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A two-dimensional Newton–Krylov aerodynamic shape optimization algorithm is applied to several optimization

problems in which the location of laminar-turbulent transition is free. The coupled Euler and boundary-layer

solver MSES is used to obtain transition locations through the eN method, which are then used in Optima2D, a

Newton–Krylov discrete-adjoint optimization algorithm based on the compressible Reynolds-averaged Navier–

Stokes equations. The algorithm is applied to the design of airfoils with maximum lift-to-drag ratio, endurance

factor, and lift coefficient. The design examples demonstrate that the optimizer is able to control the transition-

point locations to provide optimum performance, often producing pressure distributions with laminar rooftops

followed by concave pressure recovery. In particular, the optimization algorithm is able to design an airfoil that is

very similar, in terms of both shape and performance, to one of the high-lift airfoils designed by Liebeck (Liebeck,

R. H., “A Class of Airfoils Designed for High Lift in Incompressible Flow,” Journal of Aircraft, Vol. 10, No. 10,

1973, pp. 610–617) in the 1970s. The results provide a striking demonstration of the capability of the Newton–

Krylov aerodynamic optimization algorithm to design airfoils with characteristics that previously required a great

deal of expertise to achieve.

I. Introduction

N UMERICAL optimization techniques based on either gradient-
based adjoint methods or genetic algorithms have proven to be

a powerful tool in aerodynamic design [1–4]. Most existing
optimization algorithms that are based on the Reynolds-averaged
Navier–Stokes (RANS) equations assume that the flow is fully
turbulent; that is, laminar-turbulent transition is assumed to occur at
the leading edge [2,3,5–7]. This is primarily because most transition-
predictionmethodologies are easier to incorporate into the boundary-
layer equations and are quite difficult to implement in a Navier–
Stokes framework. As a result, the optimizer cannot exploit the effect
of the airfoil shape on the location of transition whenmaximizing the
objective function. Therefore, these algorithms cannot optimize
natural-laminar-flow airfoils, in which significant regions of laminar
flow are achieved primarily through a suitable pressure gradient.

Before the development of efficient and robust aerodynamic
optimization techniques, high-performance airfoils could be
designed by determining a pressure distribution that is feasible and
optimal in some sense and using an inverse method to find the
corresponding airfoil shape. For example, the Stratford concave
pressure distribution, which leads to incipient turbulent boundary-
layer separation, can be used to produce the shortest region of
pressure recovery possible without separation. Liebeck [8] used both
laminar and turbulent rooftops followed by Stratford-type pressure
recovery to design several high-lift airfoils. Zingg [9] designed an
airfoil for a high lift-to-drag ratio by combining a rooftop with a
pressure gradient chosen to maintain laminar flow with a concave
pressure recovery determined by requiring a constant boundary-layer

shape factor. The constant shape factor permits a margin from
separation to be chosen, leading to rapid pressure recovery without
incipient separation. The airfoils designed in these two studies
achieve very high performance. Their design is a complex process
involving considerable knowledge of aerodynamics. This suggests
the following question: Can such airfoils be designed automatically
using an aerodynamic optimization technique? There are two aspects
to the question. The first issue is whether the optimizer is able to find
such a unique and specialized optimum, and the second is whether
the airfoils designed by Liebeck [8] and Zingg [9] are actually
optimal in some sense; that is, can the optimizer do better?

The objectives of the current work are as follows:
1) We seek to incorporate laminar-turbulent transition prediction

into Optima2D, the Newton–Krylov discrete-adjoint aerodynamic
optimization algorithm of Nemec and Zingg [2,3], which is based on
the Reynolds-averaged Navier–Stokes equations.

2) We seek to investigate whether the resulting optimized airfoils
have characteristics comparable to high-performance airfoils
designed based on aerodynamic expertise, such as those designed
by Liebeck [8] and Zingg [9], which have laminar rooftops and
concave pressure recovery.

