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This study investigates the potential of unconventional aircraft transports through numerical opti-

mization. Three distinct configurations are investigated: a box wing, a C-tip blended wing-body, and

a braced wing. Each transport is sized for the same regional mission and is subjected to the same

optimization strategy based on the Euler equations. The figure of merit is inviscid pressure drag at

transonic speed; the nonlinear constraints are lift, pitching moment, and internal volume. The design

variables include the section shape and twist distribution of the main lifting surfaces. It is found that

the box-wing, C-tip blended-wing-body, and braced-wing configurations investigated here are respec-

tively 34.1%, 36.2%, and 40.3% more e�cient than a similarly optimized conventional tube-and-wing

configuration. Each optimization revealed in one way or another the importance of accounting for flow

nonlinearity during the early stages of unconventional aircraft design. For the blended wing-body, the

C-tip does not appear to provide a drag benefit over a purely vertical winglet, presumably as a result of

the compressibility e�ects prevalent in the C opening. For the braced wing, compressibility e�ects also

lead to a curious result, where the supporting strut finds itself carrying negative lift at the optimum.
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D drag [N]

e span e�ciency

L lift [N]

n normal force (section) [m]

qÿ freestream dynamic pressure [N_m2]

W weight [N]

x, y, z chordwise, spanwise, and vertical coordinates [m]

↵ angle of attack [deg]

I. Introduction

Fuel economy is now more than ever of paramount importance for the aeronautical industry [1]. Not

only do fuel e�cient aircraft cost less to operate, but they also produce less emissions responsible for climate

change. One way to reduce fuel burn is to reduce drag, since thrust equals drag at steady flight. Current

aircraft are, however, remarkably e�cient; thus, step changes in drag reduction are unlikely unless radically-

new unconventional technologies are considered [2].

The two main drag components acting on a typical aircraft are viscous and induced drag. Induced drag,

defined as the kinetic energy added to the wake per unit distance traveled, is an inviscid phenomenon ex-

perienced by lifting wings of finite span. It constitutes roughly 40% of the total drag at cruise and up to a

staggering 90% of the total drag during ascent [3]. Reducing this form of drag is therefore highly rewarding

and is the motivation behind this study.

Munk [4] was the first to identify the elliptical lift distribution as the one producing the minimum induced

drag among all planar wings of the same span and lift. His results were based on the well-known lifting-line

theory of Prandtl [5], which was later refined by Cone [6] for lifting systems with “spanwise camber”. These

and other ideas culminated in the vortex-lattice method and its use in numerical optimization to find the

minimum induced drag of arbitrary nonplanar lifting systems [7].

While nonplanar wings may produce less induced drag compared to planar wings of the same span and

lift, aircraft are not built on the basis of induced drag with fixed span and lift. To account for viscosity,
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structures, and other e�ects, several authors have recently coupled their aerodynamic analyses with other

models of varying degrees of fidelity; see, for example, [8–12]. While insightful, these studies are nonetheless

limited by the linear aerodynamic assumption.

Van Dam [13] demonstrated that higher span e�ciencies than those predicted by linear theory are pos-

sible for planar crescent-moon-shaped wings since such wings shed a nonplanar wake at an angle of attack.

Smith [14] and Smith and Kroo [15] confirmed that beneficial nonlinear wing-wake interaction can indeed

lead to lower induced-drag values, provided that the shape of the rolled-up, force-free wake is accurately

modeled. More recently, Liersch et al. [16] concluded that higher-order e�ects such as induced lift explain

why a spanwise cambered elliptical wing produces less induced drag than the same unfolded wing.

Another important yet often overlooked nonlinear e�ect influencing induced drag is compressibility.

Even with the Prandtl-Glauert correction, incompressible-flow models at higher Mach numbers fail to predict

the correct optimal lift distribution of simple planar objects such as swept-back wings [14]. For nonplanar

wings in transonic flow, the incompressible assumption is not only inaccurate but also unreliable.

The necessity of incorporating high-fidelity models in the investigation and assessment of unconventional

aircraft is being increasingly recognized [17–19]. The di�culty, of course, is to use such models e�ectively

as design tools. In the case of models based on computational fluid dynamics (CFD), aerodynamic shape

optimization (ASO) is invaluable, since it has the potential to exploit the nonlinearity of the flow without

human intervention beyond problem setup [20].

Applications of CFD-based ASO to wing design have up until recently largely focused on the Euler

equations [21–28]. Contrary to circulation-distribution and panel methods, the Euler equations do not require

the user to prescribe the starting location and shape of the wake. Compressibility e�ects are also inherently

captured. On the downside, the influence of viscosity on induced drag is ignored; in particular, side-edge

flow separation at the wingtips may not match the true viscous flow [14].

This study uses ASO based on the Euler equations to investigate the potential for induced-drag reduction

of four transonic aircraft configurations. Consistency is emphasized; each configuration is sized for the same

mission and is optimized using the same geometry control system as well as the same flow solver and opti-

mizer. Stability, structures, and other such considerations are purposefully excluded from the analyses, so as

to isolate the role of flow nonlinearity on induced drag.
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This study does not attempt to provide a definite answer as to which unconventional aircraft configuration

is superior to the other, nor does it attempt to find the “real world” optimum for each configuration. Such

questions can only be answered through multi-disciplinary, multi-objective, and multi-point optimizations

involving high-fidelity viscous flow models. Instead, this study focuses on the influence of flow nonlinearity

on the aerodynamic design and induced drag of unconventional aircraft.

