2D = neq:elem. (31)

3.3.4 System of equations

Combining Eqs. (20), (24) and (31) and assuming that Eq. (31) holds for a
unisolvent set of nodes gives1 3 6

1 0 0
1 1 1

nS1,2

nS3,2

nS6,2

 =

 N∗p,2
neq:cent.
neq:elem

 . (32)

We can solve this linear system to getnS1,2

nS3,2

nS6,2

 =

1 3 6
1 0 0
1 1 1

−1  N∗p,2
neq:cent.
neq:elem


=

 0 1 0
− 1

3 −
5
3 2

1
3

2
3 −1

 N∗p,2
neq:cent.
neq:elem

 .
=

 neq:cent.

−N∗p,2−neq:cent.

3 − 2neq:cent. + 2neq:elem
N∗p,2−neq:cent.

3 + neq:cent. − neq:elem

 , (33)

which always provides integer solutions since (N∗p,2 − neq:cent.)/3 was demon-
strated to always be an integer in Theorem 5. Consequently, Eq. (33) provides
the unique combination of symmetry orbits needed to have a unisolvent set of
nodes for a triangle.

Vandermonde matrices are constructed for all of the different combinations
of symmetry orbits that give n = N∗p,2 for 1 ≤ p ≤ 10. The free parameters
for the nodal locations are kept as variables and are thus included in the Van-
dermonde matrices, as was done in Eq. (14). The rank of the Vandermonde
matrix constructed with the free parameters is calculated using the rank func-
tion in MATLAB. The rank of the Vandermonde matrix can be lower, but not
greater, for certain nodal locations within the symmetry orbits, as is demon-
strated in Section 4. Table 2 thus provides the highest possible rank of each of
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Table 2: Combinations of symmetry orbits that provide n = N∗p,2 and the
highest possible rank of the Vandermonde matrices constructed using these
symmetry orbits.

p n = N∗
p,2 nSym,2D rank(V) rank(V) = N∗

p,2 Solution to Eq. (32)

0 1 [1,0,0] 1 3 3

1 3 [0,1,0] 3 3 3

2 6 [0,2,0] 6 3 3
6 [0,0,1] 5

3 10 [1,3,1] 9
[1,1,1] 10 3 3

4 15 [0,5,0] 12
[0,3,1] 15 3 3
[0,1,2] 14

5 21 [0,7,0] 15
[0,5,1] 20
[0,3,2] 21 3 3
[0,1,3] 20

6 28 [1,9,0] 18
[1,7,1] 24
[1,5,2] 27
[1,3,3] 28 3 3
[1,1,4] 27

7 36 [0,12,0] 21
[0,10,1] 27
[0,8,2] 32
[0,6,3] 35
[0,4,4] 36 3 3
[0,2,5] 35
[0,0,6] 32

the Vandermonde matrices and indicates that the only combination of symme-
try orbits that provides rank(V) = n = N∗p,2 is the one that satisfies Eq. (33).
The results summarized in Table 2 agree with the example of non-unisolvency
presented in 3.1. Furthermore, Table 2 demonstrates that the combinations
of symmetry orbits that satisfy Eq. (30) but not Eq. (31) cannot provide a
unisolvent set of nodes. This strongly suggests that Eq. (31) must be satis-
fied to have a unisolvent set of nodes. The same result was also observed for
p ∈ {8, 9, 10}.

3.4 Tetrahedra

The five symmetry orbits for a tetrahedron are:
nSym,3D = [nS1,3

, nS4,3
, nS6,3

, nS12,3
, nS24,3

]T . Five equations are derived follow-
ing the same procedure used for the one- and two-dimensional simplices.
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3.4.1 First equation

The first equation is

n = N∗p,3

[1, 4, 6, 12, 24]nSym,3D =
(p+ 1)(p+ 2)(p+ 3)

6
, (34)

where 1, 4, 6, 12, and 24 are the number of nodes in the symmetry orbits nS1,3 ,
nS4,3

, nS6,3
, nS12,3

, and nS24,3
, respectively.

3.4.2 Second equation

Just like the other simplices, there can either be one or no node at the centroid.
The value for nS1,3 is determined by

Theorem 7 There is a node at the centroid of a tetrahedron if and only if
mod (p, 4) = 0.

Proof We follow the same approach that was used to prove Theorem 5. Eq. (34)
can be manipulated to move nS1,3

to the right-hand side

[0, 2, 3, 6, 12]nSym,3D =
(p+ 1)(p+ 2)(p+ 3)

3× 4
−
nS1,3

2
. (35)

To have integer solutions it follows that

mod

(
(p+ 1)(p+ 2)(p+ 3)

3
, 4

)
= 2 ·mod

(
nS1,3 , 2

)
. (36)

The fraction (p+ 1)(p+ 2)(p+ 3)/3 is always an integer since it is the product
of three consecutive integers. If nS1,3

= 0, then one of p + 1, p + 2 or p + 3
is divisible by 4, which indicates that mod (p, 4) 6= 0. On the other hand, if
nS1,3

= 1, then none of p+1, p+2, and p+3 are divisible by 4, which requires
that mod (p, 4) = 0. This completes the proof.

The equation that results from Theorem 7 is thus

neq:cent. = 1−
⌈

mod (p, 4)

4

⌉
, (37)

which returns one if mod (p, 4) = 0 and zero otherwise. The equation that
needs to be satisfied is

[1, 0, 0, 0, 0]nSym,3D = neq:cent.. (38)
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3.4.3 Third equation

As has been previously demonstrated two dimensions, a unisolvent set of nodes
for a tetrahedron will have a unique interpolant and its integral over the tetra-
hedron can thus be computed. We start with N∗p,3 equations and unknowns
but we are able to reduce the number of equations and unknowns since we
are considering the case with all of the nodes in symmetry orbits. This is
considered by

Theorem 8 If all the nodes are in symmetry orbits and the tetrahedron has
the same Cartesian and barycentric coordinates, then only the basis functions
xaybzctd with a ≥ b ≥ c ≥ d ≥ 0 and a+ b+ c+ d = p need to be considered.

Proof The proof is analogous to the proof for Theorem 6, where a node on a
symmetry plane and two nodes symmetrically located about the same sym-
metry plane are considered. For the symmetry plane x = y, it can then be
shown that different basis functions of the form xaybzctd and xbyazctd lead to
the same equation. This process is repeated for each of the symmetry planes
until the desired result is obtained.

As a result of Theorem 8 the range of values for a, b, c, and d that need to
be considered are

p− b− c− d = amin = a = amax = p− b− c− d (39)

c = bmin ≤ b ≤ bmax =

⌊
p− c− d

2

⌋
(40)

d = cmin ≤ c ≤ cmax =

⌊
p− d

3

⌋
(41)

0 = dmin ≤ d ≤ dmax =
⌊p

4

⌋
. (42)

The total number of remaining equations that need to be considered is

neq:elem =

dmax∑
d=dmin

cmax∑
c=cmin

bmax∑
b=bmin

1

=

dmax∑
d=dmin

cmax∑
c=cmin

(bmax + 1− bmin)

=

dmax∑
d=dmin

cmax∑
c=d

(2p− 2d+ 3)− 6c+ (−1)p−c−d

4

=
1

12

dmax∑
d=dmin

(
16d2 − 8(p+ 3)d+ (p2 + 6p+ 9)−mod (p− d, 3)

2

12

+
3(−1)p + (−1)cmax+d+p

24

)
(43)
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where the final equation still contains a summation since it was not possible
to find a concise equation with no summation term. Each node in a symme-
try orbit has the same integration weight and as such, each symmetry orbit
provides one integration weight. The equation that must be satisfied is

[1, 1, 1, 1, 1]nSym,3D ≤ neq:elem. (44)

While it has not been proven, the results in Section 3.4.6 again suggest that
Eq. (44) is an identity, i.e.

[1, 1, 1, 1, 1]nSym,3D = neq:elem. (45)

3.4.4 Fourth equation

The interpolation of a node on the symmetry line x = y = z is considered.
Similar to the integration of basis functions over the simplex, for interpolation
we use the N∗p,3 basis functions required to have a unique interpolant of degree
p and each node has an interpolation weight. Since we are considering the
case where all the nodes are in symmetry orbits, we can reduce the number of
equations and unknowns we need to consider. This is demonstrated in

Theorem 9 If all of the nodes are in symmetry orbits, the tetrahedron is
symmetric about the planes x = y, x = z, and y = z, and the interpolation
is to a node on the symmetry line x = y = z, then only the basis functions
xaybzc with a ≥ b ≥ c ≥ 0 and a+ b+ c ≤ p need to be considered.

Proof We consider a node that is on the symmetry line x = y = z, a set of
three nodes that are on the symmetry planes x = y, x = z, and y = z, and
a set of six nodes that are on none of the symmetry planes x = y, x = z
or y = z. Theorem 3 proved that all of the nodes in each of these sets share
the same interpolation weight. The node on the symmetry line x = y = z is at
(xi, xi, xi) with the interpolation weight ri, the three nodes on the symmetry
planes share the interpolation weight rj and are at (xj , yj , xj), (xj , xj , yj), and
(yj , xj , xj), and the six nodes that are not on any of the symmetry planes share
the interpolation weight rk and are at (xk, yk, zk), (xk, zk, yk), (yk, xk, zk),
(yk, zk, xk), (zk, xk, yk), and (zk, yk, xk). The set for the nodes on the symmetry
line x = y = z is S1, the set for the nodes on the symmetry planes x = y,
x = z and y = z is S2, and the set for the nodes that are on none of the
symmetry planes is S3. The solution is interpolated to a node on the symmetry
line x = y = z and its coordinates are (xm, xm, xm). The equation for the
interpolation of the basis xaybzc is

xa+b+c
m =

∑
i∈S1

rix
a+b+c
i

+
∑
j∈S2

rj(x
a+c
j ybj + xa+b

j ycj + xb+c
j yaj )

+
∑
k∈S3

rk(xaky
b
kz

c
k + xakz

b
ky

c
k + yakx

b
kz

c
k + yakz

b
kx

c
k + zakx

b
ky

c
k + zaky

b
kx

c
k),

(46)
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which is identical to the equations for the bases xayczb, xbyazc, xbycza, xcyazb,
and xcybza. Therefore, only bases with a+b+c ≤ p and a ≥ b ≥ c ≥ 0 provide
independent equations. This completes the proof.

As a result of Theorem 9, the range of values that need to be considered
for a, b, and c are

b = amin ≤ a ≤ amax = p− b− c (47)

c = bmin ≤ b ≤ bmax =

⌊
p− c

2

⌋
(48)

0 = cmin ≤ c ≤ cmax =
⌊p

3

⌋
. (49)

The number of remaining basis functions that need to be considered for a
tetrahedron with all of its nodes in symmetry orbits and an interpolated node
on the symmetry line x = y = z is thus

neq:int,1 =

cmax∑
c=cmin

bmax∑
b=bmin

amax∑
a=amin

1

=

cmax∑
c=0

bmax∑
b=c

(p+ 1− c− 2b)

=

cmax∑
c=0

(p+ 1− c)(bmax + 1− c)− 2
bmax(bmax + 1)− (c− 1)c

2

=

cmax∑
c=0

18c2 − 12(p+ 2)c+ (2p2 + 8p+ 7) + (−1)p+c

8

=
6c3max − 3(1 + 2p)c2max + 2(p2 + p− 1)cmax + (2p2 + 8p+ 7)

8
(50)

+
(−1)p(1 + (−1)cmax)

16
.

Each symmetry orbit has one independent weigh for each node on the symme-
try line x = y = z, one weight for each group of three nodes on the symmetry
planes x = y, x = z, and y = z but not on the symmetry line x = y = z, and
one weight for each group of six nodes that are on not on any these symmetry
planes. The symmetry orbits S1,3, S4,3, S6,3, S12,3 and S24,3 each have 1, 2,
2, 3, and 4 independent weights, respectively. Consequently, the equation to
satisfy is

[1, 2, 2, 3, 4]nSym,3D ≤ neq:int,1. (51)

As before, the results in Section 3.4.6 suggest that the following is required
for unisolvency

[1, 2, 2, 3, 4]nSym,3D = neq:int,1. (52)
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3.4.5 Fifth equation

For the fifth and final equation that is considered for a tetrahedron we consider
the interpolation of a node that is on the symmetry plane x = y, but not on
the symmetry line x = y = z. This is considered in

Theorem 10 When all the nodes are in symmetry orbits, the tetrahedron is
symmetric about the plane x = y, and the interpolation is to a node that is on
the symmetry plane x = y, but not on the symmetry line x = y = z, only the
basis functions of the form xaybzc with a ≥ b ≥ 0, c ≥ 0 and a + b + c ≤ p
need to be considered.