Our emphasis is on subsonic flows. At this stage, we are not as
concerned with the efficiency of the algorithm, nor with the
practicality of the resulting airfoils. An efficient discrete-adjoint
algorithm incorporating transition prediction requires a prediction
methodology that can be effectively integrated into a RANS solver,
such as that recently proposed by Langtry and Menter [10].
Furthermore, the airfoils presented here were optimized for
performance at a single operating point and consequently are not
suitable for practical use, which requires consideration of off-design
performance as well. Design of a natural-laminar-flow swept wing
also requires consideration of three-dimensional effects, such as
crossflow instabilities. Although several researchers (such as Drela
[11], Dodbele [12], Green et al. [13], Pralits [14], Kroo and Sturdza
[15], and Amoignon et al. [16]) have combined transition prediction
with aerodynamic optimization in various ways, the present paper is
the first to attempt to use Navier–Stokes-based optimization to
design airfoils with specialized pressure distributions (e.g., laminar
rooftops and concave pressure recovery) of the type studied here.
Such airfoils provide an excellent demonstration of the capabilities of
an aerodynamic optimization algorithm.
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II. Newton–Krylov Approach
to Aerodynamic Optimization

The present algorithm is described in detail in Nemec and Zingg
[2,3] and Nemec [17]. The compressible Navier–Stokes equations,
together with the turbulence model of Spalart and Allmaras (SA), are
solved with a Newton–Krylov method in which the linear system at
each Newton iteration is solved using the generalized minimal
residual method (GMRES) preconditioned with an incomplete
lower–upper (ILU) factorization with limited fill. The gradient is
computed using the discrete-adjoint method. The discretized flow
and turbulencemodel equationswere differentiated by hand to obtain
the Jacobian. The adjoint equation is solved using the same
preconditioned Krylov solver used by the flow solver. A new set of
design variables is found using a quasi-Newton optimizer in which
an estimate of the inverse Hessian based on the Broyden–Fanno–
Goldfarb–Shannon (BFGS) rank-two update formula [18] is used to
compute a search direction. If the initial step does not produce
sufficient progress toward the minimum, the step size is determined
using a cubic line search, which terminates when the strong Wolfe
conditions [18] are satisfied. The resulting algorithm provides a
highly efficient and reliable approach for aerodynamic design
problems governed by the Navier–Stokes equations and has been
successfully applied to a wide variety of optimization problems.

The meshes used in the present study have between 14,000 and
25,000 nodes. Using the Newton–Krylov algorithm, a fully
converged flow solution on thesemeshes requires roughly 1min on a
typical modern single-processor personal computer. The computing
time required for a gradient computation is generally less than half of
that needed for a converged flow solution. The present flow solutions
include physical-model errors caused, for example, by inaccurate
prediction of transition points and numerical errors associated
primarily with finite mesh densities. The numerical errors associated
with the present spatial discretization (second-order centered
differences with added numerical dissipation) have been examined
through mesh refinement studies [19,20]. Based on these studies, the
meshes used here can be expected to produce lift coefficients
accurate to within 1% and drag coefficients accurate to within 5% for
attached andmildly separated flows. The critical factor for successful
optimization is not the absolute error, but the accuracy of the relative
errors, which is substantially better. Therefore, the present mesh
densities are sufficient for meaningful optimization.

The extension of the SA turbulence model to include the laminar-
turbulent trip functions is fairly straightforward and is discussed in
the Newton–Krylov framework by Chisholm and Zingg [21]. To
obtain accurate transition locations, a complete solution fromMSES
[11] is obtained. MSES uses the well-known eN method to predict
transition. A value of 9 is used for the critical amplification factor
value N. The transition locations are then used in the RANS flow
solve. This is done to avoid the difficulty of fully coupling an eN

method into theRANS solution. For this approach to be effective, the
pressure distributions of the MSES and RANS solutions should be
similar, which is the case for the airfoils studied here.

III. Gradient Evaluation

The gradient is computed using the discrete-adjoint method [2];
thus the cost of computing the gradient is almost independent of the
number of design variables. To incorporate the effect of the transition
point in the gradient, we modify the discrete-adjoint gradient
calculation in the following manner:

dJ
dX
� @J
@X
�  T @R

@X
� @J
@T

@T
@X

(1)

where R�X ; Q� is the discrete residual function, J �X ; Q� is the
objective function, Q are the conservative flow variables, X are the
design variables, T are the transition-point locations, and  is the
adjoint variable. The sensitivity of the objective functionwith respect
to the transition-location movement, @J =@T , is combined via the
chain rule with the movement of the transition location due to airfoil
perturbations, @T =@X . This product contains the contribution of the

upper and lower transition-location sensitivities, which are denoted
by the subscripts up and lo:
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A first-order backward finite difference approximation of the
@J =@T term is

@J
@Tlo
� J �X;Q� � J �X;Q�X; Tlo � h��

h
(3)

@J
@Tup

�
J �X;Q� � J �X;Q�X; Tup � h��

h
(4)

where @Tup=@X and @Tlo=@X are found via finite differences of
airfoil perturbations usingMSES. It is important to note that Eqs. (3)
and (4) require a new RANS flow solve for each perturbed state,
whereas @T=@X requires one MSES flow solve per design variable
perturbation. Because we are using MSES to calculate the @T =@X
term, it is important to eliminate as much introduced error in the
calculation of this term as possible. This is done by reducing the
viscous residual in MSES to 10�6. From numerical experiments, the
transition locations converged beyond eight significant digits.
Further details regarding the algorithm can be found in Driver [22].

IV. Results and Discussion

To study the performance of the optimization algorithm, the
following objective functions are considered. In the first two, the
reciprocal is minimized, and geometric constraints are added to the
objective function as penalty terms: 1) maximization of the lift-to-
drag ratio

CL
CD

(5)

2) endurance-factor maximization

C3=2
L

CD
(6)

and 3) maximization of lift coefficient CL, with and without some
additional penalty terms in the objective function.

A. Lift-to-Drag-Ratio Maximization

The NACA-0012 airfoil is used as the initial airfoil for the
maximization of the lift-to-drag ratio. A single-block, structured C-
grid is used with roughly 18,500 nodes (201 on the airfoil surface).
The off-wall spacing is 1 � 10�6, the distance to the outer boundary
is 24, and the spacing at the stagnation point and trailing edge is
1 � 10�4, for which all distances are expressed in terms of the airfoil
chord length. The airfoil is parameterized using 15 B-spline control
points, of which 12 are used as design variables; the locations are
indicated in Fig. 1. Control points 2–7 are used as design variables on
the lower surface, with control points 9–14 used as design variables

x

y

0 0.25 0.5 0.75 1
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Original Points
Fitted Points
Control Points 1

2

3

4

5
6

7

8

9

10
11

12

13

14
15

Fig. 1 NACA-0012 control points and design variables.
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on the upper surface. The angle of attack is also included as a design
variable. The area of the initial airfoil is required to be preserved
throughout the optimization process. The area constraint is lifted into
the objective function via a penalty method with a weight of 0.1.

Two cases are optimized using the preceding initial conditions, but
with different operating conditions. Case 1 is optimized at a Mach
number of 0.25 and a Reynolds number of 1 � 106, whereas case 2 is
optimized at a Mach number of 0.4 and a Reynolds number of
10 � 106. In both cases the initial angle of attack is set to 2 deg.
Table 1 lists the lift-to-drag ratios, transition locations, and area
values for both the initial and final airfoils. Note that the transition
points are constrained to lie no further aft than 95% chord.

Figures 2 and 3 show the initial and final airfoils and pressure
distributions. Case 1 shares similar qualities found in high-lift-to-
drag-ratio airfoils at similar operating conditions [9]. The lower
surface experiences laminar flow as far aft as permitted, whereas
transition occurs at approximately 57% chord on the upper surface.
Case 2 shows how the Reynolds number affects the optimum,
because transition is very sensitive to the Reynolds number. The
lower surface again experiences laminar flow to 95% chord. To
maintain a region of laminar flow on the upper surface, the favorable
pressure gradient before transition is required to be steeper than in the
lower Reynolds number case. This favorable pressure gradient adds
stability to the boundary layer, allowing transition to occur further
aft.

A lift-to-drag-ratio maximization for Reynolds numbers ranging
from 1 to 10 � 106 at a Mach number of 0.25 is presented in Fig. 4.

Table 2 lists the associated lift-to-drag-ratio values, transition
locations, and angles of attack for all of the cases. These results
demonstrate how the optimizer modifies the pressure distribution on
the upper surface to provide boundary-layer stability at different
Reynolds numbers. As the Reynolds number increases, the favorable
pressure gradient on the upper surface gradually becomes steeper to
maintain boundary-layer stability, as expected.

B. Endurance-Factor Maximization

The general-aviation airfoil GA(W)-1 is used as the initial airfoil
for the endurance-factor maximization. A single-block, structuredC-
grid is used with roughly 14,000 nodes (201 on the airfoil surface).
The remaining grid details are identical to the preceding lift-to-drag-
ratio maximization case. The airfoil is parameterized using 15 B-
spline control points, of which six are used as design variables. The
angle of attack is also included as a design variable. Table 3 shows
the thickness constraints used to avoid invalid shapes during the
optimization iterations. The thickness constraints are lifted into the
objective function via a penalty method with a weight of 1.0.

Two cases are optimized using the preceding initial conditions.
Case 3 is optimized under fully turbulent conditions at a Mach
number of 0.2 and a Reynolds number of 2 � 106. Case 4 is
optimized at the same Mach and Reynolds numbers with free
transition. Case 3 is the seven-design-variable case presented byHua
et al. [23]. Table 4 lists the endurance factor, transition locations, and
angle of attack for both the initial and final airfoils. The initial and
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Fig. 2 Case 1 lift-to-drag ratio maximization; M � 0:25 and Re� 1 � 106.
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Fig. 3 Case 2 lift-to-drag-ratio maximization; M � 0:40 and Re� 10 � 106.

Table 1 Lift-to-drag maximization for cases 1 and 2

Case CL=CD Tup (x=c) Tlo (x=c) Airfoil area Angle of attack

Case 1initial 31.38 0.45 0.85 0.08073 2.00 deg
Case 1final 101.22 0.57 0.95 0.08081 4.23 deg
Case 2initial 28.85 0.18 0.49 0.08073 2.00 deg
Case 2final 101.60 0.29 0.95 0.08075 5.86 deg
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final airfoils and pressure distributions for case 3 are shown in Fig. 5;
results for case 4 are presented in Fig. 6. The initial angle-of-attack is
chosen to maximize the endurance factor for the GA(W)-1 airfoil
under the specified conditions (i.e., fully turbulent or with free
transition).

In both cases, the thickness constraint at 35% chord is the only
active constraint at convergence. By exploiting a substantial region
of laminar flow on both surfaces, case 4 is able to produce an airfoil
that has an endurance factor nearly double that of the fully turbulent
case. Although this demonstrates a far superior airfoil at these
operating conditions, off-design conditions can have a detrimental
impact on the performance. For example, when the airfoil designed
with free transition in case 4 is analyzed under fully turbulent
conditions, the steep pressure recovery causes turbulent boundary-
layer separation, and the drag pays an enormous penalty. Obviously
this is not a desirable aerodynamic property. It is desirable to design
an airfoil that exploits the advantages of having maximum laminar
flow under ideal conditions but also performs well when transition
occurs further forward than expected. These tradeoffs can be
assembled into a family of noninferior designs, or a Pareto front.

To form a Pareto front, the weighted-sum method is used:

J � !ftJ ft � �1 � !ft�J lt � !t
XNc
j�1

Cj (7)

where J ft and J lt are the objective function values given by the
reciprocal of Eq. (6) under fully turbulent and laminar-turbulent
conditions, respectively;Cj are geometric constraints; and!t � 1:0.
At each Pareto front location a two-point design problem is solved.
The two points are an analysis with free transition and a fully
turbulent analysis. The initial conditions are identical to cases 3 and
4. The computed Pareto front is shown in Fig. 7, in which the
tradeoffs associated with favoring one operating condition over the
other are clearly captured. Figure 8 shows selected Pareto front
airfoils and the laminar-turbulent pressure distributions. Table 5 lists
the coefficients of lift and drag for the selected solutions contained in
the Pareto front.

Interesting tradeoffs between fully turbulent and laminar-
turbulent designs can be understood through this Pareto front. For
example, if one is aggressive and uses !ft � 0:1, then one pays a
huge price if transition occurs at the leading edge; the endurance
factor drops from approximately 115 to 49. If one is conservative and
uses !ft � 0:9, then the gain when laminar flow is achieved is
minimal. With intermediate values of !ft (for example,
0:3 	 wft 	 0:7), the off-design performance improves without
too large a penalty in on-design performance. For example, with
!ft � 0:5, the fully turbulent endurance factor is approximately 56,
whereas the on-design laminar-turbulent endurance factor is
approximately 107. It is clear from this Pareto front that the airfoils
optimized using !ft values outside the range of 0:3 	 wft 	 0:7 are
poor choices.

C. Maximization of Lift Coefficient

In this section, three different lift-maximization problems are
considered. In each case, the NACA-0012 airfoil is the initial airfoil.
A single-block, structured C-grid is used with roughly 25,000 nodes
(325 on the airfoil surface). The remaining grid details and geometry
parameterization are identical to the lift-to-drag-ratio maximization
cases. Table 6 shows the thickness constraints used. The thickness
constraints are lifted into the objective function via a penalty method
with a weight of 0.05.

For the first lift-maximization example, designated case 5, the
following objective function is used [24]:

J � !L
�
1 � CL

C
L

�
2

� !t
XNc
j�1

Cj (8)

whereC
L is a target lift coefficient chosen as 2.10, and!L � 2:0. The
results of this optimization are given in Table 7 and Fig. 9. A lift
coefficient of 2.09 is achieved with turbulent boundary-layer
separation at 86% chord on the upper surface. The pressure
distribution on the upper surface has a sort of laminar rooftop
followed by concave pressure recovery. There is a favorable pressure
gradient over the entire lower surface.

For the second lift-maximization example, designated case 6, a
constraint on the skin-friction coefficient is added in the following
manner:
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Fig. 4 Lift-to-drag-ratio maximization; Reynolds number variations.

Table 2 Lift-to-drag-ratio maximization for Reynolds

number variation

Reynolds
number (106)

CL=CD Tup (x=c) Tlo (x=c) Angle of attack

1.0 101.20 0.57 0.95 4.23 deg
3.0 118.40 0.53 0.95 4.64 deg
5.0 117.32 0.51 0.95 5.35 deg
6.0 112.02 0.43 0.95 6.34 deg
7.0 102.27 0.31 0.95 6.33 deg
10.0 100.20 0.29 0.95 6.80 deg

Table 3 Endurance-factor maximization

for thickness constraints

x=c 0.15 0.35 0.60 0.92 0.99
t=c 0.01 0.164 0.07 0.01 0.001

Table 4 Endurance-factor maximization for cases 3 and 4

Case C3=2
L =CD Tup (x=c) Tlo (x=c) Angle of attack

Case 3initial 49.24 - - 7.53 deg
Case 3final 59.83 - - 7.24 deg
Case 4initial 61.99 0.49 0.65 2.44 deg
Case 4final 115.50 0.54 0.92 5.97 deg
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J � !L
�
1 � CL