Section II of this paper describes the methodology used to carry the optimizations. Specifically, Sec-

tion II A reviews each aircraft configuration in the context of previous work, Section II B overviews the op-

timization problem common to all four configurations, and Section II C gives some details on the grids used

throughout the optimizations. The results of those optimizations are presented in Section III, where Sec-

tions III A to III D are each assigned one configuration. Finally, Section IV summarizes the main findings

and concludes the paper.

II. Methodology

A. Concept Selection

Many unconventional aircraft transports have been proposed throughout the history of aviation. Each

transport represents a compromise between competing objectives and constraints for a given mission.

Lange [29], for example, reviews a flatbed, a multibody, and a wing-in-ground-e�ect configuration for very

large cargo aircraft.

The configurations investigated here are targeted at the medium-haul, 100-passenger market segment.

They are: a tube-and-wing, a box wing, a C-tip blended wing-body, and a braced wing. Relative to the tube-

and-wing, each unconventional configuration has the potential to substantially reduce induced drag. While

other configurations such as the D8 aircraft of Drela [30] are equally promising in that regard, here priority is

given to those configurations with larger vertical extents for their more interesting nonplanar wake structure.

Figure 1 depicts the initial geometry of all four transports. Their planform is based on already existing

designs, which are scaled for the present study to ensure that the fuselages contain enough room to house

the passenger compartments (also visible in Fig. 1). Note that the fuselages and engines shown here are not

included in the flow analyses of the ASO problems,1 although their weights are considered, as explained in

1 Including the fuselage alongside a wing in a shape optimization problem introduces a host of di�culties [22]; in fact, retaining the
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(a) tube-and-wing

(b) box wing

(c) blended wing-body

(d) braced wing

Fig. 1 Regional transports.

Section II B.

With the exception of the bracing strut in Fig. 1d, the wings of each transport are generated exclusively

from NASA’s integral supercritical airfoils [31]. These airfoils are characterized by a large leading-edge

radius, thus providing reasonable low-speed performance, and a reduced curvature over the middle region of

the upper surface, thus delaying the shock and, ultimately, drag rise. They thus provide an excellent starting

point for the ASO problems since here the freestream Mach number is fixed at 0.78 for all cases, in agreement

with the reported cruising speeds of most regional jet transports.

design intent (quality) of the fairing at a wing-body junction is arguably the most challenging task of any aerodynamic optimizer.
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Table 1 Dimensions and key data

Tube-

and-wing

Box

wing

Blended

wing-body

Braced

wing

Dimensions [m]

Wing span 26.30 26.30 30.73 34.15

Overall length 38.79 34.31 21.10 38.79

Overall height 6.15 6.60 3.81 6.02

Wetted area [m2]

Wing 134.23 179.81 478.58 182.69

Fuselage 282.91 285.73 – 291.72

Horizontal tail 30.43 – – 30.43

Vertical tail 21.10 30.76 – 21.10

Total 468.66 496.30 478.58 525.92

Weight and balancea

W _qÿ [m2] 38.16 39.18 40.10 39.84

Center of gravityb [m] 4.44 10.34 12.39 4.05

a At the beginning of the cruise segment.

b Measured from the leading edge of the foremost wing segment at the

symmetry plane.

Wing segments (the darker surfaces separated by thin black lines in Fig. 1) are each generated by sweeping

a root airfoil or a blend of a root and tip airfoils along a trajectory curve [32]. The airfoils are used as is, with

the exception of the centerbody of the blended wing-body, for which the thickness-to-chord ratio of the root

airfoil is increased by scaling it in the vertical direction. Also, for the blended wing-body only, the blending

between the root and tip airfoils is nonlinear; specifically, the blending is linear from root to midspan and then

constant based on the tip airfoil only.

An overview of each transport is given next; refer to Table 1 for more detailed specifications.
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1. Tube-and-Wing

The baseline tube-and-wing shown in Fig. 1a is modeled after publicly available information on the

Bombardier CRJ1000.2 The pressurized cabin is designed for a 2-2 seating arrangement and is long enough

to seat 104 passengers in economy class.

The main wing is essentially a scaled-up version of the CRJ700 planform: straight leading edge swept

back 30 degrees with a root plug ending at 35% semispan. Based on a mix of historical trends and two-

dimensional methods as described in Raymer [33], the NASA SC(2)-0614, SC(2)-0412, and SC(2)-0410 air-

foils are chosen at the root, kink, and tip sections, respectively. This choice yields satisfactory lift coe�cients

and internal volume at the expense of small wave-drag penalties.

Rather than trying to replicate the exact winglet of the CRJ1000, the choice is made not to include a

winglet on the initial geometry but, as will be discussed in Section III A, the optimizer is given enough

freedom to produce one on its own.

2. Box Wing

For a fixed span, the box wing is most appealing from the perspective of induced drag: in theory, if the

two wings of a biplane are infinitely separated, and each one carries half the lift of a monoplane of the same

span, then the induced drag is halved. If, further, a biplane is joined at its tips by end plates, then reductions

on the order of 40% are predicted for vertical-gap-to-span ratios of about 0.3 [5]. These results should also

hold for swept wings in transonic flow by virtue of Munk’s stagger theorem [4].

