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Abstract An adaptive geometry parametrization is presented to represent aerody-
namic configurations during shape optimization. This geometry parametrization tech-
nique is constructed by integrating the classical B-spline formulation with a knot
insertion algorithm. It is capable of inserting control points into a given parametriza-
tion without modifying the geometry. Taking advantage of this technique, a shape
optimization problem can be solved as a sequence of optimizations from the basic
parametrization to more refined parametrizations. Additional control points are in-
serted based on criteria incorporating sensitivity analysis and geometric constraints.
Example problems involving airfoil optimization and induced drag minimization demon-
strate the effectiveness of the proposed approach in comparison to uniformly refined
parametrizations.

Keywords aerodynamic shape optimization · adaptive parametrization · B-spline ·
knot insertion

1 Introduction

Motivated by the need to reduce jet fuel consumption and greenhouse gas emissions,
there is an increased interest in efficient aircraft with unconventional configurations.
Owing to the improvements in computational fluid dynamics (CFD) and high per-
formance computing capabilities, numerical aerodynamic shape optimization has be-
come a promising approach in designing novel aircraft. However, due to the com-
plex nature of aerodynamic design problems, numerical shape optimization remains
a costly task, and advanced optimization strategies are needed to improve its capabil-
ity of obtaining an optimal solution in an efficient manner.

One well recognized problem in aerodynamic shape optimization is attributed to
an excessive number of design variables. A number of authors (Andreoli et al 2003;
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Beux and Dervieux 1994; Martinelli and Beux 2008) have pointed out that the pres-
ence of a large number of design variables can result in poor performance for most
existing optimization algorithms. Thus, it is important that the geometry parametriza-
tion provide sufficient flexibility to produce a near optimal geometry without requir-
ing an excessive number of design variables. However, for general optimization prob-
lems, the designer has insufficient a priori knowledge to prescribe design variables
such that this requirement is satisfied. Particularly in the design of unconventional
configurations where design experience is limited, it is likely that a predetermined
geometry parametrization will limit the ability of an optimizer to achieve an optimal
geometry. A better alternative is to utilize an adaptive parametrization by strategi-
cally introducing design variables based on information gained from the optimiza-
tion process. In this approach, the overall optimization is organized as a succession
of optimizations with a continuously increasing number of design variables.

To achieve such an optimization sequence, the set of design variables should be
consistent, flexible, and easy to manipulate. Since the definition of the design vari-
ables is provided by a geometry parametrization, the parametrization is required to
progressively evolve as an optimization proceeds. Such a parametrization strategy
should satisfy the following two essential conditions:

1. Multiple parametrization refinements can be carried out in a consistent manner;
2. The geometry should not be changed as its parametrization is refined.

There exist a large variety of parametrization methods for aerodynamic applica-
tions (Samareh 2001; Castonguay and Nadarajah 2007; Nadarajah et al 2007). How-
ever, some techniques, such as the extended Joukowski transformation (Jones 1990)
and PARSEC (Oyama et al 2000), require predetermined design variables, so they
are not suitable for the proposed approach. Other commonly used methods, such as
discrete grid points (Mohammadi 1997), domain elements (Morris et al 2010), basis
shape functions (Song and Keane 2004; Robinson and Keane 2001), and polynomial
splines (Braibant and Fleury 1984) possess sufficient flexibility and can be considered
for modification into an adaptive parametrization.

Several authors have performed aerodynamic shape optimization with a changing
parametrization. For example, Beux and Dervieux (1994) presented a gradient based
multilevel optimization using surface grid point coordinates as design variables. They
defined a hierarchical parametrization by extracting different subsets of grid points
from the complete surface points forming a family of embedded levels. With this
nested parametrization, they proposed two optimization sequences: first, the opti-
mizations are conducted sequentially from the coarsest level to the finest level; sec-
ond, multigrid strategies are adopted. The optimizations are performed at the various
levels according to a full V-cycle sequence. Their results display an increase of op-
timization efficiency primarily due to the faster convergence by considering fewer
design variables in coarse parametrization levels.