C
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�
2

�
Xxend
x�xstart

�
!cf

�
1 �

cf�x�
c
f�x�

�
2
�
� !t

XNc
j�1

Cj

(9)

where c
f is a target skin-friction coefficient over a specified range of
the airfoil surface from xstart to xend. Note that the skin-friction
constraint is active only when violated (i.e., when the local skin
friction dips below the specified value). The following parameters
are used: C
L � 1:72, c
f � 0:001, !L � 2:0, and !cf � 1:0. This
constraint ensures that the flow remains fully attached. Results are
given in Table 8 and Fig. 10. With the requirement of fully attached
flow, the maximum lift coefficient achieved is 1.69. The upper-
surface pressure distribution displays a significant favorable gradient
in the laminar region followed by concave pressure recovery. The
lower surface again has a favorable pressure gradient throughout.
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Fig. 5 Case 3 endurance-factor maximization, fully turbulent; M � 0:2 and Re� 2 � 106.
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For our third lift-maximization example, case 7, the pitching
moment is constrained, and the requirement of attached flow is
retained, leading to the following objective function:

J � !L
�
1 � CL

C
L

�
2

� !M
�
1 � CM

C
M

�
2

�
Xxend
x�xstart

�
!cf

�
1 �

cf�x�
c
f�x�

�
2
�
� !t

XNc
j�1

Cj (10)

The moment constraint is nonzero only if the pitching-moment
coefficient exceeds the target value C
M (in magnitude). The
following parameters are used: C
L � 1:60, C
M ��0:032,
c
f � 0:001, !L � 2:0, !M � 1:0, and !cf � 1:0. The optimized

airfoil and associated pressure distribution are shown in Fig. 11;
further data are given in Table 9. The reduction in the magnitude of
the moment coefficient has led to a decrease in the lift coefficient to
1.58. The upper-surface pressure distribution has a laminar rooftop,
with a pressure coefficient of roughly �2:50 followed by concave
pressure recovery. The lower surface has a more pronounced
favorable pressure gradient than the two previous cases, leading to
decreased aft loading and consequently a reduced pitching moment.
The lower surface of the airfoil isflat, in contrast to the concave lower
surfaces of the optimized airfoils of cases 5 and 6.

Figure 12 compares the lift, drag, and moment coefficients of the
optimized airfoils of cases 5, 6, and 7 as a function of angle of attack.
In comparison with case 5, the additional skin-friction coefficient
constraint in case 6 has caused a reduction in maximum lift
coefficient, a reduction in drag coefficient, and a reduction in the
magnitude of the pitching-moment coefficient. The addition of the
pitching moment constraint in case 7 has resulted in the same trends.
Therefore, of the three optimized airfoils, case 7 has the lowest
maximum lift coefficient, the lowest drag coefficient, and the
smallest pitching-moment coefficient.

D. Comparison with Zingg and Liebeck Airfoils

The previous examples demonstrated that the optimization
algorithm is capable of exploiting the location of transition to
optimize the airfoil. The resulting pressure distributions correspond

Table 5 Aerodynamic coefficients and endurance factor values

for selected Pareto-optimal solutions

Fully turbulent Free transition Fully turbulent Free transition
!ft CL CD CL CD C3=2

L =CD C3=2
L =CD

0.1 1.088 0.0233 1.384 0.0142 48.84 114.7
0.2 1.127 0.0232 1.383 0.0142 51.55 114.2
0.3 1.126 0.0225 1.285 0.0130 53.02 111.7
0.5 1.213 0.0239 1.292 0.0137 55.90 107.5
0.6 1.259 0.0249 1.212 0.0128 56.72 104.4
0.7 1.235 0.0239 1.105 0.0118 57.48 98.34
0.8 1.270 0.0247 1.134 0.0145 57.96 83.31
0.9 1.308 0.0257 1.036 0.0135 58.01 77.86

Table 6 Maximization of lift for thickness

constraints

x=c 0.06 0.25 0.60 0.80 0.95
t=c 0.08 0.10 0.055 0.02 0.01

Table 7 Maximization of lift for case 5

Case CL CD Tup (x=c) Tlo (x=c) Angle of attack

Case 5initial 0.2188 0.0066 0.37 0.75 2.00 deg
Case 5final 2.0937 0.0277 0.36 0.95 11.70 deg
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Fig. 9 Case 5 maximization of lift; M � 0:25 and Re� 2 � 106.

Table 8 Maximization of lift with separation constraint for case 6

Case CL CM Tup (x=c) Tlo (x=c) Angle of attack

Case 6initial 0.2188 0.0066 0.37 0.75 2.00 deg
Case 6final 1.6937 0.0181 0.38 0.95 8.56 deg
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Fig. 10 Case 6 maximization of lift with separation constraint; M � 0:25 and Re� 2 � 106.
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closely to what might be expected: some sort of laminar rooftop
followed by a concave pressure recovery region. In this section, we
compare two optimized airfoils with airfoils designed using a
carefully determined pressure distribution and an inverse method:
the airfoils of Liebeck [8] and Zingg [9].

The Liebeck [8] airfoil LNV109A was designed to maximize the
lift coefficient with fully attached flow and a practical and realistic
shape. The objective function and constraints for case 7 were chosen
to mimic those of Liebeck. The two airfoils, as well as the pressure
distributions at the optimum angle of attack, are compared in Fig. 13.
With the exception of a small region near the leading edge, both the
airfoils and the pressure distributions are strikingly similar. The lift,

drag, andmoment coefficients produced by the two airfoils are nearly
identical, as shown in Fig. 12.

To compare with the Zingg [9] airfoil, we mimic the thickness
constraint used in its design by requiring that themaximum thickness
be 15% of the chord, without specifying the chordwise position.
Figure 14 displays the resulting airfoils and pressure distributions.
They are again very similar, although the Zingg airfoil has a
somewhat steeper pressure recovery and transition further aft on the
upper surface. The Zingg airfoil has a lift-to-drag ratio of 83 at
CL � 0:888, which occurs at an angle of attack of 1.93 deg. The
optimized airfoil has a lift-to-drag ratio of 90 andCL � 0:9974 at an
angle of attack of 4.28 deg. The optimized airfoil has a larger lift-to-
drag ratio, but Fig. 14 shows that it has a slightly smaller cross-
sectional area.

V. Conclusions

ANewton–Krylov algorithm for aerodynamic optimization based
on the Reynolds-averaged Navier–Stokes equations was augmented
to incorporate laminar-turbulent transition and applied to several

x/c

y/
c

0 0.2 0.4 0.6 0.8 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

NACA-0012
Optima2D

a) Initial and final airfoils
x/c

C
p

0 0.2 0.4 0.6 0.8 1

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

NACA-0012
Optima2D

= Transition Locations (Optima2D)
= Transition Locations (NACA-0012)

b) Initial and final pressure distributions

Fig. 11 Case 7 maximization of lift with pitching moment and attached-flow constraints; M � 0:25 and Re� 2 � 106.

Table 9 Maximization of lift with pitching moment and attached

constraints for case 7

Case CL CM Tup (x=c) Tlo (x=c) Angle of attack

Case 7initial 0.2188 0.0028 0.37 0.75 2.00 deg
Case 7final 1.5812 �0:0324 0.33 0.95 10.06 deg
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Fig. 12 Comparison of lift-maximization cases and Liebeck [8] airfoil (LNV109A); M � 0:25 and Re� 2 � 106.
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aerodynamic optimization problems, including lift-to-drag-ratio
maximization, endurance-factor maximization, and lift max-
imization. The resulting optimized airfoils typically have upper-
surface pressure distributions characterized by laminar rooftops
followed by concave pressure recovery. Two of the airfoils are
remarkably similar to airfoils designed previously byLiebeck [8] and
Zingg [9] based on considerable aerodynamic experience. The
results provide a striking demonstration of the capability of the
Newton–Krylov aerodynamic optimization algorithm to design
airfoils that previously required a great deal of expertise to design.
Future work will concentrate on integrating the transition-prediction
module with the RANS solver to enable full exploitation of the
discrete-adjoint method.
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