In practice, several di�culties were uncovered in the high-subsonic regime by Lange et al. [34]. Chief

among these was wing divergence encountered well below the target flutter speed. This problem was also

well recognized by Frediani [35], whose solution was to mount the rear wings on two vertical fins separated

by a maximum horizontal distance. Although the models employed in the present study do not account for

aeroelasticity, the two fins are nevertheless positioned aft of the fuselage as shown on Fig. 1b, though like the

fuselage they are excluded from the aerodynamic analyses.

The initial airfoil selection is of little importance since the flow curvature induced by the neighboring

2 http://commercialaircraft.bombardier.com/en/crj.html [retrieved 1 May 2015]
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wings calls for highly customized airfoils [36]. Here, most the of wing loop is generated from the NASA

SC(2)-0410 airfoil, with the exception of the vertical tip fins, which are generated from the NASA SC(2)-

0010 symmetric airfoil.

3. Blended Wing-Body

Unlike most unconventional transports, the blended wing-body has been the subject of many ASO studies

based on flow models as accurate as the Reynolds-averaged Navier-Stokes equations [37–41]. This popularity

is undoubtedly due to its geometric simplicity (in its simplest form the blended wing-body is really just a wing

with nonlinearly varying taper).

The blended wing-body shown in Fig. 1c is inspired from the released press on the X-48C demonstrator.

Unlike the X-48C, it features C-tip extensions, thus providing longitudinal and directional control and stability

on top of mitigating induced drag [3].

The nose bullet, intended for increased cockpit visibility, somewhat complicates surface generation. In-

deed, the challenging task of fitting the necessary volume inside a compact yet smooth blended wing-body

of this size might very well explain its usual application to very large transports [42, 43]. Here, a 2-4-2 cabin

layout is assumed to ensure ride quality, with the cargo bays and fuel tanks located outboard.

An airfoil stack arising from the combination of a (modified) NASA SC(2)-0010 airfoil at the root and

an (unmodified) NASA SC(2)-0410 airfoil at the tip is fitted in a single sweep to generate a C

2 continuous

outer mold line. No initial twist is prescribed; therefore, the initial configuration generates barely any lift.

However, as will be pointed out in Section III C, the optimizer easily remedies this situation by pitching up

the centerbody by only a few degrees.

4. Braced Wing

Braced wings can be traced back to the early days of aviation, but it is Pfenninger [44] who revived the

concept for high-speed transports. The design motivation is to use a strut, or a system of trusses, to alleviate

wing bending-torsion. This in turn allows for higher aspect-ratio wings with lower thickness-to-chord ratios.

The thinner wings have less transonic wave drag, permitting the wings to unsweep thus favoring natural

laminar flow.

Understandably, aerostructural considerations are particularly important in the design of braced wings.
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Elements of multidisciplinary analysis and optimization have thus been incorporated in recent studies [45–

50]. Although some of these studies involve CFD, none involve CFD-based ASO.

As per the general guidelines of Bhatia et al. [48], the strut of the braced wing shown in Fig. 1d intersects

the wing at 60% semispan. The span is chosen to be 1.3 times that of the tube-and-wing, leading to an

aspect ratio of roughly 16.4; in comparison, values of 16.0, 16.4, and 19.55 are reported in [50], [44], and

[49], respectively. As in [50] the strut is unswept, and as in [45] it has a vertical portion aimed at reducing

compressibility e�ects at the wing-strut junction.

The wing is generated from the NASA SC(2)-0412 airfoil at the root and the NASA SC(2)-0410 airfoil

at the tip, while the strut is entirely generated from the NACA 64A-010 symmetric airfoil. Just like the

previous three transports, all wing segments are initially untwisted and those intersecting the fuselage, i.e. the

symmetry plane, have zero angle of incidence.

B. Optimization Problem

In order to draw direct comparisons based on absolute drag, it is important that all four transports be

optimized in a consistent manner. To begin with, each transport must be able to perform the same mission,

which consists of carrying 100 passengers and 3 crew members over 926 km (˘ 500 nm) at Mach 0.78 and an

altitude of 10.5 km (˘ 35,000 ft). Since only single-point optimizations are conducted here, the most critical

point of the cruise segment is picked, i.e. at the beginning, where the required lift is maximum.

As stated in Section I, “real world” applications normally require multiple flight conditions to be included

within the same optimization problem. This is especially true for regional jets, since it is not uncommon for

such transports to spend a short period of time at cruise relative to climb and descent. Multi-point optimiza-

tions are, however, beyond the scope of this work (as are structural deflections and other important e�ects).

Here, the focus is on nonlinear aerodynamics not easily captured with panel or other simplified methods.

For each case the sum of induced and wave drag, i.e. inviscid pressure drag, is minimized using the

same gradient-based aerodynamic optimizer. The main building blocks of the optimizer are described and

validated in Hicken and Zingg [51]. In particular, it solves the Euler equations on multi-block structured grids

and computes the gradients of the flow-dependent functionals using the discrete-adjoint method.

Surface deformation is handled by a geometry control system based on two-level free-form and axial
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(a) tube-and-wing
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Y

(b) box wing
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(c) blended wing-body

X

Y

Z

Y

(d) braced wing

Fig. 2 Geometry parameterizations.

deformation [52]. Using this technique, so-called axial curves handle variations in sweep, span, and dihedral,

while free-form-deformation (FFD) volumes handle variations in twist, taper, and section shape. Both the

axial curves and the FFD volumes are modeled with B-splines.

As shown in Fig. 2, in general one axial curve is used per wing segment, irrespective of its length and

function. Doing so allows one to retain the design intent of the wing systems, as opposed to using a single

continuous axial curve to parameterize, for example, the entire box wing. This approach also greatly simplifies

problem setup, since the trajectory curves used to generate the wing segments can then be reused as axial

curves. Note that only the end control points of the axial curves are shown on Fig. 2, except for the top wing

of the box wing, for which the middle control point is also shown.

Some of the axial-curve control-point coordinates are activated with the goal of exploring the design

space of each configuration. Depending on the configuration at hand, an attempt is made to do so in a manner

that is sensible both from an aerodynamic and a structural point of view. For example, for the conventional

wing only, a winglet is allowed to grow (to help it compete with the unconventional designs), but the winglet’s

taper is heavily restricted (to help reduce the surface area). In general, because there is no structural model
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involved, neither wing span, nor wing sweep, nor wing taper is allowed to vary during any of the optimizations.

Note that the FFD volumes (not shown in Fig. 2) achieve variations in twist and section shape relative

to the axial curves. Therefore, the placement of the axial curves relative to the wing segments matters. For

example, if an axial curve is placed at the leading edge of a wing segment then that wing segment will twist

about its leading edge.

The approach to isolating induced drag is to eliminate wave drag by enabling section shape changes. By

further allowing twist changes, the optimizer should be able to recover span e�ciencies equal to or greater

than 1 by optimally loading all lifting surfaces. The twist design variables include the angle of incidence

of the wing sections at the symmetry plane. For maximum flexibility the freestream angle of attack is also

allowed to vary between *5 and 5 degrees. The intent is to promote design space exploration while limiting

the development of overly pitched airfoils.

Enabling detailed section shape control to eliminate wave drag drastically increases the number of geo-

metric design variables. This is because here each spanwise FFD-volume cross section responsible for shape

control is defined with 10 chordwise and 2 vertical rows of control points, which translates to 20 section de-

sign variables per cross section. While it is recommended to use at least 4 FFD-volume cross sections (80

section design variables) per wing segment, this number may be overly conservative in certain cases.

To prevent the wings from becoming excessively thin as a result of the optimizations, their internal

volume is forced to maintain at least 95% of their initial value. Additionally, the vertical scaling factors

responsible for section shape control are constrained to a lower bound of 0.6. Thus, for example, a wing

section that is initially 10% thick cannot become less than 6% thick. This is with the exception of the cross

sections covering the centerbody of the blended wing-body, for which, given the cabin height requirement,

the lower bound is set to 0.95.

Two nonlinear constraints other than the internal volume are imposed to respectively satisfy the lift and

trim requirements at the beginning of cruise. Linear constraints are also imposed but are specific to each

configuration. For example, more often than not twist is linearly interpolated between the two tip cross

sections of an FFD volume assigned to a given wing segment, a measure that reduces the development of

wavy surfaces in the spanwise direction and that fortunately has a minimal impact on drag.

To estimate the aircraft weights, and therefore the required lift at the specified speed and altitude, a low-
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fidelity model based on wetted area is used [33]. In this model, each major aircraft component is assigned a

single weight per unit area, and that same value is used for all configurations. For example, the weight of the

tube-and-wing is reflected by the wetted areas of its “wing”, “horizontal tail”, “vertical tail”, and “fuselage”

components. The same goes for the box-wing and braced-wing configurations. In the case of the blended

wing-body, only the “wing” component is used for the lack of a better weight estimate for the embedded

fuselage. Although of limited accuracy, this approach at least ensures that each aircraft is sized according

to the same technology levels. The values used in this work are calibrated against the reported operating

empty weight of the CRJ1000. The calibration assumes predetermined weights for the propulsion, system,

operational, payload, and fuel load groups, all taken as percentages of the takeo� gross weight of an aircraft

of the same class [33].

The wing segments used to perform the flow analyses of the tube-and-wing, box-wing, and braced-wing

configurations include the wing portions that are normally buried inside the fuselage. This approach tends to

overpredict the actual lift of the full aircraft, hence for those configurations the gross weight is multiplied by

a factor of 1.05.

Note that the aircraft weights are used for the sole purpose of calculating the target lift at the beginning

of each optimization. During the optimizations, the e�ect of varying twist and section shape on the surface

area and therefore the weight is not accounted for. Even if it were, the variations in weight are small, since,

as discussed in the previous paragraphs, the design parameters responsible for span, sweep, and taper are in

general fixed. The lower bounds on section shape control and the internal volume constraint further limit

variations in wetted areas.