Similar research has also been carried out by Desideri and colleagues (Desideri
2003; Andreoli et al 2003; Duvigneau et al 2006). In these works, Bezier curves
and volumes with degree elevation are used to define a multilevel parametrization
strategy, and a series of optimizations are carried out independently among differ-
ent parametrization levels following a prescribed sequence. They showed multiple
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test cases using both gradient-based and gradient-free optimization algorithms, and
demonstrated that considerable implementation efficiency gain can be achieved by
applying this strategy.

In this paper, an adaptive geometry parametrization is constructed based on an ex-
isting B-spline curve formulation for airfoils (Nemec and Zingg 2002) and a B-spline
volume parametrization for general three-dimensional geometries (Hicken and Zingg
2010a). The process consists of an initial B-spline approximation and a series of knot
insertions. The difference between this approach and the above mentioned methods
is that the knot insertion procedure is not unique due to the intrinsic properties of the
B-spline formulation. Therefore, parametrization refinements can be selected during
the optimization process. As a result, the proposed optimization is carried out se-
quentially from the initial parametrization to more refined parametrizations until the
objective function ceases to improve.

The rest of the paper is constructed as follows: Section 2 describes the B-spline
formulations; Section 3 briefly reviews the mesh movement algorithm, the flow solver
and the optimizer; Section 4 explains the optimization procedure associated with an
adaptive parametrization; Section 5 presents the results of sample optimization prob-
lems; finally, Section 6 concludes the paper and indicates areas for future work.

2 B-spline parametrization

A B-spline formulation uses the tensor product of polynomial basis functions and
corresponding coefficient vectors to analytically represent a geometry. Because the
basis functions are predefined in the parametric domain, the locations of the coef-
ficient vectors, known as control points, determine all possible shape deformations.
Hence these control points are naturally chosen as design variables for an optimiza-
tion. An adaptive parametrization based on a B-spline formulation has two stages:
first, the baseline geometry is converted into a B-spline representation with an initial
set of control points; second, the knot insertion algorithm is used to refine the existing
parametrization with more control points. The details of this procedure are presented
using an airfoil and a rectangular wing as examples.

2.1 B-spline curve: fitting an initial geometry

A planar B-spline curve is used to describe the surface of an airfoil. It is defined as a
mapping from the one-dimensional parametric space {ξ ∈ R} to the two-dimensional
physical space

{

Xa ∈ R2
}

of the following form:

X(ξ ) =
n

∑
i=1

di Ni,k(ξ ) (1)

where X(ξ ) is the B-spline curve. For a given airfoil defined by a set of points
{

P j, j = 1, . . . ,N
}

, the purpose of this procedure is to produce the B-spline curve
that best approximates the surface defined by these points for a given number of con-
trol points n; ξ is the parameter that is generated by mapping each surface point on
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the airfoil to a parametric domain; the coefficient vectors {di : i = 1, . . . ,n} are the
coordinates of the control points; the functions

{

Ni,k : i = 1, . . . ,n
}

are the normal-
ized polynomial basis functions of order k.

A few essential factors will significantly affect the quality of an approximation.
The choice of the mapping parameter is one of them. As denoted in the work of Kul-
fan (2008), for an airfoil with a round nose, the following centripetal parametriza-
tion (Farin 1990) gives a desirable leading edge geometry:

ξ1 = 0 (2)

ξ j =
n− k−1

LT

j−1

∑
m=1

√
Lm j = 2, . . . ,N (3)

where N is the total number of surface points on the airfoil, Lm is the segment length
between successive points, and the normalization factor, and LT is given by

LT =
N−1

∑
m=1

√
Lm (4)

