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Simultaneous Approximation Terms for Multi-Dimensional
Summation-by-Parts Operators?

David C. Del Rey Fernández · Jason E.
Hicken · David W. Zingg

Abstract This paper is concerned with the accurate, conservative, and stable imposi-
tion of boundary conditions and inter-element coupling for multi-dimensional summation-
by-parts (SBP) finite-di↵erence operators. More precisely, the focus is on diagonal-norm
SBP operators that are not based on tensor products and are applicable to unstruc-
tured grids composed of arbitrary elements. We show how penalty terms — simultane-
ous approximation terms (SATs) — can be adapted to discretizations based on multi-
dimensional SBP operators to enforce boundary and interface conditions. A general
SAT framework is presented that leads to conservative and stable discretizations of the
variable-coe�cient advection equation. This framework includes the case where there are
no nodes on the boundary of the SBP element at which to apply penalties directly. This
is an important generalization, because elements analogous to Legendre-Gauss colloca-
tion, i.e. without boundary nodes, typically have higher accuracy for the same number of
degrees of freedom. Symmetric and upwind examples of the general SAT framework are
created using a decomposition of the symmetric part of an SBP operator; these particu-
lar SATs enable the pointwise imposition of boundary and inter-element conditions. We
illustrate the proposed SATs using triangular-element SBP operators with and without
nodes that lie on the boundary. The accuracy, conservation, and stability properties of
the resulting SBP-SAT discretizations are verified using linear advection problems with
spatially varying divergence-free velocity fields.

1 Introduction

We are interested in high-order discretizations that obey the summation by parts (SBP)
property. The SBP property mimics integration by parts, and it greatly facilitates the
construction of high-order schemes that are conservative and provably stable (linearly
and nonlinearly) [1–3]. We are, in addition, interested in the flexibility provided by SBP
operators that do not have a standard polynomial basis representation. In principle, this
flexibility can be used to optimize SBP operators in various ways. For example, their
e�ciency can be improved by reducing their spectral radius or decreasing the number
of floating point operations per node.
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SBP methods have predominantly been developed in the context of high-order finite
di↵erence methods [4,5] where the nodal distribution in computational space is uniform;
see the review papers [6,7] and the references therein. While SBP methods have been ex-
tended in a number of ways, for example see [8–11], the majority of these developments
have been limited to one-dimensional operators that are applied to multi-dimensional
problems using tensor-product operators in computational space. An interesting excep-
tion is the work by Nordström et al. [12], which presents a vertex-centered second-order-
accurate finite-volume scheme with the SBP property on unstructured grids.

The tensor-product approach, while adequate for many applications, has limitations
when applied to complex geometries and in the context of localized, anisotropic mesh
adaptation. This motivates our interest in generalizing SBP operators to more general
multi-dimensional subdomains, i.e. elements.

Building on the generalization in [9], we presented an SBP definition in [13] (see
also [14]) that is suitable for arbitrary, bounded subdomains with piecewise smooth,
orientable boundaries. For diagonal-norm1 multi-dimensional SBP operators that are
exact for polynomials of total degree p, it was shown that the norm and corresponding
nodes define a strong cubature rule that is exact for polynomials of degree 2p� 1. This
connection to cubature rules greatly simplifies the construction of SBP operators, since
many suitable cubature rules have already been identified in the literature [15]. In this
paper, we will only consider diagonal-norm operators.

SBP derivative operators do not inherently enforce boundary conditions or inter-
element coupling. The majority of SBP-based discretizations rely on simultaneous ap-
proximation terms (SATs) [16–19] to impose boundary conditions, as well as inter-
element coupling when the solution space is discontinuous. SATs are terms that impose
boundary data and inter-element coupling in a weak sense and lead to stable and con-
servative schemes without impacting the asymptotic order of the discretization.

In [13] we derived SATs for multidimensional diagonal-norm SBP operators and
showed that the resulting discretizations are stable for the linear constant-coe�cient
advection equation. Indeed, for constant-coe�cient advection these penalties are the
strong-form equivalent of the boundary-integrated numerical flux functions used in [20].
The SATs described in [13] can theoretically accommodate variable-coe�cient advection
problems; however, they are not practical for this class of problem because new SBP
operators would be needed whenever the variable coe�cients change.

The multi-dimensional SBP operators in [13] were designed to have a unisolvent
set of nodes on each face for the appropriate space of polynomials. This constraint was
imposed, in part, to simplify the construction of pointwise SATs, but it increases the total
number of nodes required for the SBP cubature. For example, the quadratic, cubic, and
quartic SBP operators for the triangle require 7, 12, and 18 nodes, respectively, rather
than the 6, 10, and 15 nodes necessary for a total-degree basis [13]. A similar trend
is observed for tetrahedral elements. Given the quadratic complexity of matrix-vector
multiplication, there is impetus to minimize the number of volume nodes. In addition,
it is well known that strong cubature rules without boundary nodes tend to be more
accurate than rules with boundary nodes for the same number of nodes [15].

In light of the limitations of the SATs used in [13], the objectives of the present work
are to:

1. generalize the SAT definition to accommodate multi-dimensional SBP operators that
may not have a su�cient number of boundary nodes to construct adequate face
cubature rules, including operators that have no boundary nodes, and;

2. develop SATs that lead to provably stable and conservative schemes for variable
coe�cient partial di↵erential equations (PDEs) in split form.

The remainder of the paper is organized as follows. After introducing some nota-
tion, Section 2 reviews the definition of multi-dimensional SBP operators from [13].
Section 3 demonstrates the decomposition of the symmetric component of the SBP-
derivative operator by considering a set of auxiliary nodes on the boundary using in-
terpolation/extrapolation operators and face cubature rules. In Sections 4 and 5 the
general framework for construction of stable and conservative SATs is presented and

1 The norm matrix can be viewed as a mass matrix.
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two examples of SATs are discussed. In order to illustrate SATs on a concrete example,
Section 6 presents two families of SBP operators for the triangle and describes how SATs
are constructed for these operators. A numerical verification using the linear advection
equation with a spatially varying divergence-free velocity field is given in Section 7, and
conclusions are provided in Section 8.

2 Notation and review of multi-dimensional summation-by-parts operators

This work builds on [13], so similar notation is maintained for consistency. As in that
work, we focus on two-dimensional operators to simplify the presentation. One notable
di↵erence between the present work and [13] is that we consider general (smooth) bijec-
tive mappings from physical to computational space. Domains and their boundaries in
physical space are denoted with ⌦ and � , respectively. The corresponding sets in com-
putational space are given by ⌦̂ and �̂ . Physical-space coordinates are represented with
(x, y) 2 ⌦, and the computational-space coordinates are given by (⇠, ⌘) 2 ⌦̂. While we
concentrate on elements that are polygons in computational space, the ideas presented
in this paper can be directly extended to three dimensions. Several definitions and the-
orems are limited to operators defined in the ⇠ coordinate direction, since operators
defined in the other directions are analogous.

Functions are denoted with capital letters with a script type; e.g., U(⇠, ⌘, t) 2 L

2(⌦̂⇥
[0, T ]) denotes a square-integrable function on the space-time domain ⌦̂ ⇥ [0, T ]. Func-
tions and operators are discretized on a set of n nodes, S

ˆ

⌦

= {(⇠
i

, ⌘

i

)}n
i=1

⇢ ⌦̂. The
restriction of a function to the nodes is a column vector that is represented using lower-
case bold font. For example, in the case of U we would write

u = [U(⇠
1

, ⌘

1

), . . . ,U(⇠
n

, ⌘

n

)]T .

A number of definitions and theorems rely on the monomial basis, defined below in
(partial) order of nondecreasing degree.

P
k

(⇠, ⌘) ⌘ ⇠

i

⌘

j�i

, k = j(j + 1)/2 + i+ 1, 8 j 2 {0, 1, . . . , p}, i 2 {0, 1, . . . , j}.
The cardinality of the monomial basis of total degree p is denoted

N

⇤
p

⌘
✓
p+ d

d

◆
,

where d is the spatial dimension; for d = 2 this gives N

⇤
p

= (p + 1)(p + 2)/2. The
monomials and their derivatives evaluated at the nodes are represented by the n-vectors

p
k

⌘ [P
k

(⇠
1

, ⌘

1

), . . . ,P
k

(⇠
n

, ⌘

n

)]T ,

and p0
k

⌘

@P

k

@⇠

(⇠
1

, ⌘

1

), . . . ,
@P

k

@⇠

(⇠
n

, ⌘

n

)

�
T

.

We will need the degree p (rectangular) Vandermonde matrix

V ⌘
h
p
1

,p
2

, . . . ,p
N

⇤
p

i
,

as well as the associated matrix containing the projection of the ⇠ derivatives of the
monomials onto a set of nodes, which we denote by

V
⇠

⌘
h
p0
1

,p0
2

, . . . ,p0
N

⇤
p

i
.

In this paper, we use Matlab notation; for example, M(i :j, l :m) denotes the subma-
trix constructed from the i through j rows and l through m columns of the matrix M.
Similarly, we use the notation M(:, i) and M(j, :) to denote the i

th column and j

th row
of the matrix M, respectively.

We can now state the following definition of a multi-dimensional SBP operator that
was proposed in [13]:
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Definition 1 Two-dimensional summation-by-parts operator: Consider an open
and bounded domain ⌦̂ ⇢ R2 with a piecewise-smooth boundary �̂ . The matrix D

⇠

is a
degree p SBP approximation to the first derivative @

@⇠

on the nodes S
ˆ

⌦

= {(⇠
i

, ⌘

i

)}n
i=1

if

I. D
⇠

p
k

= p0
k

, 8 k 2 {1, 2, . . . , N⇤
p

};
II. D

⇠

= H�1Q
⇠

, where H is symmetric positive-definite; and
III. Q

⇠

= S
⇠

+ 1

2

E
⇠

, where ST
⇠

= �S
⇠

, ET

⇠

= E
⇠

, and E
⇠

satisfies

pT

k

E
⇠

p
m

=

I

ˆ

�

P
k

P
m

n

⇠

d�̂ , 8 k,m 2 {1, 2, . . . , N⇤
r

},

where r � p, and n

⇠

is the ⇠ component of n = [n
⇠

, n

⌘

]T, the outward pointing unit

normal on �̂ .

A diagonal-norm SBP operator is one where H is a diagonal matrix. As mentioned
in the Introduction, such diagonal-norm operators are closely linked to cubature rules
and, under mild assumptions on a generalized Vandermonde matrix, the existence of a
cubature implies the existence of an SBP operator [13]. Conversely, the norm matrix H
is a cubature rule satisfying

pT

k

Hp
m

=

Z

ˆ

⌦

P
k

P
m

d⌦̂,

where, at a minimum, H is of degree 2p�1, i.e. the above equality holds provided P
k

P
m

is at most degree 2p � 1. In addition, since H is symmetric positive definite, it defines
the finite-dimensional norm (hence the name, norm matrix) that is a degree 2p � 1
approximation to the L

2 norm:

kuk2H ⌘ uTHu ⇡
Z

ˆ

⌦

U2d⌦̂.

We use this norm frequently in the following stability analysis.

3 Decomposition of E⇠

The pointwise nature of SATs complicates their direct application to multi-dimensional
SBP operators, which may not have any nodes on the boundary of their domain. For-
tunately, as we show in this section, the E

⇠

and E
⌘

matrices of many multi-dimensional

SBP operators can be decomposed in terms of nodes that lie on the boundary of ⌦̂. These
auxiliary nodes provide a straightforward means of applying traditional SAT penalties.

In order to proceed, we introduce some assumptions regarding the reference element,
⌦̂, and its boundary, �̂ .

Assumption 1 The reference element ⌦̂ is a polygon, and its boundary �̂ is piece-

wise linear with �̂ =
S

N�̂
j=1

�̂

j

and

T
N�̂
j=1

�̂

j

= ;. Furthermore, for each �̂

j

there exists

a strong cubature rule, with nodes S

ˆ

�j
= {(⇠(j)

i

, ⌘

(j)

i

)}nj

i=1

and weights {b(j)
i

}nj

i=1

, that

exactly integrates polynomial integrands of degree q � 2r, where r is the integer used

in property III of Definition 1. Moreover, we assume that the volume nodes result in a

degree r Vandermonde matrix, V, that has linearly independent columns.

Remark 1 The assumption that the reference element is a polygon is reasonable; for
example, the most common finite elements are polytopes in computational space. The
actual elements in physical space can have curved sides.

Assumption 1 ensures that we can evaluate element boundary fluxes with su�cient
accuracy in computational space. For example, the cubature rule for each �̂

j

allows us
to write Z

ˆ

�j

P
k

(⇠, ⌘)n
⇠

d�̂ = n

⇠j

njX

i=1

b

(j)

i

P
k

⇣
⇠

(j)

i

, ⌘

(j)

i

⌘
,
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for all polynomials P
k

of total degree q or less, where q � 2r , and n

⇠j is the ⇠ component

of the outward pointing unit normal on �̂

j

. A similar expression holds for fluxes in the ⌘

direction. Note that n
⇠j

is constant over �̂
j

, due to linearity, so it can be pulled outside
the integral.

Our approach to imposing boundary and interface conditions pointwise is to in-
terpolate/extrapolate the solution from the element nodes onto the cubature nodes

S

ˆ

�j
= {(⇠(j)

i

, ⌘

(j)

i

}nj

i=1

using operators R
j

. To decompose E
⇠

and E
⌘

, these interpola-

tion/extrapolation operators must be su�ciently accurate. Specifically,

(R
j

p
k

)
i

= P
k

⇣
⇠

(j)

i

, ⌘

(j)

i

⌘
, i = 1, 2, . . . , n

j

, 8 k 2 {1, 2, . . . , N⇤
r

}, (1)

where r � p. The restriction on the volume nodes in Assumption 1 ensures that we can
construct the R

j

, which we show shortly.
We first prove that we can construct E

⇠

that satisfy the requirements of Definition
1 using the interpolation/extrapolation operators, R, and the face-cubature rules from
Assumption 1.

Theorem 1 Let Assumption 1 hold and let S

ˆ

⌦

= {(⇠
i

, ⌘

i

)}n
i=1

be a given nodal distri-

bution on the domain ⌦̂. Then, a matrix E
⇠

that satisfies the requirements of Definition

1 can be constructed as

E
⇠

=

N�̂X

j=1

n

⇠j

RT

j

B
j

R
j

,

R
j

= V
ˆ

�j

�
V

ˆ

⌦

�†
= V

ˆ

�

�
VT

ˆ

⌦

V
ˆ

⌦

��1

VT

ˆ

⌦

,

(2)

where B
j

= diag
⇣
b

(j)

1

, b

(j)

2

, . . . , b

(j)

nj

⌘
is a diagonal matrix holding the cubature weights for

�̂

j

. The matrix V
ˆ

⌦

is the degree r Vandermonde matrix on the volume nodes, V
ˆ

�

is the

degree p Vandermonde matrix on the nodes of �̂

j

, and (A)† denotes the Moore-Penrose

pseudo inverse. Furthermore, R
j

2 Rnj⇥n

is a degree r � p interpolation/extrapolation

operator from the nodes S

ˆ

⌦

to the nodes of the reference boundary domain, S

ˆ

�j
.

Proof The terms RT

j

B
j

R
j

are symmetric by construction. Moreover, as constructed, the
R
j

satisfy the accuracy conditions (1); this can be seen by examining the conditions in
matrix form, i.e.,

R
j

V
ˆ

⌦

= V
ˆ

�

�
VT

ˆ

⌦

V
ˆ

⌦

��1

VT

ˆ

⌦

V
ˆ

⌦

= V
ˆ

�

.

Furthermore, this construction of the R
j

is guaranteed to exist because the columns
of V

ˆ

⌦

are linearly independent, by assumption. Therefore, we need only show that
the accuracy conditions of Property III hold. Since the R

j

are exact for degree r � p

polynomials, we have, 8 k,m 2 {1, 2, . . . , N⇤
r

},

pT

k

E
⇠

p
m

=

N�̂X

j=1

n

⇠j

pT

k

RT

j

B
j

R
j

p
m

=

N�̂X

j=1

n

⇠j

njX

i=1

b

(j)

i

P
k

⇣
⇠

(j)

i

, ⌘

(j)

i

⌘
P
m

⇣
⇠

(j)

i

, ⌘

(j)

i

⌘

=

N�̂X

j=1

Z

ˆ

�j

P
k

P
m

n

⇠j

d�̂ ,

where we have used the fact that the unit normal is constant on each �̂ (see Assump-
tion 1) and the fact that the product P

k

P
m

has total degree less than or equal to 2r  q.
The result follows by the additive property of integrals. ut

Next, we prove that we can construct a multi-dimensional SBP operator D
⇠

from
a given, su�ciently accurate, strong cubature rule and an E

⇠

matrix that satisfies the
requirements of Definition 1.
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Theorem 2 Let the diagonal elements of H and the nodes S

ˆ

⌦

= {(⇠
i

, ⌘

i

)}n
i=1

define a

degree 2p � 1 strong cubature rule on the domain ⌦̂. If the Vandermonde matrix, V,
associated with the nodes S

ˆ

⌦

has full column rank, and E
⇠

2 Rn⇥n

is symmetric and

satisfies Property III of Definition 1, then there exists at least one degree p SBP operator,

D
⇠

= H�1(S
⇠

+ 1

2

E
⇠

), based on the given nodes S

ˆ

⌦

and matrices H and E
⇠

.

Proof We must show that, for the given H and E
⇠

, we can find a skew symmetric S
⇠

that satisfies the accuracy conditions I. The SBP accuracy conditions can be recast as
the following set of matrix conditions:

D
⇠

˜Vz }| {
[V W] =

˜V⇠z }| {
[V W

⇠

], (3)

where W is a set of linearly independent vectors, of size n ⇥ (n � N

⇤
p

), such that Ṽ is
invertible, e.g., a basis for the null space of V. The matrix W

⇠

is of size n ⇥ (n � N

⇤
p

)
and is to be determined. Using (3) and the multi-dimensional SBP definition, we can
solve for S

⇠

as

S
⇠

= HṼ
⇠

Ṽ�1 � 1

2
E
⇠

. (4)

What remains to be shown is that S
⇠

can be constructed to be skew symmetric using
W

⇠

. Rather than doing so directly, we show that an associated matrix is skew symmetric;
left and right multiplying (4) by ṼT and Ṽ, respectively, results in

S̃
⇠

⌘ ṼTS
⇠

Ṽ =


VTHV

⇠

� 1

2

VTE
⇠

V VTHW
⇠

� 1

2

VTE
⇠

W
WTHV

⇠

� 1

2

WTE
⇠

V WTHW
⇠

� 1

2

WTE
⇠

W

�
. (5)

If we can show that S̃
⇠

is skew symmetric, this will imply skew symmetry for S
⇠

.

We first show that the block S̃
⇠

(1 : N⇤
p

, 1 : N⇤
p

) is skew symmetric;

S̃
⇠

(1 : N⇤
p

, 1 : N⇤
p

) + S̃
⇠

(1 : N⇤
p

, 1 : N⇤
p

)T = VTHV
⇠

+ VT

⇠

HV � VTE
⇠

V = 0,

where we have used the compatibility conditions VTHV
⇠

+ VT

⇠

HV = VTE
⇠

V [4, 5, 9, 13].

Next, notice that the entries in the lower-left block S̃
⇠

(N⇤
p

+ 1 : n, 1 : N⇤
p

) are fully

specified by V,W, and V
⇠

. To make the rest of S̃
⇠

skew symmetric, we specify the columns
of W

⇠

in order to match the upper-right block to the (negative transposed) lower-left
block and a zero lower-right block. In other words, for skew-symmetry we require that

S̃
⇠

(:, N⇤
p

+ j) = ṼTHW
⇠

� 1

2
ṼTE

⇠

W =

�VT

⇠

HW + 1

2

VTE
⇠

W
0

�
.

Rearranging we have

ṼTHW
⇠

=
1

2
ṼTE

⇠

W +

�VT

⇠

HW + 1

2

VTE
⇠

W
0

�
,

which we can solve for W
⇠

, because ṼTH is invertible. This particular W
⇠

ensures that
S̃
⇠

is skew symmetric, and, therefore, guarantees that S
⇠

is skew symmetric. ut

Theorems 1 and 2 imply the following:

Corollary 1 If the hypotheses of Theorem 1 and 2 are met, then there exists at least

one degree p SBP operator whose E
⇠

has the decomposition (2).

Remark 2 The implication of Corollary 1 is that D
⇠

exist for which E
⇠

is constructed

as the sum of matrices, each of which is associated with a face �̂

j

; more importantly,
it expresses these constituent matrices in terms of the face cubature points and the R

j

operators, facilitating pointwise imposition of SATs.
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4 Linear variable-coe�cient PDEs

While the ideas presented in this paper can be used to construct SATs for PDEs in vari-
ous forms, one of our goals is to develop SATs suitable for split forms of nonlinear PDEs.
Such split forms can be used to prove nonlinear stability, for example of the Burgers
and Euler equations, and more generally are related to the entropy stability theory in
Refs. [1–3,21,22]. Moreover, such split-forms can be advantageous in improving robust-
ness [23]. Therefore, in this section, we develop a general framework for constructing
SATs to impose boundary and inter-element conditions weakly for multi-dimensional
SBP operators in split form. We do so by examining the variable-coe�cient linear ad-
vection equation in two dimensions in skew-symmetric form. We review the use of the
energy method to prove stability for the continuous problem and then apply the same
ideas to prove stability of the semi-discrete equations. The goal of this section is to de-
termine a set of conditions that, if satisfied, lead to stable and conservative semi-discrete
forms.

4.1 Stability and conservation of the variable-coe�cient linear advection equation

Consider the divergence and skew-symmetric forms of the linear advection equation with
a spatially varying velocity field, � = [�

x

,�

y

]T:

@U
@t

=�r · (�U)

=� 1

2
r · (�U)� 1

2
� ·rU � 1

2
Ur · �,

(6)

for all (x, y) 2 ⌦ and t � 0. The initial and boundary conditions are

U(x, y, 0) = F(x, y), 8 (x, y) 2 ⌦,

U(x, y, t) = G(x, y, t), 8 (x, y) 2 �

�
, t � 0,

(7)

respectively, where � is subdivided into the inflow boundary,

�

� = {(x, y) 2 � |n
x

�

x

+ n

y

�

y

< 0} ,
and the outflow boundary, �+ = �\��.

We use the energy method — applying a similar analysis to that in Ref. [24] to
our two-dimensional problem — to prove that the problem defined by (6) and (7) is
stable; those interested in further details are referred to the texts [25, 26]. Multiplying
the divergence form of (6) by U and integrating in space results in

Z

⌦

U @U
@t

d⌦ = �
Z

⌦

✓
U @�

x

U
@x

+ U @�

y

U
@y

◆
d⌦. (8)

Equation (8) can be expressed in two alternative forms: i) using the Leibniz rule on the
left-hand side and the product rule on the right-hand side, or; ii) using the Leibniz rule
on the left-hand side and expanding the derivative terms on the right-hand side. Adding
these two alternative expressions leads to

dkUk2
dt

= �
Z

⌦

✓
@�

x

U2

@x

+
@�

y

U2

@y

+ U2

@�

x

@x

+ U2

@�

y

@y

◆
d⌦. (9)

Using integration by parts on the first two terms of the right-hand side of (9) leads to

dkUk2
dt

= �
I

�

U2 (n
x

�

x

+ n

y

�

y

) d� �
Z

⌦

U2

✓
@�

x

@x

+
@�

y

@y

◆
d⌦. (10)

Assuming that the divergence of � is bounded, that is

↵ = max
(x,y)2⌦

✓
@�

x

@x

+
@�

y

@y

◆
 1,



8 David C. Del Rey Fernández et al.

we have that Z

⌦

U2

✓
@�

x

@x

+
@�

y

@y

◆
d⌦  ↵kUk2.

The following inequality results from breaking up the surface integral in (10) into
integrals over �

+ and �

�, inserting the boundary condition, and making use of the
above bound:

dkUk2
dt

�
I

�

+

U2|n
x

�

x

+ n

y

�

y

|d� +

I

�

�
G2|n

x

�

x

+ n

y

�

y

|d� + ↵kUk2


I

�

�
G2|n

x

�

x

+ n

y

�

y

|d� + ↵kUk2.
(11)

We integrate (11) in time and apply the initial condition (see [25] pg. 94), resulting in
the estimate

kUk2  exp (↵t) kFk2 +
Z

t

0

exp (↵(t� ⌧))�(⌧)d⌧,

where � ⌘
I

�

�
G2|n

x

�

x

+ n

y

�

y

|d�.

Thus, we see that the problem defined by (6) and (7) is stable in the sense of Hadamard,
that is, the solution depends continuously on the data [25].

Remark 3 In the numerical experiments presented later, we consider the special case of
(6) where the velocity is divergence free, r · � = 0, and the boundary conditions are
periodic. Under these assumptions, starting from (9), the energy method results in

dkUk2
dt

= 0,

which shows that the energy is constant.

In addition to stability, we are interested in constructing schemes that are conserva-
tive. To understand the discrete conditions that will be imposed, it is useful to delineate
the conditions on the continuous problem. The PDE (6) has an integral form represen-
tation given as

d

dt

Z

˜

⌦

Ud⌦ +

I

˜

�

Un · �d� = 0, (12)

where (12) holds for all arbitrary subdomains ⌦̃ ⇢ ⌦ with piecewise smooth, orientable
boundaries �̃ . Typically, the strong form (6) is discretized using SBP-SAT schemes;
nevertheless, we would like our schemes to mimic (12) discretely on arbitrary domains
composed of one or more elements.

4.2 The generic SBP-SAT semi-discretization

In this section, we present a generic SBP-SAT semi-discretization of (6), and then deter-
mine the general conditions on the SATs necessary to obtain an energy-stable, accurate,
and conservative scheme. We focus on SATs for inter-element coupling — weak enforce-
ment of boundary conditions is similar.

The domain ⌦ is partitioned into E nonoverlapping elements: ⌦ =
S

E

e=1

⌦

e

. On
each element ⌦

e

, the PDE (6) is mapped from physical coordinates to computational, or
reference, coordinates. For a time-invariant transformation, this results in the following
skew-symmetric form:

@JU
@t

+
1

2

@�

⇠

U
@⇠

+
1

2

@�

⌘

U
@⌘

+
�

⇠

2

@U
@⇠

+
�

⌘

2

@U
@⌘

+
U
2

✓
@�

⇠

@⇠

+
@�

⌘

@⌘

◆
= 0, (13)

where

�

⇠

=
@y

@⌘

�

x

� @x

@⌘

�

y

, �

⌘

= �@y

@⇠

�

x

+
@x

@⇠

�

y

, J =
@x

@⇠

@y

@⌘

� @x

@⌘

@y

@⇠

.
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Fig. 1 Illustration of two generic SBP elements and their common interface used for the analysis of
SATs. The circles denote the volume nodes at which the solutions uL and uR are stored, and the black
squares denote cubature nodes for the face; the latter are introduced in Section 3.

To present and analyze the SATs, we consider the interface between two generic
elements, labeled “left” and “right,” having solutions u

L

and u
R

, respectively; see Figure
1. Suppose the left and right elements have

�
N

ˆ

�

�
L

and
�
N

ˆ

�

�
R

faces, respectively. Then,
without loss of generality, we can index the non-shared faces such that the E

⇠L

and E
⇠R

decompositions can be written as (see Theorem 1)

E
⇠L

=

(N�̂ )L�1X

j=1

E
⇠L,j

+ n

⇠L

RT

L

B
L

R
L

and E
⇠R

=

(N�̂ )R�1X

j=1

E
⇠R,j

+ n

⇠R

RT

R

B
R

R
R

,

where the terms n

⇠L

RT

L

B
L

R
L

and n

⇠R

RT

R

B
R

R
R

correspond to the shared face. Similar
expressions hold for E

⌘L

and E
⌘R

. In the following, we will focus on the shared face and
will drop contributions from the remaining

�
N

ˆ

�

�
L

� 1 faces on the left and
�
N

ˆ

�

�
R

� 1
faces on the right, unless otherwise noted.

The SBP-SAT semi-discretization of (13) is given by

d

dt
(J

L

u
L

) +
1

2
D

⇠L

⇤
⇠L

u
L

+
1

2
D

⌘L

⇤
⌘L

u
L

+
1

2
⇤
⇠L

D
⇠L

u
L

+
1

2
⇤
⌘L

D
⌘L

u
L

+
U
L

2
(D

⇠L

⇤
⇠L

1
L

+ D
⌘L

⇤
⌘L

1
L

) =
1

2
H�1

L

⇣
M

�⇠

LL

u
L

�M
�⇠

LR

u
R

⌘

| {z }
SATL

, (14)

on the left element and

d

dt
(J

R

u
R

) +
1

2
D

⇠R

⇤
⇠R

u
R

+
1

2
D

⌘R

⇤
⌘R

u
R

+
1

2
⇤
⇠R

D
⇠R

u
R

+
1

2
⇤
⌘R

D
⌘R

u
R

+
U
R

2
(D

⇠R

⇤
⇠R

1
R

+ D
⌘R

⇤
⌘R

1
R

) =
1

2
H�1

R

⇣
M

�⇠

RR

u
R

�M
�⇠

RL

u
R

⌘

| {z }
SATR

, (15)

on the right element. These discretizations introduce several new matrices and vectors.
For instance,

⇤
⇠L

= diag (�
⇠

(⇠
1

, ⌘

1

), . . . ,�
⇠

(⇠
nL , ⌘nL)) ,

U
L

= diag (u
L,1

, . . . , u

L,nL) ,

J
L

= diag (J (⇠
1

, ⌘

1

), . . . ,J (⇠
nL , ⌘nL)) ,

are diagonal matrices, where n

L

is the number of nodes in the left element. Similar
definitions hold for ⇤

⌘L

, ⇤
⇠R

, ⇤
⌘R

, U
R

, and J
R

. In addition, 1
L

2 RnL and 1
R

2 RnR

are constant vectors with entries equal to one.

The matrices M
�⇠

LL

2 RnL⇥nL , M
�⇠

LR

2 RnL⇥nR , M
�⇠

RR

2 RnR⇥nR , and M
�⇠

RL

2 RnR⇥nL

depend on the spatially varying field �
⇠

= [�
⇠

,�

⌘

]T, in general, and this dependence is
reflected in the notation. It is these four SAT matrices that we seek to constrain using
stability, accuracy, and conservation conditions.
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4.2.1 Stability

We begin by determining the condition imposed by stability on the SAT matrices. The
energy method applied to (14) and (15) consists of multiplying the equations by uT

L

H
L

and uT

R

H
R

, respectively, and adding the resulting expressions. After cancellation, and

using the fact that uTHdJu
dt

= 1

2

duTHJu
dt

, we find

d

dt

�
uT

L

H
L

J
L

u
L

+ uT

R

H
R

J
R

u
R

�
=

� uT

L

U
L

H
L

(D
⇠L

⇤
⇠L

1
L

+ D
⌘L

⇤
⌘L

1
L

)� uT

R

U
R

H
R

(D
⇠R

⇤
⇠R

1
R

+ D
⌘R

⇤
⌘R

1
R

)

� uT

L

RT

L

B
L

R
L

⇤
L

u
L

+ uT

L

M
�⇠

LL

u
L

� uT

L

M
�⇠

LR

u
R

� uT

R

RT

R

B
R

R
R

⇤
R

u
R

+ uT

R

M
�⇠

RR

u
R

� uT

R

M
�⇠

RL

u
L

, (16)

where

⇤
L

= n

⇠L

⇤
⇠L

+ n

⌘L

⇤
⌘L

and ⇤
R

= n

⇠R

⇤
⇠R

+ n

⌘R

⇤
⌘R

.

As explained earlier, we have retained only those boundary matrices corresponding to
the common face shared by the left and right elements. The terms corresponding to the
remaining faces have been dropped to simplify the presentation.

We treat the first terms on the right, i.e. the terms on the second line of (16), in
much the same way as we did for the continuous analysis. In particular, assuming the
coordinate transformation is di↵erentiable and has a bounded and nonzero Jacobian, we
have

�uT

L

U
L

H
L

(D
⇠L

⇤
⇠L

1
L

+ D
⌘L

⇤
⌘L

1
L

)  �

L

ku
L

k2
˜HL

,

�uT

R

U
R

H
R

(D
⇠R

⇤
⇠R

1
R

+ D
⌘R

⇤
⌘R

1
R

)  �

R

ku
R

k2
˜HR

where

�

L

= max
i2[1,nL]

⇥
J�1

L

(D
⇠L

⇤
⇠L

1
L

+ D
⌘L

⇤
⌘L

1
L

)
⇤
i

,

�

R

= max
i2[1,nR]

⇥
J�1

R

(D
⇠R

⇤
⇠R

1
R

+ D
⌘R

⇤
⌘R

1
R

)
⇤
i

,

and we have defined new norms H̃
L

= H
L

J
L

, H̃
R

= H
R

J
R

. Using these bounds in (16),
and grouping the terms involving the SAT matrices, we obtain

d

dt

⇣
ku

L

k2
˜HL

+ ku
R

k2
˜HR

⌘
 C

⇣
ku

L

k2
˜HL

+ ku
R

k2
˜HR

⌘

� ⇥
uT

L

uT

R

⇤
"
RT

L

B
L

R
L

⇤
L

�M
�⇠

LL

M
�⇠

LR

M
�⇠

RL

RT

R

B
R

R
R

⇤
R

�M
�⇠

RR

# 
u
L

u
R

�
, (17)

for C = max(�
L

, �

R

).
In order to bound the solution in terms of the initial and boundary conditions, the

matrix in the right-hand side must be negative semi-definite. This motivates the first
condition on the SAT matrices.

Condition 1 (Stability) The matrices M
�⇠

LL

, M
�⇠

LR

, M
�⇠

RR

, and M
�⇠

RL

must be such that

"
RT

L

B
L

R
L

⇤
L

�M
�⇠

LL

M
�⇠

LR

M
�⇠

RL

RT

R

B
R

R
R

⇤
R

�M
�⇠

RR

#

is positive semi-definite for all ⇤
L

and ⇤
R

.
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4.2.2 Accuracy

In order to maintain the accuracy of the base scheme, the SATs must add terms that
are of the order of the discretization. The required conditions are therefore given by

Condition 2 (Accuracy) The matrices M
�⇠

LL

, M
�⇠

LR

, M
�⇠

RR

, and M
�⇠

RL

must be such that

H�1

L

⇣
M

�⇠

LL

v
L

�M
�⇠

LR

v
R

⌘
= O(hp̃),

H�1

R

⇣
M

�⇠

RR

v
R

�M
�⇠

RL

v
L

⌘
= O(hp̃),

where h is an appropriate measure for the linear dimension of the shared face, and v
L

and v
R

are the projection, onto the nodes of the left and right domains in physical space,

of some continuous function V(x, y), and p̃ � p.

We will have more to say about the above accuracy condition in the context of
specific examples of SATs in Section 5.

4.2.3 Conservation

In order to determine the constraints on the SAT matrices such that the scheme is
conservative, we multiply (14) by 1T

L

H
L

, and (15) by 1T

R

H
R

and sum the expressions;
this operation is the discrete analogue of integrating the PDE over the volume consisting
of both elements, i.e., ⌦̃ in (12). Simplifying the result we obtain

d

dt

�
1T

L

H
L

J
L

u
L

+ 1T

R

H
R

J
R

u
R

�
=

1

2

h
�1T

L

R
L

B
L

R
L

⇤
L

u
L

� 1T

L

⇤
L

RT

L

B
L

R
L

+ 1T

L

M
�⇠

LL

� 1T

R

M
�⇠

RL

i
u
L

,

+
1

2

h
�1T

R

RT

R

B
R

R
R

⇤
R

u
R

� 1T

R

⇤
R

RT

R

B
R

R
R

+ 1T

R

M
�⇠

RR

� 1T

L

M
�⇠

LR

i
u
R

.

For conservation, we want the right-hand side to vanish for arbitrary u
L

and u
R

. Thus,
after rearranging the right-hand side, we arrive at the third, and final, condition on the
SAT matrices.

Condition 3 (Conservation) The matrices M
�⇠

LL

, M
�⇠

LR

, M
�⇠

RR

, and M
�⇠

RL

must be such

that

h
1T

L

⇣
M

�⇠

LL

� RT

L

B
L

R
L

⇤
L

⌘
� 1T

R

M
�⇠

RL

i
u
L

�
h
1T

R

⇣
�M

�⇠

RR

+ RT

R

B
R

R
R

⇤
R

⌘
+ 1T

L

M
�⇠

LR

i
u
R

= (R
L

⇤
L

1
L

)T B
L

R
L

u
L

+ (R
R

⇤
R

1
R

)T B
R

R
R

u
R

for all u
L

, u
R

, ⇤
L

, ⇤
R

.

In the above condition, we have left the conservation conditions coupled and depen-
dent on the solution as this is the typical situation for numerical fluxes used for nonlinear
problems. We elaborate further on the conservation condition below.

4.3 Divergence-free advection field

We conclude Section 4 by investigating the special case of a divergence-free advection
field in the variable-coe�cient problem (6), i.e., r · � = 0. This case is of practical
interest, because it arises in the incompressible Navier-Stokes and Maxwell’s equations.
We also use this case to verify the theory for scalar variable-coe�cient equations in
Section 7.

In the divergence-free case, the skew-symmetric form of the PDE (6) simplifies to

@U
@t

= �1

2
r · (�U)� 1

2
� ·rU , (18)
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and the SBP-SAT semi-discretization of (18) on the left element becomes

d

dt
(J

L

u
L

) +
1

2
D

⇠L

⇤
⇠L

u
L

+
1

2
D

⌘L

⇤
⌘L

u
L

+
1

2
⇤
⇠L

D
⇠L

u
L

+
1

2
⇤
⌘L

D
⌘L

u
L

=
1

2
H�1

L

⇣
M

�⇠

LL

u
L

�M
�⇠

LR

u
R

⌘
. (19)

The semi-discretization on the right element is similar.
It is straightforward to show that the stability and accuracy conditions remain the

same in the divergence-free case. However, the conservation condition is modified:

Condition 30 (Divergence-Free Conservation) For the SBP-SAT semi-discretization

of (18), the matrices M
�⇠

LL

, M
�⇠

LR

, M
�⇠

RR

, and M
�⇠

RL

must be such that

h
1T

L

⇣
M

�⇠

LL

� RT

L

B
L

R
L

⇤
L

⌘
� 1T

R

M
�⇠

RL

i
u
L

�
h
1T

R

⇣
�M

�⇠

RR

+ RT

R

B
R

R
R

⇤
R

⌘
+ 1T

L

M
�⇠

LR

i
u
R

=

1T

L

(⇤
⇠L

Q
⇠L

+ ⇤
⌘L

Q
⌘L

)u
L

+ 1T

R

(⇤
⇠R

Q
⇠R

+ ⇤
⌘L

Q
⌘R

)u
R

for all u
L

, u
R

, ⇤
⇠L

, ⇤
⌘L

, ⇤
⇠R

, and ⇤
⌘R

.

Note that the right-hand side of the divergence-free conservation condition involves
Q

⇠

and Q
⌘

.

5 Concrete examples of SATs: symmetric and upwind SATs

The SATs presented in Section 4 o↵er significant generality, but they are also somewhat
abstract. In this section, we present two concrete examples of SATs — symmetric and
upwind — for multidimensional SBP discretizations, and we show that these SATs
satisfy Conditions 1–3 for stability, conservation, and accuracy.

The proposed symmetric and upwind SATs require the following assumption that
constrains the face-cubature rules and coordinate transformations of adjacent elements.

Assumption 2 The cubature rule of the face shared by adjacent elements has the same

number of nodes, ⌫, in both reference spaces. In addition, the coordinate transformations

in the adjacent elements continuously map their respective face-cubature nodes to the

same locations in physical space. For example, in the case of the left and right elements

we have

x (⇠
L,i

, ⌘

L,i

) = x (⇠
R,i

, ⌘

R,i

) and y (⇠
L,i

, ⌘

L,i

) = y (⇠
R,i

, ⌘

R,i

) , 8 i = 1, 2, . . . , ⌫,

where (⇠
L,i

, ⌘

L,i

) and (⇠
R,i

, ⌘

R,i

) denote the ith face-cubature points on the left and right

elements, respectively. Furthermore, the scaled face-normal vectors, based on the coor-

dinate transformations along the shared face, are equal and opposite at the cubature

nodes:

b

L,i

[J (n
⇠

r⇠ + n

⌘

r⌘)]
L,i

= �b

R,i

[J (n
⇠

r⇠ + n

⌘

r⌘)]
R,i

, 8 i = 1, 2, . . . , ⌫, (20)

where b

L,i

and b

R,i

denote the ith face-cubature weights on the left and right elements,

respectively.

Remark 4 In principle, the cubature rules for the shared face could use a di↵erent num-
ber of nodes on the left and right elements, but this case is beyond the scope of the
current work.

Remark 5 Equation (20) is satisfied by isoparametric and subparametric coordinate
transformations that use the same (possibly scaled) cubature rule on each face.
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Let �

n

= �

⇠

n

⇠

+ �

⌘

n

⌘

be the advection velocity normal to the shared face. Then,
assuming that �

x

and �

y

are continuous, one can use (20) and the definitions of �
⇠

and
�

⌘

to show that

b

L,i

(�
n

)
L,i

= �b

R,i

(�
n

)
R,i

, 8 i = 1, 2, . . . , ⌫. (21)

In other words, the cubature-scaled advection velocity normal to the face is equal in
magnitude and opposite in direction at the coincident nodes along the face. We use (21)
to define the diagonal ⌫ ⇥ ⌫ matrix

B
�

= B
L

⇤
ˆ

� ,L

= B
R

⇤
ˆ

� ,R

(22)

where

⇤
ˆ

� ,L

= diag
h
(�

n

)
L,1

, . . . , (�
n

)
L,⌫

i
, ⇤

ˆ

� ,R

= � diag
h
(�

n

)
R,1

, . . . , (�
n

)
R,⌫

i
.

B
�

will play a central role in defining the symmetric and upwind SATs below.

Remark 6 Using (21) to define B
�

simplifies the proof of accuracy for the symmetric
and upwind SATs, but it is important to emphasize that neither (21) nor (20) are
necessary for stability, accuracy, or conservation. Conditions 1–3 will still hold as long
as B

�

agrees with (21) on the order of the discretization and satisfies (25) below. This
is important, because nonlinear problems will not satisfy (21) due to jumps in �

x

and
�

y

across elements.

5.1 Symmetric SATs

Symmetric SATs are constructed by defining

M
�⇠

LL

= RT

L

B
L

R
L

⇤
L

, M
�⇠

LR

= RT

L

B
�

R
R

,

M
�⇠

RR

= RT

R

B
R

R
R

⇤
R

, M
�⇠

RL

= �RT

R

B
�

R
L

.

(23)

Based on these matrices, symmetric SATs for (14) and (15) are given by

2H
L

SAT
L,sym

= RT

L

B
L

R
L

⇤
L

u
L

� RT

L

B
�

R
R

u
R

,

2H
R

SAT
R,sym

= RT

R

B
R

R
R

⇤
R

u
R

+ RT

R

B
�

R
L

u
L

,

(24)

Theorem 3 The symmetric SATs (24) satisfy the stability and accuracy Conditions 1

and 2. In addition, they satisfy the conservation Condition 3 provided

1T

ˆ

�

B
�

(R
L

u
L

� R
R

u
R

) = (R
L

⇤
L

1
L

)T B
L

R
L

u
L

+ (R
R

⇤
R

1
R

)T B
R

R
R

u
R

(25)

for all u
L

, u
R

, ⇤
L

, ⇤
R

, where 1
ˆ

�

is a vector of ones of length ⌫.

Proof It is easy to see that the symmetric SAT matrices (23) lead to a skew-symmetric
matrix in Condition 1, which implies that the SATs (24) are stable.

To prove that the symmetric SATs satisfy the accuracy condition, we show that they
vanish for all polynomial face-normal fluxes, (�

⇠

n

⇠

+ �

⌘

n

⌘

)U , of total degree p or less
on the reference domain. We do this for the left-element SAT only, since the proof is
analogous for the right-element SAT.

Let ⇤
L

u
L

⌘ p
k,L

be the face-normal polynomial flux evaluated at the SBP nodes
of the left element (in reference space) — where we consider all ⇤

L

and u
L

that satisfy
this definition — and let p

k,

ˆ

�L
be the same polynomial evaluated at the face-cubature

points on the left element. Then, we consider those states on the right element such that

⇤
ˆ

� ,L

(R
R

u
R

) = p
k,

ˆ

�L
.

Note that such states u
R

exist provided ⇤
ˆ

� ,L

R
R

is full rank. The vector p
k,

ˆ

�L
defines

the “boundary” flux for which we must show the left SAT vanishes. We have

RT

L

B
L

R
L

⇤
L

u
L

� RT

L

B
�

R
R

u
R

= RT

L

B
L

R
L

⇤
L

u
L

� RT

L

B
L

⇤
ˆ

� ,L

R
R

u
R

= RT

L

B
L

⇣
R
L

p
k,L

� p
k,

ˆ

�L

⌘
= 0, 8 k 2 {1, 2, . . . , N⇤

p

},
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where we have used B
�

= B
L

⇤
ˆ

� ,L

and the fact that R
L

is exact for polynomials of degree
r or less, where r � p. Thus, the SAT is zero for all polynomial face-normal fluxes of
total degree p or less.

Finally, we substitute the M matrices into the equation in Condition 3 and find

1T

ˆ

�

B
�

(R
L

u
L

� R
R

u
R

) = (R
L

⇤
L

1
L

)T B
L

R
L

u
L

+ (R
R

⇤
R

1
R

)T B
R

R
R

u
R

,

which is precisely (25). Therefore, if this constraint is satisfied, the symmetric SATs are
conservative. ut

Equation (25) can be viewed as a constraint on the variable coe�cient matrices ⇤
L

,
⇤
R

, and B
�

. There are a few ways this constraint can be satisfied:

– For scalar variable-coe�cient advection, we can apply a preprocessing step to enforce
discrete continuity of the face-normal velocities, that is B

L

R
L

⇤
L

1
L

= �B
R

R
R

⇤
R

1
R

=
B
�

1
ˆ

�

; we use a similar preprocessing step for the divergence-free variable-coe�cient
advection case presented in the results.

– For nonlinear systems of PDEs, such as the Euler equations of gas dynamics, the
variable coe�cients are functions of the solution and the coordinate transformation.
In this case, it is more convenient to consider pointwise conditions on a numerical
flux Jacobian. To illustrate, in the scalar case we would have

�̄

i

[(R
L

u
L

)
i

� (R
R

u
R

)
i

] = F [(R
L

u
L

)
i

,n
i,L

]+F [(R
R

u
R

)
i

,n
i,R

] , 8 i = 1, 2, . . . , ⌫,

where F [u,n] is the nonlinear flux in the direction n, and �̄

i

is the numerical flux
Jacobian at the ith common face node. Note that the pointwise conditions define a
secant-like equation for the numerical flux Jacobian, which is a common condition
for numerical fluxes used in nonlinear hyperbolic systems.

5.2 Upwind SATs

To construct upwind SATs, we define

M
�⇠

LL

= RT

L

B
L

R
L

⇤
L

� RT

L

|B
�

|R
L

, M
�⇠

LR

= RT

L

(B
�

� |B
�

|)R
R

,

M
�⇠

RR

= RT

R

B
R

R
R

⇤
R

� RT

R

|B
�

|R
R

, M
�⇠

RL

= �RT

R

(B
�

+ |B
�

|)R
L

.

(26)

Therefore, upwind SATs for (14) and (15) are given by

2H
L

SAT
L,upwd

=
�
RT

L

B
L

R
L

⇤
L

� RT

L

|B
�

|R
L

�
u
L

� RT

L

(B
�

� |B
�

|)R
R

u
R

,

2H
R

SAT
R,upwd

=
�
RT

R

B
R

R
R

⇤
R

� RT

R

|B
�

|R
R

�
u
R

+ RT

R

(B
�

+ |B
�

|)R
L

u
L

,

(27)

where |B
�

| ⌘ diag
h���(B

�

)
1,1

��� , . . . ,
���(B

�

)
⌫,⌫

���
i
.

Theorem 4 The upwind SATs (27) satisfy the stability and accuracy Conditions 1 and

2. In addition, they satisfy the conservation Condition 3 provided

1T

ˆ

�

B
�

(R
L

u
L

� R
R

u
R

) = (R
L

⇤
L

1
L

)T B
L

R
L

u
L

+ (R
R

⇤
R

1
R

)T B
R

R
R

u
R

(25)

for all u
L

, u
R

, ⇤
L

, ⇤
R

, where 1
ˆ

�

is a vector of ones of length ⌫.

Proof The matrix in Condition (1) is positive semi-definite using the upwind SAT ma-
trices (26) if

⇥
(R

L

u
L

)T (R
R

u
R

)T
⇤  |B

�

| �|B
�

|
�|B

�

| |B
�

|
� 

R
L

u
L

R
R

u
R

�
� 0,

for all nonzeros u
L

and u
R

. This is satisfied, because the matrix
h

|B�| �|B�|
�|B�| |B�|

i
has

non-negative eigenvalues.
The proof that the upwind SATs satisfy the accuracy Condition 2 is similar to the

accuracy proof of the symmetric SATs, so we omit it for brevity.
Substituting the upwind SAT matrices (26) into the conservation condition, Condi-

tion 3, we obtain the same constraint on the variable coe�cients as for the symmetric
SATs, namely (25). ut
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5.3 Divergence-free advection field with upwind SATs

We consider the use of the upwind SATs in the SBP-SAT discretization of the divergence-
free variable-coe�cient problem, (18), because this is the PDE and the SATs we employ
in the results presented below. As remarked previously, the divergence-free case does
not alter the stability or accuracy of the discretization. Thus, we need only address the
conservation condition.

With upwind SATs, the equation in Condition 30 reduces to

1T

ˆ

�

B
�

(R
L

u
L

� R
R

u
R

) = 1T

L

(⇤
⇠L

Q
⇠L

+ ⇤
⌘L

Q
⌘L

)u
L

+ 1T

R

(⇤
⇠R

Q
⇠R

+ ⇤
⌘L

Q
⌘R

)u
R

,

(28)
where we have made use of R

L

1
L

= R
R

1
R

= 1
ˆ

�

. Unlike the non-divergence-free situa-
tion, the conservation condition (28) is no longer local to the common face.

One way to satisfy conservation in this case is to define the discrete divergence-free
condition in such a way that (28) is satisfied. In particular, we require that ⇤

⇠

, ⇤
⌘

and
B
�,j

satisfy

(D
⇠

⇤
⇠

+ D
⌘

⇤
⌘

)1 = H�1

N�̂X

j=1

�
RT

j

B
j

R
j

⇤
j

� RT

j

B
�,j

R
j

�
1, (29)

on all elements, where ⇤
j

= n

⇠j

⇤
⇠

+ n

⌘j

⇤
⌘

, and B
�,j

is analogous to B
�

for face j. The
left-hand side of (29) is a direct SBP discretization of the divergence-free condition, while
the right-hand side is a SAT-like penalty. Our approach to satisfying (29) is described
in Appendix A.

If (29) is satisfied, it follows from the properties of SBP operators that

1T (⇤
⇠

Q
⇠

+ ⇤
⌘

Q
⌘

)v =

N�̂X

j=1

⇣
1T

ˆ

�j
B
�,j

R
j

⌘
v, 8 v 2 Rn

. (30)

Using identity (30) in (28) — and neglecting SATs on the non-shared faces as usual —
we find that the conservation condition is satisfied.

Remark 7 Divergence-free equations also arise in the so-called metric invariants that are
needed for “free-stream” preservation; see, for example, [27]. These metric invariants

can also be satisfied using the approach described in Appendix A, by setting [�
x

,�

y

]T =
[1, 0]T and [0, 1]T, in turn.

6 Example operators on the triangle

In this section, we describe the construction of multi-dimensional SBP operators on
triangular elements in conjunction with the matrices R and B that define the SATs. We
present two families of SBP operators for the triangle. The first family was presented
previously in [13]. This family consists of operators with p+1 nodes on each face and will
be referred to as the SBP-� family. Figure 2 shows the p = 1 through p = 4 operators
from this family. The second family of triangular-element SBP operators has strictly
interior nodes. This family will be referred to as the SBP-⌦ family, and the first four
operators in this family2 are shown in Figure 3.

The algorithmic steps involved in constructing the operators are listed below. The
process is similar to that outlined in [13] for SBP-� , with a few minor changes that are
highlighted.

1. For a given design accuracy p, a symmetric cubature rule is selected or constructed
that is exact for polynomials of total degree 2p � 1 and has at least N

⇤
p

nodes.
The nodes for the SBP-⌦ family are required to be strictly interior, and the SBP-
� family is required to have p + 1 nodes on each face, including the vertices. For
all SBP-⌦ operators considered here (p = 1, . . . , 4), there are exactly N

⇤
p

cubature
nodes, whereas the SBP-� operators generally have more nodes for the same value
of p.

2 We do not consider the p = 0 operator in this work
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p = 1 p = 2 p = 3 p = 4

Fig. 2 Nodes of the SBP-� family of operators that include p+1 nodes on each face. The open circles
denote the SBP operator nodes, while the black squares denote the face cubature points used for the
SATs.

p = 1 p = 2 p = 3 p = 4

Fig. 3 Nodes of the SBP-⌦ family of operators whose nodes are strictly interior to ⌦. The open circles
denote the SBP operator nodes, while the black squares denote the face cubature points used for the
SATs.

2. A Legendre-Gauss quadrature rule with p+1 nodes is used to define B
⌫

on all faces,
i.e. the same quadrature rule is used for all three sides, although this is not strictly
necessary.

3. Let �̂

j

denote one of the faces of the triangle. Then the volume-to-face interpola-
tion/extrapolation operator for this face is defined by R = V

ˆ

�j
(V

ˆ

⌦

)†, where V
ˆ

�j

denotes an orthogonal polynomial basis evaluated at the quadrature nodes of �̂
j

,
and the superscript † denotes the Moore-Penrose pseudoinverse. The definition of
V

ˆ

⌦

depends on whether we are constructing the SBP-� or SBP-⌦ family. For the
latter, V

ˆ

⌦

is an orthogonal polynomial basis evaluated at all of the nodes in the
volume. In contrast, for the SBP-� family, V

ˆ

⌦

is the basis evaluated at the p + 1

volume nodes that lie on face �̂

j

.

Although we have considered only the face �̂

j

, symmetry allows the same R matrix
to be used on all three faces simply by permuting indices of the volume nodes.

4. The boundary operator E
⇠

is constructed from the face cubature B and interpolation
operator R using (2). An analogous equation is used for E

⌘

.
5. The skew-symmetric operators S

⇠

and S
⌘

are determined using the accuracy condi-
tions, Property I of Definition 1. For the SBP-⌦ operators considered here, the S

⇠

and
S
⌘

operators are fully determined by the accuracy conditions; in contrast, the SBP-�
operators are underdetermined by the accuracy conditions, so the minimum-norm
solution is used for those operators.

Table 1 summarizes the accuracy and node-set properties of both the SBP-⌦ and
SBP-� families. Beyond the fact that SBP-� includes boundary nodes and SBP-⌦
excludes boundary nodes, a few other di↵erences between the families are worth high-
lighting. First, the SBP-� family generally requires more nodes than the SBP-⌦ family
for the same design accuracy p; this translates into D

⇠

and D
⌘

operators that require
more storage and computation, at least for hyperbolic problems. Second, the cubature
accuracy is higher for the SBP-⌦ family; the p = 1 and p = 2 operators have cubatures
that are exact to degree 2p, rather than 2p� 1, and the p = 3 and p = 4 operators have
smaller error constants. Finally, the volume-to-face interpolation operators used by the
SBP-� operators have fewer entries, giving them a computational advantage when it
comes to evaluating the SATs. The operators presented in this paper are available as
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Table 1 Summary of cubature accuracy, node counts, and operator dimensions for the two di↵erent
families of SBP operators on the triangle.

family degree (p) # nodes (n) H degree R matrix size

SBP-� 1 3 1 2⇥ 2
SBP-⌦ 1 3 2 2⇥ 3

SBP-� 2 7 3 3⇥ 3
SBP-⌦ 2 6 4 3⇥ 6

SBP-� 3 12 5 4⇥ 4
SBP-⌦ 3 10 5 4⇥ 10

SBP-� 4 18 7 5⇥ 5
SBP-⌦ 4 15 7 5⇥ 15

a Matlab R� function file, SBP operators.m, on line as an electronic supplement to the
paper.

7 Numerical verifications

In this section, we use numerical experiments to demonstrate the accuracy, conservation,
and stability properties of multi-dimensional SBP-SAT discretizations. These experi-
ments are intended to verify the theory developed in Sections 4 and 5. Before presenting
the individual verifications, we first describe their common features.

Each experiment is based on the linear advection PDE with a divergence-free velocity
field, Equation (18). In all cases the domain is the unit square, ⌦ = [0, 1]2, and the
boundary conditions are periodic: U(0, y, t) = U(1, y, t) and U(x, 0, t) = U(x, 1, t).

For each SBP element, we introduce a curvilinear coordinate transformation
(x(⇠, ⌘), y(⇠, ⌘)). Under this transformation, it is straightforward to show that (18) is
equivalent to

@JU
@t

+
1

2
r

⇠

· (�
⇠

U) + 1

2
�
⇠

·r
⇠

(U) = 0, where r
⇠

· �
⇠

= 0,

r
⇠

⌘

@

@⇠

,

@

@⌘

�
T

, �
⇠

⌘ [�
⇠

,�

⌘

]T .

(31)

Thus, the transformed velocity field is divergence-free in the space (⇠, ⌘).
The SBP-SAT spatial discretization of the PDE (31) is given by (19) with the SAT

matrices defined by the upwind scheme in Section 5.2. As explained in Section 5.3, the
discretization (19) must satisfy (28) to achieve discrete conservation. To this end, we
project the analytical advection field onto a discrete field that satisfies (29), the discrete
divergence-free equation. The details of this projection can be found in Appendix A.

The SBP-SAT semi-discretizations are advanced in time using the classical 4th-order
Runge-Kutta scheme with a su�ciently small time step to ensure that the error is
dominated by the spatial discretization. In particular, the time step is one half the
maximally stable value permitted by the Courant number for a given SBP element,
where the Courant number is defined as

CFL =
�tk�

⇠

k
h�r

,

for a time step of �t and a nominal node spacing of h�r. Here, �r is the minimum dis-
tance between cubature nodes on a right triangle with vertices at (0, 0), (1, 0) and (0, 1).
Table 2 lists �r and the maximally stable Courant numbers for the SBP-� and SBP-⌦
elements when applied to constant-coe�cient advection with �

x

= �

y

. The maximum
Courant numbers were determined using Golden-section method optimization.

7.1 Constant-coe�cient advection with a curvilinear coordinate mapping

As our first verification of the SBP-SAT discretizations, we conduct a mesh refinement
study and discretize the constant-coe�cient advection equation with � = [1, 1]T. While
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Table 2 Maximally stable Courant numbers and minimum node spacing for discretizations of constant-
coe�cient advection based on the SBP-� and SBP-⌦ operators.

p=1 p=2 p=3 p=4

SBP-� CFL
max

0.7500 1.3398 1.2045 1.1597
�r 1.0000 0.2357 0.1487 0.0949

SBP-⌦ CFL
max

0.5217 0.4130 0.3083 0.3428
�r 0.5000 0.3378 0.2402 0.1636

this PDE does not have a spatially varying velocity field, we employ a monolithic, i.e.
over the whole domain, curvilinear coordinate transformation given by


x

y

�
=


⇠ + 1

5

sin(⇡⇠) sin(⇡⌘)
⌘ � 1

5

exp(⌘) sin(⇡⇠) sin(⇡⌘)

�
,

where (⇠, ⌘) 2 [0, 1]2. Consequently, the transformed PDE, (31), does have a spatially-
varying velocity field even though the physical-space PDE does not.

LetN denote the number of element edges along the ⇠ and ⌘ coordinates. The vertices
of the elements are located at (⇠

i

, ⌘

j

) = (ih, jh), 8i, j = 0, 1, . . . , N , where h = 1/N .
For each of the N

2 quadrilaterals, two right triangles are generated from the vertices

{(⇠
i

, ⌘

j

), (⇠
i+1

, ⌘

j

), (⇠
i

, ⌘

j+1

)} and {(⇠
i+1

, ⌘

j+1

), (⇠
i

, ⌘

j+1

), (⇠
i+1

, ⌘

j

)}.
The nodes associated with these right triangles are then mapped to physical space using
the analytical coordinate transformation above.

The sequence of grids for the mesh refinement study is generated using
N 2 {12, 24, 36, 48, 60, 72}. The initial condition for this study is a bell-shaped function
centered at

�
1

2

,

1

2

�
with compact support:

U(x, y, 0) =
(
1� (4⇢2 � 1)5 if ⇢  1

2

1, otherwise,

where ⇢(x, y) ⌘
q
(x� 1

2

)2 + (y � 1

2

)2. The solution is advanced one time unit, which

returns the bell-shaped initial condition to its initial position.

7.1.1 Accuracy

To assess the accuracy of the discrete solutions, we evaluate the SBP-based L

2 norm of
the di↵erence between the numerical solution and the exact solution. We then normalize
by the norm of the exact solution; that is,

Normalized L

2 Error =

p
(u� u

e

)TH
g

(u� u
e

)p
uT

e

H
g

u
e

,

where u is the discrete solution at the final time, and u
e

is the exact solution evaluated
at the mesh nodes at time t = 1. The matrix H

g

is the global SBP-norm assembled
from the local element SBP-norm matrices scaled by the appropriate mapping Jacobian
determinant on each element, i.e. it is the diagonal mass matrix.

The accuracy results of the mesh refinement study are shown in Figure 4 for dis-
cretizations based on the SBP-� and SBP-⌦ families of operators. The expected asymp-
totic convergence rate for the errors is O(hp+1), and all of the schemes exhibit this
convergence rate or higher — the SBP-⌦ p = 1 scheme exhibits an O(hp+1.5) rate.

For the same h and p, the two SBP families produce notably di↵erent absolute errors.
The di↵erence is especially significant for the p = 1 and p = 2 schemes. On the finest
grid, the error in the SBP-⌦ p = 1 solution is 14.6 times smaller than the corresponding
error in the SBP-� p = 1 solution. The solution errors of the p = 2 schemes di↵er by
a factor of 3.46 on the finest grid. We believe this di↵erence is related to the increased
accuracy of the SBP cubature rules associated with the SBP-⌦ schemes.
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(a) SBP-� family (b) SBP-⌦ family

Fig. 4 Normalized error, measured in the SBP-norm, between the discrete and exact solutions to (31)
for di↵erent mesh spacing and SBP operators.

7.1.2 Conservation

The integral of the analytical solution of (31) is constant in time, because the PDE is
conservative and the boundary conditions are periodic. Based on the analysis in Sec-
tion 4, the SBP-SAT discretization should mimic this property, and the schemes should
be conservative to machine precision.

Discrete conservation is assessed using the following metric:

Conservation Metric ⌘ |1TH
g

u
0

� 1TH
g

u|,

where u
0

is the initial condition evaluated at the nodes and, as before, u is the discrete
solution at t = 1. Figure 5 plots this metric for the SBP-� and SBP-⌦ discretizations
on each of the grids in the mesh refinement study. These results provide strong evidence
that the SBP-SAT discretizations are conservative. Note that the SBP-⌦ p = 3 scheme
produces a double-precision zero for the conservation metric on the third grid, which
cannot be represented on the logarithmic scale.