The center of gravity of the tube-and-wing is set at 25% of its mean aerodynamic chord (MAC), whereas

the centers of gravity of the unconventional aircraft are calculated based on their component-weighted cen-

troids. The longitudinal position of the centers of gravity is considered a design variable, with an upper bound

of 35% MAC for the tube-and-wing. For the unconventional aircraft a margin of 5% of the fuselage length is

used in order to account for their greater overall uncertainty in wing planform and overall design.
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C. Baseline Grids

Predicting drag through CFD in the context of ASO is not without di�culty. Not only does artificial

dissipation a�ect the solution, but also the thin shape of wings makes it di�cult to accurately resolve pressure

gradients with reasonable mesh sizes [53]. Even though wake-plane analyses are typically more accurate than

surface-based predictions [54], this trend diminishes with increasing mesh density [23]. The approach taken

here, therefore, is to use coarse grids to run the optimizations and to use fine grids to retrieve grid-converged

lift and drag values, either before or after the optimizations have taken place. Based on the authors’ experience,

see also [55], this approach yields similar relative results compared to optimizations conducted on finer grids,

even though the absolute drag values can di�er significantly on the finer grids. Of course, using coarse grids

for the optimizations has the added benefit of significantly reducing computational cost. A breakdown of the

CPU time required to evaluate the objective function and gradient components on grids comprising millions

of nodes is given in [51].

Some statistics of the baseline grids are listed in Table 2. The final spacings will vary slightly as a result of

mesh movement. However, the o�-wall spacings at the wing roots will remain on the order of 10*3 root-chord

units. The fine grids are obtained by refining, in parameter space, the B-spline block mappings responsible

for mesh movement [51], thus ensuring that the surface nodes coincide with the underlying geometry. The

refined grids are used to produce all the plots and figures of Section III.

The smaller o�-wall spacings of the tube-and-wing relative to the other configurations are due to the

wingtip treatment. Node clustering is used to ensure that the optimizer catches the right (subtle) aerodynamic

trade-o�s when morphing a winglet. Also, taper is applied to the baseline surface grid at the tip, which further

reduces the mesh cell sizes there by a factor of 3 or so.

III. Results

The results of the drag minimizations summarized in Table 3 are now discussed for each configuration.

Since lift and span are constrained in all cases, the drag minimizations are equivalent to span-e�ciency

maximizations. Recall that the span e�ciency of a lifting system can be computed without resorting to

reference areas:

e =
(L_qÿ)2

⇡b

2(D_qÿ)
. (1)
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Table 2 Grid data in root-chord units

Block Node Spacing (ù10*3) Far-field

distanceb

O�-wall Walla

Tube-and-wing

Coarse 126 3,466,800 0.0989 11.60 25.0

Fine 2544 97,712,968 0.0278 3.83 25.0

Box wing

Coarse 96 3,395,562 0.3524 15.30 24.4

Fine 2354 98,001,819 0.1021 4.99 24.4

Blended wing-body

Coarse 234 1,540,000 0.2459 5.74 25.0

Fine 2391 91,652,311 0.0434 1.47 25.0

Braced wing

Coarse 248 4,436,424 0.3107 27.74 20.9

Fine 2191 95,023,706 0.1170 10.06 20.9

a Average surface spacing í ˘
S_Nsurf, where S is the surface

area and Nsurf is the number of nodes on the surface.

b Minimum distance to the far-field boundary.

Table 3 Summary of the drag minimizations

e L_D L_qÿ [m2] D_qÿ [m2]

Tube-and-wing 1.026 54.3 40.71 0.7491

Box wing 1.479 80.3 39.69 0.4939 (-34.1%)

Blended wing-body 1.207 86.1 41.20 0.4782 (-36.2%)

Braced wing 0.993 89.9 40.22 0.4472 (-40.3%)
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Recall also that this metric is only relevant for lifting systems of the same span and lift; therefore, although it

provides a useful benchmark against linear theory, it is not intended to compare the relative performance of

the configurations.

As described in Section II B, the analyses do not account for viscous drag and the optimizations do not

include the fuselage, engines, and vertical tail of the configurations. It is therefore important to take the

L_D and thus the percentage improvements in this context. The wetted areas are, however, more or less the

same before and after the optimizations as a result of fixing span, sweep, and taper, which also prevents the

optimizer from exploiting the planform shapes in favor of even lower inviscid drag values.

Euler-equation-based solutions are often characterized by unrealistic pressure recovery regions due to the

inability of the Euler equations to model flow separation [56]. Despite this limitation, the pressure-coe�cient

and wing profiles of each configuration are still reported in this section. The intent is to give the reader insight

into the physics as opposed to suggesting what the profiles should look like on real aircraft.

The values reported in Table 3 are computed from post-optimization fine-grid flow analyses. Conse-

quently, the lift values reported here di�er from the target lift values used for the optimizations. This can be

seen by comparing the W _qÿ and L_qÿ values in Tables 1 and 3, respectively. Had the angles of attack been

adjusted at the end of the optimizations to recover the target lift values, the drag values would be more or less

6% lower (since the lift values are on average 3% larger than the target values). That being said the absolute

drag values are somewhat irrelevant; what matters here is the relative performance of the configurations as

reported in the last column of Table 3. Although more work is needed, these performance trends are expected

to remain the same should the weight estimates and therefore the target lift values change slightly (as a result

of using a di�erent weight model or optimizing at di�erent cruise conditions, for example).

A. Tube-and-Wing Configuration

The initial tube-and-wing configuration is shown on the left-hand side of Fig. 3a. Shocks are clearly

visible aft on the inboard wing and outboard close to the leading edge. To remedy this, a total of five axial

curves are defined, as shown in Fig. 2a. The first four axial curves are assigned to the wing and are positioned

directly on its leading edge, thus ensuring that the latter remains straight regardless of twist, whereas the fifth

axial curve is positioned on the quarter-chord curve of the horizontal tail. The axial curves control a total of
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Fig. 3 Initial (left) and optimized (right) tube-and-wing configuration.

23 independent FFD-volume cross sections. All cross sections are allowed to twist; however, there are only

7 e�ective twist design variables since, for any given FFD volume, twist is linearly interpolated between the

tip cross sections. Each and every control point forming the 19 cross sections controlling the wing is allowed

to scale along its local vertical axis, leading to 380 section design variables (19 ù 20). Finally, the x and

z coordinates of the fourth axial curve’s outermost control point can vary. The intent is to encourage the

optimizer to produce a winglet on its own by controlling the streamwise and vertical extents of the wingtip

extension. A smooth wing-winglet transition is ensured by the third axial curve. Note that taper is enforced

manually on the winglet at the beginning of the optimization and is therefore not a design variable.

Figure 3a on the right-hand side shows the optimized wing and tail. All shocks are eliminated and,

as expected, the optimizer reached the upper bound of the winglet’s streamwise and vertical extents. By

reshaping the remaining wing segments, the optimizer also managed to achieve a span e�ciency greater than

1 despite the trim constraint. This e�ciency gain is reflected by the smoother structure of the wake on the

right-hand side of Fig. 3b. Note that the wake structures shown in this paper are produced from views located
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Fig. 4 Initial (gray) and optimized (black) normal-force distributions of the tube-and-wing configuration.
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Fig. 5 Initial (gray) and optimized (black) pressure-coe�cient profiles of the tube-and-wing configuration. Sections

A–D correspond to those of Fig. 3a.

80m downstream of the configurations and perpendicular to the reported angles of attack.

Compared with the initial configuration, the spanwise normal-force distribution of the optimized config-

uration is much more elliptical; see Fig. 4. The winglet thus experiences significant side-forces, in agreement

with the design guidelines of Whitcomb [57]. As for the tail, it is forced to carry some negative lift due to the
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Fig. 6 Initial (left) and optimized (right) box-wing configuration.

position of the center of gravity, which in turn forces the optimizer to increase the loading on the wing in order

to achieve the required total lift while keeping the force distribution smooth. The optimizer tries to minimize

this balancing act by heavily contorting the wing sections, especially at the root (section A) as seen in Fig. 5.

The pressure recovery regions are nevertheless much more gentle on the optimized sections, except perhaps

on the suction side of the winglet, where the steep pressure gradients would likely cause separation in viscous

flow [56]. Of particular interest is the striking resemblance between section D of the optimized winglet and

the “typical winglet section” reported by Whitcomb in his seminal 1976 study [57, Fig. 3 on page 19].

For comparison, the same optimization problem was repeated but without the permissible vertical extent

(that is, with 1 less degree of freedom), and it was found that the winglet-up configuration produces roughly

3.5% less drag.
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Fig. 7 Initial (gray) and optimized (black) normal-force distributions of the box-wing configuration.

B. Box-Wing Configuration

The initial flow solution of the box-wing configuration is smoother overall than that of the tube-and-wing

due its thinner airfoils, with the exception of a strong but thin shock located outboard along the leading edge of

the front wing and a localized supersonic bubble at the leading-edge root of the rear wing; see Fig. 6a. Smooth

flow gradients are also observed on the inboard portion of the vertical tip fin. To set up the optimization, one

axial curve is positioned on the leading edge of each wing segment, including the two corner fillets, for a

total of 7 axial curves. In all, there are 26 FFD-volume cross sections, totaling 520 section design variables

(26 ù 20). Like the tube-and-wing, all middle cross sections of each FFD volume are linearly interpolated

from the tip cross sections; thus, there are only 8 e�ective twist design variables. Finally, the optimizer is

also given some freedom in shaping the planform of the top wing through the middle control point of its axial

curve (see Fig. 2b), which is quadratic. Only the x (chordwise) coordinate of that control point is allowed to

vary.

By the end of the optimization the optimizer reached the lower bound of that last design variable leading to

the nonlinear planform shape shown on the right-hand side of Fig. 6a. As seen in the same figure the optimizer

also removed all shocks. It also redistributed the load carried by each wing segment, see Fig. 7, resulting in

smooth spanwise and vertical force distributions. The final span e�ciency is 1.479; in comparison, according

to Frediani [35] the span e�ciency of a box wing of height-to-span ratio of 0.2 and no dihedral should be about
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1.47. The span e�ciencies are thus in excellent agreement. However, it should be noted that the e�ective

height-to-span ratio of the optimized configuration is in fact closer to 0.3 when accounting for the final angle

of attack of *5 degrees. This can be seen by comparing the height of the initial and final axial curves on

Fig. 6b. Also of particular interest on Fig. 6b is the final wake structure of the optimized configuration, which

has its number of vortex cores reduced to two down from four.