The above mapping generates a parametric domain ξ ∈ [0,n− k − 1], and each
surface point on the airfoil is assigned a unique parameter. The subsequent step is to
define its corresponding knot vector. A knot vector partitions a parametric domain,
which directly determines the distribution of the polynomial basis functions. Many
authors (Tang and Desideri 2002; Hoschek and Lasser 1993) have experimented with
different choices. The cosine function adopted here enables a more accurate fitting of
the surface mesh nodes than equally spaced knots:

ti =































0 1 ≤ i ≤ k
n−k−1

2

[

1− cos
(

i−k
n−k−1 π

)]

k + 1 ≤ i ≤ n+k−3
2

n−k−1
2

n+k−1
2 ≤ i ≤ n+k+3

2
n−k−1

2

[

1− cos
(

i−k−2
n−k−1 π

)]

n+k+5
2 ≤ i ≤ n

n− k−1 n + 1 ≤ i ≤ n + k

(5)

Note the multiple knots appearing at the middle and two ends of the knot vector; they
ensure that one control point is placed at the leading edge of the airfoil and two con-
trol points coincide at the trailing edge. Because the multiplicity of a knot decreases
the continuity of the associated curve, the repeated knots at two ends result in a desir-
able sharp trailing edge, but the continuity reduction at the leading edge is unwanted.
To overcome this problem, two adjacent control points are placed colinearly with the
leading edge point, so that G1 continuity is restored. This amendment is performed
at the end of the approximation.

Once the parametric domain is defined and partitioned, the basis functions can be
deduced by a recursive relation (de Boor 1978) of the following form:

Ni,1(ξ ) =

{

1 if ti ≤ ξ ≤ ti+1

0 otherwise
(6)

Ni,k(ξ ) =
ξ − ti

ti+k−1 − ti
Ni,k−1(ξ )+

ti+k − ξ

ti+k − ti+1
Ni+1,k−1(ξ ) (7)
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Finally, the positions of control points have to be provided to complete the B-spline
curve approximation. The control points can be determined by solving the least
squares problem:

min
N

∑
j=1

||P j −X(ξ j)||2

This process can be further improved using an iterative parameter correction algo-
rithm proposed by Hoschek (1988), which optimizes the mapping parameter for each
surface point.

An example of an approximation using a 4th-order B-spline curve is shown in
Figure 1(a). The NACA0012 airfoil is approximated using 15 control points, and the
leading edge is handled by keeping three adjacent control points aligned.

2.2 Knot insertion

Adding control points to an existing B-spline curve is accomplished through a knot
insertion algorithm. Boehm (1980) demonstrated that a new knot can be added to an
existing knot vector without changing the shape of the corresponding B-spline curve.
Thus the geometry is preserved regardless of the number of control points. However,
if the new knot to be inserted already exists in the knot vector, then adding a repeated
knot creates the potential for a decrease in continuity. Therefore, inserting repeated
knots is avoided.

Inserting a new knot obeys the following procedure. Denoting the new set of
control points with a superscript ∗, if a knot t∗ is added to (tr,tr+1), the new control
points {d∗

i : i = 1, . . . ,r− k + 1,r + 1, . . . ,n + 1} retain the positions of the old control
points based on the local support property of the B-spline formulation:

d∗
i = di 1 ≤ i ≤ r− k + 1 (8)

d∗
i = di−1 r + 1 ≤ i ≤ n + 1 (9)

The new control points, {d∗
i : i = r− k + 2, . . . ,r}, are placed on the control polygon

formed by the old control points, {d∗
i : i = r− k + 1, . . . ,r}. The quantitative relation

can be deduced using the de Boor algorithm (de Boor 1978):

d∗
i = (1−αi)di−1 + αi di (10)

αi =
t∗ − ti

ti+k−1 − ti
(11)

The above procedure creates new control points located on the old control poly-
gon, but their exact coordinates are unknown in advance. If a user specified control
point d∗ between (dr,dr+1) is required, this procedure can be reversed to calculate
the required knot (Piegl 1989):

s =
d∗ −dr

dr+1 −dr
(12)

t∗ = tr+1 + s(tr+k − tr+1) (13)
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Fig. 1 B-spline parameterization of the NACA0012 airfoil. Plot (a) depicts the parametrized surface and
control points; plot (b) shows the refined parametrization with the additional control points.

Figure 1(b) uses the parametrized NACA0012 airfoil as an example. One knot in-
sertion takes place at the interval (t13,t14) on the upper surface, splitting this knot
interval into two parts that contain approximately the same number of parameters.
Another inverse knot insertion occurs on the lower surface, generating a new control
point located at x = 0.5. In both cases, the geometry is precisely maintained.

2.3 B-spline volume (for mesh movement)

The B-spline volume parametrization developed by Hicken and Zingg (2010a) is em-
ployed in the three-dimensional shape optimization problems. Instead of parametriz-
ing only the surface of the object, this approach represents the entire computational
grid with B-spline volumes and control points. Thus, the shape deformation is ac-
quired through the movement of the B-spline surface patches, and the corresponding
mesh movement is driven by the adjustment of the volume control mesh to conform
to the surface changes. The B-spline volume method is formulated by extending
planar B-spline curves into multi-dimensional space. This defines a mapping from
a parametric space,

{

ξξξ = (ξ ,η ,ζ ) ∈ R3 : (ξ ,η ,ζ ) ∈ [0,1]
}

to the physical space
{

X(ξξξ ) ∈ R3
}

. The tensor product representation is given as follows:

X(ξξξ ) =
ni

∑
i=1

n j

∑
j=1

nk

∑
k=1

di jk Ni,pi(ξ ) N j,p j(η) Nk,pk
(ζ ) (14)

Here, the B-spline volume, X(ξξξ ), and the control points, di jk, have analogous charac-
teristics to the B-spline curve and control points. However, the mapping parameter, ξξξ
is defined using a traditional chord length parametrization for the purpose of approx-
imating structured multi-block grids. The basis functions are defined separately for
each parameter. Theoretically, the orders of the basis functions are independent for
different parameters, but in practical applications, the order of polynomial basis func-
tions is usually set to be the same for each parameter to maintain the same continuity
condition. Hence, the order of the basis functions is denoted by p for the rest of the
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paper. The computation of the basis functions still refers to the recursive definition
but with spatially varying knot vectors. Taking basis functions in the ξ direction as
an example, they are given by

Ni,1(ξ ) =

{

1 ti(η ,ζ ) ≤ ξ ≤ ti+1(η ,ζ )

0 otherwise
(15)

Ni,p(ξ ) =

(

ξ − ti(η ,ζ )

ti+p−1(η ,ζ )− ti(η ,ζ )

)

Ni,p−1(ξ )

+

(

ti+p(η ,ζ )− ξ

ti+p(η ,ζ )− ti+1(η ,ζ )

)

Ni+1,p−1(ξ ) (16)

where the knot vector, ti(η ,ζ ), is a spatially varying function of parameters, η and
ζ . Its form can be arbitrarily set to accommodate different geometries, as long as
it remains non-decreasing. For structured grids consisting of hexahedra, a simple
bilinear form is used (Hicken and Zingg 2010a):

t(η ,ζ ) = t(0,0)(1−η)(1−ζ )+ t(1,0)η(1−ζ )+ t(0,1)(1−η)ζ + t(1,1)ηζ (17)

Here t(0,0), t(1,0), t(0,1) and t(1,1) are four edge knot vectors in the ξ direction,
and they are constructed to have roughly the same number of parameters in each knot
interval.

The initial B-spline volume control point coordinates are determined through a
least squares procedure analogous to that in Section 2.1 for fitting the surface mesh
nodes. For multi-block grids, consistent positions of control points at interfaces are
mandatory. Thus the least squares problem is solved sequentially for block edges,
surfaces, and volumes. The resulting B-spline volume control points are also referred
as a volume control mesh. Figure 2(a) shows the control mesh of a rectangular wing
with 7 control points in the spanwise and chordwise directions using 4th-order basis
functions and bilinear spatially varying knot vectors. During shape optimization, the
geometry is modified when the optimizer updates the coordinates of the B-spline
control points defining the aerodynamic surface. The B-spline volume control points
are subsequently moved according to the equations of linear elasticity (see Section
3). