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J. Gatsis * and D. W. Zingg T
Institute for Aerospace Studies
Unwversity of Toronto
4925 Dufferin St., Toronto
M3H 5T6, Canada

A fully-coupled Newton-Krylov algorithm is presented to solve aerodynamic design
optimization problems. The fully-coupled system consists of the discretized flow equa-
tions, adjoint equations, and optimality conditions. An inexact Newton method is used
to solve the discretized nonlinear system of equations. At each nonlinear iteration, the
linear system is solved using the generalized minimal residual (GMRES) method. Grid-
sequencing is used to accelerate start-up. A linesearch algorithm also governs the length
of the Newton update at start-up. In contrast to a gradient-based optimization method,
the flow system is converged only once in the fully-coupled algorithm. Inviscid, two-
dimensional airfoil design problems are studied with objective functions that include
inverse design and drag minimization. Results show that this algorithm is a fast option

for aerodynamic optimization.

Introduction

Computational fluid dynamics plays an essential role
in the design optimization of modern aircraft. Its use
can dramatically reduce design cycle time. Conven-
tional optimization algorithms are classified as either
search-based or gradient-based. While search-based
algorithms are able to handle a wide range of prob-
lems, they are slow because many flowfield solutions
are required and they are not efficient near an opti-
mum solution.! Gradient-based algorithms are more
efficient near the solution; however these algorithms
can also require a substantial number of flow solves.
Two popular forms of gradient-based optimizers are
based on sensitivity and adjoint approaches. The ad-
joint method can be implemented in a continuous? or
discrete® fashion.

The equations describing the discrete adjoint formu-
lation include the flow equations, the discrete adjoint
equations, and the optimality conditions. These are
equivalent to the Karush-Kuhn-Tucker (KKT) or nec-
essary first-order optimality conditions.* Golub and
Greif® describe some advanced techniques for solving
these equations. One of the most popular methods
for solving the KKT system is based on sequential
quadratic programming (SQP). Work by Jou et. al.®
uses a reduced space form of the classic Lagrange-
Newton method. Biros and Ghattas” and Feng and
Pulliam® also investigate the benefits of using SQP.
Work by Sung and Kwon® 19 involves tightly-coupling
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the system in order to reduce the cost of solving the
flow system repeatedly. Ta’asan'! solves the system
by marching each subsystem separately with a pseudo-
time parameter and using multigrid.

The objective of this paper is to introduce a new
algorithm which solves the equations described in
the discrete-adjoint formulation, including the adjoint
equations, the flow equations, and the optimality con-
ditions, in a fully-coupled manner. Since the equations
are solved simultaneously, only a single flow solve is
needed. The discretized system, now a system of
nonlinear algebraic equations, is solved using an ap-
proximate Newton-Krylov algorithm. A linesearching
algorithm is also used on the Newton update. Since the
same equations are being solved as the discrete-adjoint
method, if the optimum solution is unique, both algo-
rithms yield the same result. Local minima are also
the same for both methods.

The scope of this research is currently for two-
dimensional, single-element airfoil configurations sub-
ject to inviscid flow. However, the algorithm is not
restricted by any means to these problems. Further-
more, this research uses a finite-difference approach
on structured grids. Successful research in quasi-one-
dimensional nozzle shape design optimization has been
presented previously.!2

Governing Equations
Optimization Problem
We first define an objective function 7 (9, X). This
objective function can be based on the classic inverse
design problem or more general design optimization
problems, such as minimizing drag while maintaining
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a fixed lift. The variable Q defines the continuous
flowfield state. The design variables for the optimiza-
tion are given by the vector X, which contains the
ordinates of control points representing the airfoil ge-
ometry. B-splines are used to represent the shape. The
formulation follows the work of Nemec and Zingg.'?

We wish to minimize J(Q,X) subject to the flow
equations:

R(Q,X) = 0. 1)

Other constraints may be present and can be treated
in a variety of ways. An example is a geometric thick-
ness constraint. Rather than being included in the
formulation directly* or as penalty terms in the objec-
tive function,'* these constraints are incorporated into
the linesearching algorithm.

Flow Equations

For this paper, R(Q, X) is given by the steady Euler
equations governing compressible inviscid flow, which
are given in generalized curvilinear coordinates by

OE  OF

RQX) =36+ o

=0, (2)
where

g=Jgt| P4 |. (3)

The flux vectors are

pU
% - Uu+ &p
E = J 1 P
pUv + &yp
(e +p)U

pV
1| PVu+mp

F=J PV +1yp (5)
(e+p)V

where
U==E&u+&u, V=mnu+no (6)

are the contravariant velocities. The variable J repre-
sents the metric Jacobian of the transformation. It is
given by
-1
I = (@eyn — Tnye)- (7

The equations are non-dimensionalized by freestream
quantities.

The equations are then discretized on a computa-
tional grid and artificial dissipation is added giving

((SEE)j-F((SnF)j—f-D]‘:O, j=1...,N (8)

where the (d¢) and (d,) operators indicate second-
order central difference approximations to the deriva-
tives in the £ and 7 directions, respectively. N is

the number of nodes on the computational grid. The
boundary conditions and the nonlinear scalar dissipa-
tion model follow the method described by Pulliam.!®
The second- and fourth-difference dissipation coeffi-
cients are set here to k2 = 0 and k4 = 0.01 respectively.
Thus the discretized flow equations and boundary con-
ditions are

R(Q,X) =0 9)

where () is a vector containing the discretized flow vari-
ables.

Fully-Coupled Design Formulation

A Lagrange formulation is employed in deriving the
fully-coupled algorithm. Using the objective function,
J(Q,X), and the nonlinear system of flow equations,
R(Q,X), a new objective functional is defined as

L(Q,®,X) =R(Q,X)"®-7(Q,X), (10)

where the variables ® represent the discrete adjoint
variables and are equivalent to Lagrange multipliers.

The stationary values of (10) with respect to @, @,
and X yield the governing equations for the discrete
adjoint optimization problem. They include the origi-
nal flow equations (9), the adjoint equations

OR.y 07,
a0 °~ (ag

and the optimality conditions

( =0 (11)

OR 0T \r

(5)" @~ (55)7 =0. (12

The methodology for deriving these equations can be
found in Gunzburger.'¢

By combining these three equations, a coupled sys-
tem of nonlinear equations is created, given by

R
['(K) = (%) @—(% =0 (13)
(F%)® - (5%)"
where the state variables, K, are given by
Q
K={| & |. (14)
X

We let the length of the discretized flow variables,
@, be n, where n = 4N. The length of ® is also n.
The length of the vector of design variables, X, is m,
and m < n.

Objective Functions

For the inverse design problem, a desired pressure
distribution is given by Cp;.“ for all nodes, j, on the
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airfoil surface. The objective function is then defined

as
1

J@Q =5 Z(c,,j — )2 (15)
J
This is a special case for 7, since it is a function of
the flow variables only.

A more general design optimization problem is min-
imizing drag to a target value, while maintaining a
fixed lift. A versatile objective function that can be
used for this purpose is given by!”

J(Q,X)=w1JIp + w2 JL, (16)
where
2
g = L (1-&) om0y g
0 otherwise
p— CL ?
e (-8

and the weights, w; and ws, are positive fractions that
have a sum of unity. For all cases studied, Jp and J1,
are equally-weighted with w; = ws = .

Numerical Algorithm

An approximate Newton-Krylov algorithm is used
to solve (13) for K. The system is solved using a block
inversion algorithm which makes use of the generalized
minimal residual (GMRES) Krylov subspace method.
The startup procedure includes such features as grid
sequencing and a linesearching algorithm which also is
useful throughout the optimization.

Approximate Newton Method

At iteration n, an approximate Newton update for
K, is determined by solving

for AK,, where ©(K,) is an approximation to the
Jacobian of the system. The updated state becomes

Knp1 = Kn + anAK,. (20)

If a full Newton step is taken, then a,, = 1. If a
linesearch is required, then «,, € (0,1).
The exact system Jacobian is given by

O(K) = 62%{)

(21)

and is represented as a 3x3 matrix of rectangular and
square blocks

011 012 013
(")(K) = 621 055 0Oo3 , (22)
031 O3 033

where

012 = 0

b1y = oR

b = LTS ()]

b = GOl (29)
b2 = %[(S—S)TQ—(%)T]

031 = %[(g—)@)T‘I’—(g—J)T]

b2 = (5%)"

03 = Fxl(5%)"® - (3%)7]

Approximations to System Jacobian

The terms 613, 623, and 833 are calculated accurately
using finite differences. The cost is minimal, since this
requires only m evaluations of I'(K). The term 63
is approximately equal to §2;. Thus, in the algorithm
031 is given the value of 0{3. 032 is already calculated
from 6.

011, 622, and 02, are approximated in the system
Jacobian. The first two terms are the flow Jacobian
and its transpose. Their formulation follows the work
of Nemec.!® Finally, #; is approximated by dropping
the term %[(%)Tq’]-

Linesearching Algorithm

The linesearch algorithm serves two purposes: First,
it avoids erratic or large steps in the initial iterations of
the optimization and second, it makes efficient steps as
the optimizer nears the Newton zone of convergence.
Once a Newton update is computed, the linesearch
parameter, a,, is set to 1. If the updated state satisfies
all geometric constraints, such as minimum thickness
constraints, and also satisfies

[ T(Kn + anAK) [l2 < Bu | T(Kn) [l2,  (24)

then the update is permitted. However, if either con-
dition is violated, then a,, is reduced by half, and so
on. If the linesearching parameter reaches a predefined
minimum tolerance (e.g. 0.01) then the update is al-
lowed to proceed. The parameter 3, is set to 1 for the
entire optimization. It exists to combat more complex
problems in the startup procedure.

Once the optimization is within the Newton zone
of convergence, then the linesearching algorithm gen-
erally returns a value of o, = 1. More sophisticated
linesearching algorithms have been explored, such as a
backtracking linesearch algorithm.! However the halv-
ing linesearch algorithm is the most robust for a variety
of cases.
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Block Inversion Algorithm

The block inversion algorithm is simply a block
Gaussian elimination algorithm. It is derived in the
appendix. Figure 1 outlines the algorithm in 13 steps.
Steps 1 and 2 require the solution of m + 1 linear sys-
tems with the flow Jacobian on the left hand side.
Steps 7 and 8 require the solution m + 1 linear sys-
tems with the transpose of the flow Jacobian on the
left hand side. These solves are done approximately
using GMRES. Step 11 is the only other step where a
linear solve is required. Here, the system is solved ex-
actly using LU-factorization, since the system is only
size m.

GMRES and Preconditioning

For the systems with the flow Jacobian on the left
hand side, a matrix-free GMRES algorithm is used to
solve the system. However, a matrix-present GMRES
algorithm is necessary for the systems that have the
tranpose of the flow Jacobian on the left-hand side.

Without preconditioning, GMRES requires many it-
erations to converge, and possibly will not converge
at all. Incomplete LU (ILU) factorization precondi-
tioning is used to accelerate the convergence and to
increase the robustness for the GMRES algorithm. A
first-order approximation to the Jacobian is used to
generate the preconditioner, with outside dissipation
terms in the discretization stencil collapsed onto the
main diagonal. This follows the work of Pueyo and
Zingg.'® The level of fill required for the ILU precon-
ditioner is set for each grid individually. The algorithm
is converged for 2-3 orders of magnitude.

Reordering

Apart from the flow equations, the adjoint equa-
tions, and the optimality conditions, along with their
corresponding variables, @), ®, and X, which have
been ordered in a specific manner to efficiently im-
plement the block inversion algorithm, there is also an
important nodal reordering used to accelerate the con-
vergence of the GMRES algorithm. Reverse Cuthill-
McKee (RCM)'? reordering is used to decrease the
bandwidth of the linear subsystems in the block in-
version algorithm. The root node used for the RCM
algorithm lies on the downstream boundary.

Start up

The final element to the fully-coupled algorithm that
dramatically increases robustness and speed, is grid
sequencing. At startup, the optimization problem is
solved on coarser grids, and the results are passed on
to finer grids. Three grid levels are used. Flow and
adjoint variables are passed to finer grids using a sim-
ple averaging strategy. The design variable B-spline
control points are passed directly to the next grid and
the shape is interpolated for that grid. The coarser

grids are generated by removing even-numbered nodes
in each dimension from the next highest grid level.
This makes the passing of information to finer grids a
relatively simple task.

The other important element in the startup of the
optimization is the linesearching method. Erratic or
large steps in the initial iterations of the optimization
are avoided using the robust halving linesearch algo-
rithm.

Results

The CPU times reported in the following sections
are obtained on a 667-MHz Alpha 21264 processor
(SPECfp 2000 rating of 562 peak). The optimization
for all cases is performed using a C-topology grid with
245 x 41 nodes. Two coarser grids are also used in the
grid-sequencing startup that have 123 x 21 and 62 x 11
nodes respectively.

The restart value of GMRES is set to 60. For the
coarsest grid, the ILU preconditioner requires a level
of fill of 6. The finer grids require a fill of 7. GMRES
is converged for 2 orders of magnitude on the coarse
grid and 3 orders of magnitude on the finer grids. The
absolute tolerance for GMRES is set to 10714, In all
cases examined, GMRES does not reach the restart
value and averages roughly 10-25 inner iterations.

Three cases are examined. The classic inverse design
optimization problem is studied first. To ensure the
existence of a unique, attainable, optimum solution,
the target pressure distribution is taken from a geom-
etry which is also at the same flight conditions and is
interpolated using the same B-spline control point lo-
cations. The initial shape is a 15 B-spline control point
approximation of the NACAQ012 airfoil. Three control
points at the leading edge and four control points at
the trailing edge of the airfoil are fixed throughout the
optimization. The remaining 8 control points are the
design variables of the optimization. The target shape
is a B-spline representation of the RAE2822 airfoil us-
ing the 8 design variables that are free; the leading
and trailing edge control points remain fixed to the
NACAOQ0012 airfoil’s values. The first and second cases
are subsonic and transonic inverse design problems.
The third case involves drag minimization at fixed lift.
Here the initial shape is given by a NACA0012 airfoil.
The same 8 design variables are used as in the inverse
design cases.

Subsonic Inverse Design

The subsonic inverse design case is the first case used
to test the fully-coupled algorithm. The flight condi-
tions are a Mach number M = 0.3 and an angle of
attack a = 2°. The objective is to find an airfoil whose
surface pressure distribution matches the pressure dis-
tribution of a predefined target airfoil. In this case,
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the initial airfoil is the NACAQ012 airfoil and the tar-
get airfoil is the RAE2822 airfoil. Figure 2(a) shows
the initial and final shapes of the optimization. Figure
2(b) shows the initial and final pressure distributions.

The convergence of the flow, adjoint, and optimality
conditions are shown in Figures 2(c), 2(d), and 2(e)
respectively. The convergence of the flow system is
the fastest, while the convergence of the optimality
system is the slowest. It is believed that this is due
to the fact the flow equations are exactly linearized,
while the adjoint and optimality conditions are based
on the derivative of the flow equations with respect to
the state and design variables, which in some places
are approximated. The convergence time is roughly
15 minutes, although practical tolerances are reached
much earlier. The number of Newton iterations on the
finest grid is nineteen.

The objective function history is given in Figure
2(f). The objective function is driven to machine
zero, verifying that the target pressure distribution is
reached.

Transonic Inverse Design

This second case is identical to the previous case,
except the Mach number is increased to M = 0.74
making the flow regime transonic. The initial and final
airfoils are shown in Figure 3(a). The initial, target,
and final pressure distributions are shown in Figure
3(b). Since the dissipation parameter x» is set to zero
for all cases, oscillations exist in the vicinity of the
shock.

The convergence of the flow, adjoint, and optimal-
ity conditions are shown in Figures 3(c), 3(d), and
3(e) respectively. The optimization time for this case
is roughly 10 minutes, although practical results are
obtained much earlier. The objective function history
is shown in Figure 3(f). The target pressure distribu-
tion is matched correctly. Thirteen Newton iterations
are needed on the finest grid.

Drag Reduction at Fixed Lift

The third case involves drag minimization while
maintaining a fixed lift. The flight conditions are
the same as the transonic inverse design case with
M = 0.74 and a = 2°. The initial shape is given by
the NACAO0012 airfoil. In this case, the final design can
not be anticipated before the optimization is executed,
as opposed to the inverse design cases tested earlier.
The initial NACAO0012 airfoil at the given flight condi-
tions has lift and drag coefficients of C'y, = 0.4670 and
Cp = 0.0281 respectively. The target lift and drag co-
efficients are given by C7 = 0.4670 and C7}, = 0.0099
respectively. The reduction in drag is 65%.

Figure 4(a) shows the initial and final airfoils. The
corresponding initial and final pressure distributions
are given in Figure 4(b). The shock is not elimi-

nated. However the change in the pressure distribution
is enough to dramatically reduce drag, while maintain-
ing the initial lift.

The convergence of the flow, adjoint, and optimality
conditions are shown in Figures 4(c), 4(d), and 4(e).
The optimization time is approximately 42 minutes;
practical results are available much earlier. Finally,
the objective function history is given in Figure 4(f).
This case requires sixty-eight Newton iterations.

Conclusions

A fully-coupled algorithm for aerodynamic design
optimization has been presented. The algorithm is
governed by the same equations as the discrete adjoint
method; however it only requires a single flow solve.
An approximate Newton-Krylov algorithm is used to
solve the coupled system of equations, which includes
the discrete flow equations, the discrete adjoint equa-
tions, and the optimality conditions. The algorithm
provides a fast means for obtaining an optimum solu-
tion for airfoil shape design problems for Euler flows on
two-dimensional structured grids and can be applied
to more complex problems. One concern with respect
to the fully-coupled approach is that many optimiza-
tion problems involve multiple operating points. This
could lead to very large systems.
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Appendix
Block Inversion Algorithm

We wish to solve the block linear system

A B C AQ R
D E F A | = § (25)
G H I AX T

where bold face indicates matrices. Generally this lin-
ear system may be written as

JAK =T. (26)

Assuming the system is of the form seen in the Ja-
cobian of the fully-coupled algorithm for aerodynamic
design optimization, the following simplifications may
be done:

E = AT (27)
H = c’ (28)
B =0 (29)

where 0 is a zero matrix of the same dimensions as B.

The system is separated into three equations and, at
the moment, only simplification (29) is applied. The
resulting equations are

Equations (30) and (31) are of equal size and are much
larger then (32).

Intermediate variables are introduced along the way
and are denoted by the (') symbol. Isolating AQ in
(30) we have

AQ =R —-C'AX (33)
where . .
R' =A"'R (34)
and
C'=A"'C. (35)

Substituting AQ into (31) gives

EA® + F'AX =& (36)
where
F' =F -DC' (37)
and L .
S'=S-DR'. (38)
Substituting AQ into (32) gives
HA® + I'AX = T" (39)
where
I'=1-GC (40)
and L .
T =T-GR. (41)

Isolating A® in (36) we have

Ad =5"—F'AX (42)
where . .
S"=E"18 (43)
and
F' =E~'F'. (44)

Substituting A® into (39) gives

I'AX =T" (45)
where
I' =1 — HF" (46)
and . . _
T"=T"'—HS". (47)

Finally, (45) may be solved for AX using a direct
LU solve, since it is very small when compared to the
overall system size. Once AX is found, it may be
substituted into (42) and (33) to find A® and AQ
respectively.

AAC? +cAX = R (30) Although simplification (29) has been applied, this

- - S - inversion process is likely more expensive than (26).

DAQ+ EA(I)_’"}' FA)S 5_1 (31) However, once the simplifications (27) and (28) are

GAQ + HA® +IAX = T. (32 also applied, especially (27), this inversion process
6 oF 10
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becomes more advantageous. In the block inversion
process, three matrices need to be inverted: A, E,
and I". The structure of A and E is such that
an approximately-factored algorithm or Krylov solver
such as GMRES can be used to solve the system. The
reduction in cost is significant. Furthermore, since (27)
is true, E-! = (A~1)7, and only one inversion process
is required.

The block inversion process is summarized as fol-
lows:

Solve ATS" = §" for §"
Solve ATF" = F' for F"
9. I" =1 — HF"

10. T’// — T’/ _ Hg’//

11.  SolveI"AX = T" for AX
12. A3 =35"_F"AX

13. AQ=R -cC'AX

1. Solve AR' = R for R'
2.  Solve AC' =C for C'
3. F' =F -DC'

4. §=5-DR

5. T'=1-GC'

6. T'=T-GR

7.

8.

Fig. 1 Block Inversion Algorithm
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Fig. 3 Transonic inverse design case.
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Fig. 4 Drag reduction at fixed lift case.
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