7.1.3 Stability

The L

2 norm of the analytical solution to (31) is also constant in time; however, in
contrast with conservation, the energy of the SBP-SAT discrete solution is only guaran-
teed to be non-increasing when upwind SATs are used, in general. To assess the various
schemes’ ability to conserve energy, we evaluate the energy error for each mesh and
operator:

Energy Error ⌘ uT

0

H
g

u
0

� uTH
g

u.

The energy errors are included in Figure 5 above the conservation metrics. Since
the energy error is the signed di↵erence between the initial and final values, it o↵ers
some evidence that the energy is non-increasing; stronger evidence is provided below in
Section 7.3

Remark 8 The rate of convergence of the energy error is approximately 2p for the SBP-�
schemes and 2p+1 for the SBP-⌦ schemes. This is an example of functional superconver-
gence, which has also been observed and explained for tensor-product SBP schemes [28].
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(a) SBP-� family (b) SBP-⌦ family

Fig. 5 Conservation and energy errors for di↵erent mesh spacing and SBP operators.

(a) level 1 (b) level 2 (c) level 3

Fig. 6 Kernel-based grids used in the non-smooth mesh refinement study; the thick gray line in (a)
shows the kernel mesh used in the hierarchical construction.

7.2 Accuracy on a non-smooth grid

The mesh refinement study in Section 7.1 used a smooth coordinate transformation
over the entire domain, and such meshes are not representative of the grids used in
practice. Therefore, in this section, we perform a mesh refinement study on a non-
smooth set of grids in order to verify that the rate of convergence produced by the
SBP-SAT discretization is not unique to smooth grids.

To construct the non-smooth grids, we use a hierarchical construction with a “kernel”
mesh3. The kernel mesh used in this study is the mesh inside the thick-lined triangle
in Figure 6(a), and the entire mesh in this figure is the level 1 grid, i.e. the coarsest
grid. To obtain the level k mesh from the level k � 1 mesh, each triangle is subdivided
based on the barycentric coordinates and connectivity of the kernel. The level 2 and
level 3 meshes that result from this process are illustrated in Figures 6(b) and 6(b),
respectively. The nominal element size on the level k grid is h = 1/3k.

We adopt the same initial condition and velocity field as used in Section 7.1. Figure 7
displays the accuracy results of the mesh refinement study and shows that the trends
are consistent with the error observed on the smooth mesh; see Figure 4.

3 Our approach to the kernel grid is motivated by Ref. [2] and we thank Mark Carpenter for infor-
mative discussions on this topic
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(a) SBP-� family (b) SBP-⌦ family

Fig. 7 Normalized error, measured in the SBP-norm, between the discrete and exact solutions to (31)
for di↵erent mesh spacing and SBP operators on the kernel-based grids.

7.3 Robustness of SBP-SAT discretizations: advection in a confined domain

For the second numerical experiment, we consider a challenging test of the numeri-
cal stability of the SBP-SAT discretizations. The test case is challenging, because the
advection field,

� =


⇡ sin(⇡x) cos(⇡y),
� ⇡ cos(⇡x) sin(⇡y)

�
,

is parallel to the boundary of the domain and produces no boundary flux; thus, the
solution, and its energy, are confined to the domain. In addition, the nonpolynomial
velocity and solution produce aliasing errors that the numerical scheme must handle
“gracefully.”

The initial condition is given by U(x, y, 0) = exp(xy), and the solution is advanced for
10 nondimensional time units on a uniform grid with N = 12 edges in each direction,
i.e. there are 2N2 = 288 elements in total. As before, the time step is set such that
the Courant number is one half the value of CFL

max

listed in Table 2; however, we
emphasize that we are only interested in assessing the stability of the methods with
this experiment, and the discrete solutions after 10 time units are not accurate for the
coarse grids considered. To give some indication of the solution behavior and the time
duration, Figure 8 shows the initial solution and the exact solution after only one unit

of time.
To demonstrate that the SBP-SAT discretizations are energy stable, Figure 9 shows

the change in normalized energy as the discrete solutions evolve from t = 0 to t = 10.
The normalized change in energy is given by

u(t)TH
g

u(t)� uT

0

H
g

u
0

uT

0

H
g

u
0

=
ku(t)k2Hg

ku
0

k2Hg

� 1

where u(t) denotes the discrete solution at time t. As with the conservation metric, we
consider a uniform triangulation with N = 12 edges in each direction and 288 elements
total.

Figures 9(a) and 9(b) show the change in energy for the SBP-� and SBP-⌦ families
applied to the skew-symmetric discretization (19) with upwind SATs. The plots show
that the SBP-SAT discretizations have nonincreasing energies, as expected from the
analysis in Sections 4 and 5.2. In contrast, Figure 9(c) shows the change in energy for
the SBP-� family applied to the “divergence” form of the discretization, namely

dJu

dt

+ D
⇠

⇤
⇠

u+ D
⌘

⇤
⌘

u = SATu.
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(a) initial condition (b) exact solution at t = 1

Fig. 8 Initial condition, left, and exact solution at t = 1 for robustness test.

As the plots show, only the skew-symmetric discretizations have bounded energies4

8 Conclusions

Multi-dimensional SBP operators o↵er time-stable, high-order, and conservative dis-
cretizations on complex domains, but only if boundary conditions and inter-element
coupling can be imposed in a suitable manner. To this end, we have proposed a general
framework for the development of SATs that lead to accurate, stable, and conservative
schemes. We focused on developing a set of SATs that are simple to construct and that
allow for the pointwise imposition of boundary conditions and inter-element coupling.
This was accomplished by using interpolation/extrapolation operators and face-based
cubatures to construct the coupling terms in the SATs. A key insight of this paper is
that the E matrices and the coupling terms in the SATs can be decomposed in the same
way; this insight significantly simplifies the development of this class of SATs.

Using these SATs, we showed how to derive conservative and time-stable discretiza-
tions for multi-dimensional SBP operators in the context of the linear advection equation
with a spatially varying velocity field. In this context, conservation requires a partic-
ular relationship between the interpolated/extrapolated fluxes and the SATs. For a
divergence-free problem, we satisfied this conservation condition by projecting the an-
alytical advection field onto a field that satisfies a discrete form of the divergence-free
equation. For nonlinear hyperbolic systems of PDEs, numerical flux functions can be
used to satisfy the conservation condition.

The SAT methodology was illustrated using SBP operators on triangular elements.
Two SBP families were considered: the SBP-� family with p+1 nodes on each face and
the SBP-⌦ family with strictly interior nodes.

The accuracy, conservation, and stability properties of the SBP-SAT discretizations
were verified using the linear advection equation with divergence-free velocity fields. Both
the SBP-⌦ and SBP-� schemes were shown to be conservative to machine precision,
and both produced non-increasing energy. Comparable convergence rates were found on
smooth and nonsmooth meshes. Moreover, for the same operator degree p, the SBP-⌦
scheme was found to be more accurate. Finally, we numerically demonstrated that the
SBP-SAT discretizations presented result in superconvergent functional estimates.

4 For this problem the discretization of the divergence form leads to increasing energy, but this is not
always the case. Indeed, when solving the constant-coe�cient, curvilinear-coordinate problem we did
not encounter increasing energy.
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(a) SBP-� family

(b) SBP-⌦ family

(c) SBP-� with divergence formulation

Fig. 9 Normalized change in energy versus time. Every 100th time-step is marked with a symbol.

A Satisfaction of the discrete divergence-free equation

In general, the analytical velocity, which we will denote here as �̂
⇠

, does not satisfy the
discretized divergence-free condition, (29). Therefore, we seek a discrete vector field that
satisfies the discrete divergence-free condition and is as close as possible, in some norm,
to the analytical field. This appendix describes how find such a discrete vector field.

First we solve for the face-normal velocities, (�
n

)
i

= (�
⇠

n

⇠

+ �

⌘

n

⌘

)
i

, that appear in
the elements of the B

�

matrices. A constraint on the (�
n

)
i

for each element is obtained
by substituting v = 1 into the identity (30):
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where the last equality follows from Q
⇠

1 = Q
⌘

1 = 0. This constraint is simply a dis-

cretization of
R
ˆ

�

�·n d�̂ = 0 on each element. There are fewer elements than face-normal
velocities, so we solve a quadratic optimization problem that minimizes the Cartesian
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norm between the discrete and analytical values at the face nodes, (�(j)

n

)
i

and (�̂(j)

n

)
i

,
respectively, subject to the above constraint.

Once the B
�

matrices are determined, we solve for the diagonal matrices ⇤
⇠

and ⇤

⌘

.
We follow a procedure analogous to the one used for B

�

; in this case we minimize the
Cartesian norm between the discrete and analytical values at the SBP nodes and (29)
becomes the constraint. The optimization problems on each element are decoupled.

For the cases considered here, we verified that the L

2 error in the discrete velocity
field is at least an order of magnitude smaller than the L

2 error in the scalar field U .
Moreover, the error in the velocity field decreases with h, the average mesh spacing, at
a faster rate than the error in u, and the error in the velocity field has an insignificant
impact on the solution error.
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