Proof The proof is analogous to the one for Theorem 9 but it only involves
the symmetry plane x = y. Therefore, the only condition that is derived is
that a ≥ b, which is the desired result.

As a result of Theorem 10, the variables a, b and c are limited to

b = amin ≤ a ≤ amax = p− b− c (53)

0 = bmin ≤ b ≤ bmax =

⌊
p− c

2

⌋
(54)

0 = cmin ≤ c ≤ cmax = p. (55)

The remaining number of basis functions that need to be considered is

neq:int,2 =

cmax∑
c=cmin

bmax∑
b=bmin

amax∑
a=amin

1

=

cmax∑
c=0

bmax∑
b=0

(p+ 1− c− 2b)

=

cmax∑
c=0

(p+ 1− c)(bmax + 1)− bmax(bmax + 1)

=

p∑
c=0

2c2 − 4(p+ 2)c+ (2p2 + 8p+ 7) + (−1)p+c

8

=
(2p+ 3)(p+ 2)(p+ 4)− 3mod (p, 2)

24
. (56)

Each symmetry orbit has one free parameter for each node on the symmetry
plane x = y and one for each pair of nodes symmetrically located about this
symmetry plane. The symmetry orbits S1,3, S4,3, S6,3, S12,3 and S24,3 therefore
each have 1, 3, 4, 7, and 12 free parameters, respectively. Consequently, the
equation that must be satisfied is

[1, 3, 4, 7, 12]nSym,3D ≤ neq:int,2, (57)

where there is once again an inequality but the results in Section 3.4.6 suggest
it is in fact an identity, i.e.

[1, 3, 4, 7, 12]nSym,3D = neq:int,2. (58)
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3.4.6 System of equations

Combining Eqs. (34), (38), (45), (52) and (58), and assuming that these last
three hold for a unisolvent set of nodes, gives

1 4 6 12 24
1 0 0 0 0
1 1 1 1 1
1 2 2 3 4
1 3 4 7 12



nS1,3

nS4,3

nS6,3

nS12,3

nS24,3

 =


N∗p,3

neq:cent.
neq:elem
neq:int,1
neq:int,2

 . (59)

This system of equation can be solved to give
nS1,3

nS4,3

nS6,3

nS12,3

nS24,3

 =


1 4 6 12 24
1 0 0 0 0
1 1 1 1 1
1 2 2 3 4
1 3 4 7 12


−1 

N∗p,3
neq:cent.
neq:elem
neq:int,1
neq:int,2



=


0 1 0 0 0
1 −1 0 3 −3
−1/2 −3/2 4 −4 2
−1 2 −4 1 2
1/2 −1/2 1 0 −1




N∗p,3
neq:cent.
neq:elem
neq:int,1
neq:int,2

 .

=


neq:cent.

N∗p,3 − neq:cent. + 3(neq:int,1 − neq:int,2)

−N∗p,3+neq:cent.

2 − neq:cent. + 4(neq:elem − neq:int,1) + 2neq:int,2
−N∗p,3 + 2neq:cent. − 4neq:elem + neq:int,1 + 2neq:int,2

N∗p,3−neq:cent.

2 + neq:elem − neq:int,2

 .
(60)

The terms N∗p,3, neq:cent., neq:elem, neq:int,1, and neq:int,2 are all integers for
p ≥ 0. The fifth row in Eq. (60) contains the term (N∗p,3−neq:cent.)/2, which is
identical to the right-hand side of Eq. (35), and thus is always an integer. It is
analogous to show that (N∗p,3 + neq:cent.)/2 in the third row of Eq. (60) is also
always an integer. Therefore, Eq. (60) returns a solution of integers, which is
the unique combination of symmetry orbits to have a unisolvent set of nodes
for p ≥ 0.

The same approach as Section 3.3.4 is followed here. Vandermonde matri-
ces are constructed for the nodal locations of each of the symmetry orbits that
gives n = N∗p,3 for 1 ≤ p ≤ 7. The rank of the Vandermonde matrices shown
in Table 3 for 1 ≤ p ≤ 4 indicates the highest possible rank for the particular
combination of symmetry orbits. The rank of the Vandermonde matrix can be
lower, but not greater, for certain nodal locations within the symmetry orbits
being used, as is demonstrated in Section 4. The only combination of symme-
try orbits for each degree of interpolant p that has rank(V) = n = N∗p,3 is the
one that satisfies Eq. (60), as expected. The same results were also observed
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Table 3: Combinations of symmetry orbits that provide n = N∗p,3 and the
highest possible rank of the Vandermonde matrices constructed using these
symmetry orbits.

p n = N∗
p,3 nSym,3D rank(V) rank(V) = N∗

p,3 Solution to Eq. (60)

0 1 [1,0,0,0,0] 1 3 3

1 4 [0,1,0,0,0] 4 3 3

2 10 [0,1,1,0,0] 10 3 3

3 20 [0,5,0,0,0] 12
[0,2,2,0,0] 17
[0,2,0,1,0] 20 3 3

4 35 [1,7,1,0,0] 22
[1,4,3,0,0] 24
[1,4,1,1,0] 30
[1,1,5,0,0] 17
[1,1,3,1,0] 29
[1,1,1,2,0] 35 3 3
[1,1,1,0,1] 31

for p ∈ {5, 6, 7}. This strongly suggests that satisfying Eqs. (45), (52) and (58)
is a required conditions for unisolvency for all p.

3.5 Results for simplices of one to three dimensions

Equations were derived to determine the unique combination of symmetry
orbits that can provide a unisolvent set of nodes for simplices of one to three
dimensions. Table 4 shows the number of combinations of symmetry orbits
that provides n = N∗p,d and the unique combination of symmetry orbits that
can provide a unisolvent set of nodes.

4 Non-unisolvency

In one dimension, unique nodal locations and the combination of symmetry
orbits that provides n = N∗p,1 is sufficient to ensure unisolvency. However,
in multiple dimensions unique nodal locations and the unique combination of
symmetry orbits that can provide a unisolvent set of nodes is still insufficient to
ensure unisolvency. The conditions presented are necessary but not sufficient.

Table 4 indicates that nSym,2D = [0, 2, 0] is required to have a unisolvent
set of nodes for a p = 2 interpolant on a triangle. The Cartesian coordinates
for the nodes in these two symmetry orbits on a right triangle with vertices at
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Table 4: The combination of symmetry orbits that can provide a unisolvent
set of nodes for simplices of one to three dimensions, where nc is the number
of combinations of symmetry orbits that gives n = N∗p,d.

p Line Triangle Tetrahedron
nc nTSym,1D nc nTSym,2D nc nTSym,3D

0 1 [1, 0] 1 [1,0,0] 1 [1,0,0,0,0]
1 1 [0, 1] 1 [0,1,0] 1 [0,1,0,0,0]
2 1 [1, 1] 2 [0,2,0] 1 [0,1,1,0,0]
3 1 [0, 2] 2 [1,1,1] 3 [0,2,0,1,0]
4 1 [1, 2] 3 [0,3,1] 7 [1,1,1,2,0]
5 1 [0, 3] 4 [0,3,2] 22 [0,2,0,4,0]
6 1 [1, 3] 5 [1,3,3] 70 [0,3,2,3,1]
7 1 [0, 4] 7 [0,4,4] 161 [0,3,0,7,1]
8 1 [1, 4] 8 [0,5,5] 308 [1,2,2,8,2]
9 1 [0, 5] 10 [1,4,7] 715 [0,4,0,11,3]
10 1 [1, 5] 12 [0,6,8] 1378 [0,4,3,11,5]

(0, 0), (1, 0) and (0, 1) are

1

3
×


1− t1 1− t1
1 + 2t1 1− t1
1− t1 1 + 2t1
1− t2 1− t2
1 + 2t2 1− t2
1− t2 1 + 2t2

 ,

where t1 and t2 are the free parameters for the nodal locations of the two
symmetry orbits. The determinant of a Vandermonde matrix constructed with
monomials is

det(V) =
(t21t

2
2(t1 + t2)(t1 − t2)3)

27
, (61)

which is zero if t1, t2 = 0 since the nodes of that respective symmetry orbit
would be collocated at the centroid, or if t1 = t2 since the nodes of the two
symmetry orbits would be collocated. Additionally, if t1 = −t2, which does not
involve any collocation of the nodes, then the determinant of the Vandermonde
matrix is also zero.

Consider the symmetry orbits nSym,3D = [0, 1, 1, 0, 0], which Table 4 indi-
cates is the required combination of symmetry orbits to have a unisolvent set
of nodes for a p = 2 interpolant in a tetrahedron. The Cartesian coordinates
for the nodes in a tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and
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(0, 0, 1) are

1

4
×



1− t1 1− t1 1− t1
1 + 3t1 1− t1 1− t1
1− t1 1 + 3t1 1− t1
1− t1 1− t1 1− 3t1
1− t2 1 + t2 1 + t2
1 + t2 1− t2 1 + t2
1 + t2 1 + t2 1− t2
1− t2 1− t2 1 + t2
1− t2 1 + t2 1− t2
1 + t2 1− t2 1− t2


,

where t1 and t2 are the free parameters for the nodal locations for the nS4,3

and nS6,3 symmetry orbits, respectively. The determinant of the Vandermonde
matrix constructed with monomials is

det(V) = − t
6
1t

7
2(3t21 − 4t22)

64
, (62)

which is zero when t1 = 0 or t2 = 0 since the nodes are collocated at the
centroid. However, if 3t21 = 4t22, then the determinant of the Vandermonde
matrix is also zero, even though none of the nodes are collocated.

The relation between the nodal locations of two or more symmetry orbits
that gives det(V) = 0 and that is thus non-unisolvent depends on each combi-
nation of symmetry orbits. For example, having ti = −tj for two different nS3,2

symmetry orbits on a triangle may not necessarily lead to a non-unisolvent set
of nodes for p > 2. Further work is needed to determine if a necessary and
sufficient set of conditions to ensure unisolvency can be derived when all the
nodes are in symmetry orbits.

5 Conclusions

It was demonstrated that, for polynomial interpolants, there is a unique com-
bination of symmetry orbits that can provide a unisolvent set of nodes for
simplices of one to three dimensions. A system of equations was derived to
calculate this unique combination of symmetry orbits. The results were ver-
ified for p ≤ 10 for triangles and p ≤ 7 for tetrahedra by considering all
combination of symmetry orbits with n = N∗p,d and calculating the rank of
their Vandermonde matrix. Only the combinations of symmetry orbits identi-
fied in this paper provide a unisolvent set of nodes. The results from this paper
strongly suggest that satisfying Eqs. (31), (45), (52) and (58) is required to
have unisolvency for all p.

Consider an interpolant with p = 7, there are 7 and 161 combinations of
symmetry orbits that give n = N∗p,d for triangles and tetrahedra, respectively.
With the equations derived in this paper, only the unique combination of sym-
metry orbits that can provide a unisolvent set of nodes needs to be considered.
This result may prove helpful in the derivation of Fekete and Lebesgue nodes
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as well as operators for finite-element, multidimensional summation-by-parts,
and flux reconstruction operators.

For symmetrical nodal distribution in a simplex, the conditions derived
in this paper are necessary, at least for p ≤ 10 for triangles and p ≤ 7 for
tetrahedra, but not sufficient to ensure a unisolvent set of nodes for polynomial
interpolation. Even with the unique combination of symmetry orbits to have
a unisolvent set of nodes and distinct nodal locations, unisolvency is still not
guaranteed. The relation between the nodal locations that provides a non-
unisolvent set of nodes is different for each degree of interpolants. Further
research is required to determine if additional constraints can be added that
would guarantee unisolvency for two- and three-dimensional simplices.
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