By reaching the lower bound of *5 degrees on the angle of attack, the optimizer e�ectively maximized

the vertical distance between the top and bottom wings when looking toward the out-of-plane axis (i.e. the

axis perpendicular to the plane passing through both wings). This is expected since for box wings the larger

the height-to-span ratio the larger the span e�ciency [5]. To investigate the impact of the angle of attack on

the solution, the same optimization was set up but without any bound on the angle of attack. Although this

second optimization resulted in considerably less drag, it eventually failed at an angle of attack of about *16

degrees. The failure was attributed to mesh movement problems caused by heavy twisting of the wings which

is necessary to satisfy the lift and trim constraints. Presumably, if the optimizer could, it would completely

realign the freestream along the out-of-plane axis so to maximize span e�ciency. Although of academic

interest this solution has of course no practical value.

In contrast to the span e�ciency, the force distributions shown in Fig. 7 may at first glance appear a little

surprising. The optimal force distribution of the box wing is generally shown as the sum of a constant and

elliptical lift distributions that is equally carried by the top and bottom wings, joined at their tips by butterfly-

shaped side-force distributions [5]. However, as remarked by Kroo [3], what this observation does not account

for is that a vortex loop of constant circulation can be superimposed on such a closed system without changing

its total lift and drag. This is indeed what is observed in Fig. 7: the force distribution is similar to the one

described above, only here it is slightly “shifted” onto the top wing. Given the gradient-based nature of the

optimization, this result is likely sensitive to the initial design and flow conditions, i.e. it corresponds to a

local optimum.

The remarkable capability of the box wing to adapt its optimal force distribution at virtually no perfor-

mance cost is confirmed in a recent study by Gagnon and Zingg [58], who also show that when trim, stability,

and root-bending moment constraints are included in the optimization problem then a box wing outperforms

a tube-and-wing by 17.8% more than when no such constraints are imposed.
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Fig. 8 Initial (gray) and optimized (black) pressure-coe�cient profiles of the box-wing configuration. Sections A–D

correspond to those of Fig. 6a.

As seen in Fig. 8, the flow field induced by the neighboring wings has a substantial impact on the wing

sections. Similar trends to those observed on the joined wing by Wolkovitch [59] are visible. First, whereas

the bottom wing is washed-out (the incidence at section B is less than at section A), the bottom wing is

washed-in (the incidence at section D is more than at section C). Second, the bottom wing (sections A–B)

incorporates more camber than the bottom wing (sections C–D).

C. Blended-Wing-Body Configuration

Inspecting Fig. 9a, the initial blended-wing-body configuration has shocks, both on the outboard wing

and in the transonically-stressed flow environment located inside its C-tip extension. For the optimization, a

total of 5 axial curves are used, visible in Fig. 2c: one going from the root of the centerbody all the way to the

tip, one for the vertical tip fin, one for the horizontal winglet, and two for the smooth corner transitions. All

the axial curves are positioned on the leading edge of their respective wing segment. There are a total of 29

FFD-volume cross sections, and section shape control is activated on each one of them, leading to 580 section

design variables (29 ù 20). Twist is linearly constrained between the root, midspan, and tip cross sections of

the centerbody-outboard segment, and also on the other wing segments between their tip cross sections, for a
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Fig. 9 Initial (left) and optimized (right) blended-wing-body configuration.

total of 7 e�ective twist design variables.

The blended wing-body is, in a sense, doubly unconventional with its C-tip extension. Unlike their planar

counterparts, the aerodynamics of C-tip blended wing-bodies have not received much attention in the past;

see [60] for a rare exception. Thus, the focus here is on the C-tip extension, more specifically on its top

horizontal segment. Originally, both its length and dihedral angle were allowed to vary, but the optimizer

invariably tried to eliminate it in favor of a higher vertical winglet, i.e. it wanted to “unfold” the C shape.

Another optimization was thus set up, where this time the horizontal segment could only vary in length. As

seen from the resulting planform in Fig. 9a, the optimizer still chose to reduce the horizontal segment’s length

as much as it could, suggesting that for a fixed vertical-gap-to-span ratio, the C-tip is not advantageous —

perhaps even disadvantageous — over a purely vertical winglet. Although surprising, a similar conclusion

was reached by Verstraeten and Slingerland [8] when comparing optimally-loaded wingletted and C wings

based on total drag.

As seen in Fig. 10, the spanwise force distribution on the centerbody of the blended wing-body remains
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Fig. 10 Initial (gray) and optimized (black) normal-force distributions of the blended-wing-body configuration.
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Fig. 11 Initial (gray) and optimized (black) pressure-coe�cient profiles of the blended-wing-body configuration.

Sections A–D correspond to those of Fig. 9a.

nonmonotonic after the optimization. Similar observations were made by Qin et al. [37], who attributed this

result to the compressibility e�ects arising from the lateral disturbances caused by the presence of a highly

tapered centerbody. Surprisingly, the horizontal winglet experiences a downward force at optimality, a finding

that is however consistent with those of others [3, 8, 61].
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Just as interestingly, as seen in Fig. 9b the optimizer partially merged the two tip vortices, thus reducing

the kinetic energy lost to the wake and therefore the induced drag. Similar to the box wing it also maximized

the vertical distance between the top and bottom wings (i.e. the e�ective height-to-span ratio) by reaching

the lower bound of *5 degrees on the angle of attack. Relative to this value the incidence angle of the

centerbody’s root section reached 2.1 degrees, thus favoring a reasonable deck angle at cruise. As seen in

Fig. 11 the incidence angles at the tip (sections C and D) are also small relative to the freestream, and similar

to the box wing the thickness-to-chord ratios are larger at the top (section D) than at the bottom (section C).

D. Braced-Wing Configuration

Shocks reside on most top surfaces of the initial braced wing despite its thin sections and relatively small

wing loading. Axial curves are assigned to wing segments in a similar fashion as in the previous three cases,

yielding 5 e�ective twist and 340 section design variables. The strut, being a purely structural member, is not

allowed to twist and has limited freedom in section shape changes. The extent of its vertical portion, however,

is allowed to change by plus or minus 0.1 root-chord units. The intent is to help the optimizer relieve the flow

passing through the wing-strut opening. Finally, with the exception of the section located at the wing-strut

junction, taper is activated on all 11 FFD-volume cross sections covering the main wing segments. Because

the axial curves are positioned on the wing’s trailing edge, the latter is ensured to remain straight as taper is

varied.

The flow on the optimized shape is remarkably well-behaved, as evidenced by the absence of shocks

and the much weaker trailing vortices on the right-hand sides of Fig. 12. Notice how the initial kink at 60%

semispan disappears, blended by a smooth leading edge.

Even more interesting is the fact that the span e�ciency of the full system is very close to unity despite

the strut carrying a negative (downward) force distribution over the entirety of its span; see Fig.13. However

counterintuitive it may seem, this solution is optimal: the overall lift distribution, i.e. when considering the

lift contribution from all surfaces, including those of the tail, is indeed very close to elliptical.

To investigate whether the download on the strut is due to a lack of geometric flexibility, the same opti-

mization problem was repeated but with the twist of the strut allowed to vary. The new solution (not shown

here) remained almost identical. This intriguing result may be explained by the transonic and compressible
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Fig. 12 Initial (left) and optimized (right) braced-wing configuration.
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Fig. 13 Initial (gray) and optimized (black) normal-force distributions of the braced-wing configuration.

nature of the flow. Indeed, it was found by Ko et al. [62] that the wing-strut opening e�ectively acts as a

nozzle, choking the flow at the minimum area between the top surface of the strut and the bottom surface

of the wing. Having nowhere else to go, the flow spills under the strut at higher velocities and thus lower

pressures thereby creating the downward force. Here the optimizer mitigated this nozzle e�ect by increasing
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Fig. 14 Initial (gray) and optimized (black) pressure-coe�cient profiles of the braced-wing configuration. Sections

A–D correspond to those of Fig. 12a.

the vertical extent of the strut as much as it could, i.e. by maximizing the nozzle area.

It is worth noting that the downward force on the strut acted in favor of the trim constraint. Consequently,

the optimizer did not contort the wing sections at the root as it did for the tube-and-wing. Still, as seen in

Fig. 14, the final wing sections are substantially di�erent from the initial ones.

IV. Conclusions

This paper presented the Euler-equation-based drag minimization of four distinct unconventional aircraft

configurations targeted at the regional market segment. The same gradient-based optimization framework

was used in each case in order to enable direct comparisons based on inviscid pressure drag. Relative to the

baseline tube-and-wing, it was found that the box-wing, C-tip blended-wing-body, and braced-wing configu-

rations investigated here produce respectively 34.1%, 36.2%, and 40.3% less induced drag.

The optimization results reinforced the realization that higher fidelity models than normally used are

required for the investigation and assessment of unconventional aircraft configurations. Here the Euler equa-

tions proved to be accurate enough to not only capture but also exploit the nonlinear flow features of each

configuration.
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For the tube-and-wing, the optimizer morphed a winglet out of a planar wingtip extension without user

intervention. It also applied significant side-forces to the winglet, in agreement with previous work stating

that such forces are essential for di�using the vortex at the tip. The final spanwise lift distribution is smooth

and close to elliptical despite the side-forces experienced by the winglet and the small negative lift carried by

the tail to trim the aircraft.

For the box wing, the optimizer reoriented the freestream angle of attack toward the out-of-plane axis of

the front and rear wings, thus increasing their e�ective height-to-span ratio and span e�ciency. It also adjusted

the optimal force distribution to meet the trim constraint without any apparent drag penalty. This unique

capability of the box-wing configuration to satisfy trim, stability, and possibly other requirements without

penalizing induced drag largely compensates for its slight underperformance relative to other unconventional

configurations of larger span such as the blended-wing-body and braced-wing configurations considered in

this study.

For the blended wing-body, the optimizer shrunk the horizontal segment of the C-tip extension as much

as it could, suggesting that when compressibility e�ects are accounted for a C-tip is not advantageous over

a vertical winglet of the same height. Since compressibility e�ects reduce with increasing winglet height, it

may be that this conclusion is unique to the configuration considered here.

For the braced wing, the optimizer easily satisfied the lift and trim constraints through minor twist and

section shape changes. It also opted to generate a downward force on the strut in order to mitigate the nozzle

e�ect in the wing-strut opening. However, by compensating with more lift on the wing, it still achieved an

almost perfect overall elliptical lift distribution.

This study provides a unique perspective on the influence of flow nonlinearity on induced drag and the

related implications for unconventional aircraft design. It does not, however, provide a definitive answer

as to which unconventional aircraft is most promising. To help answer such questions it is imperative to

also include the e�ects of viscosity and structures, among others, within the optimization problem. Such

optimizations will be the focus of future research.
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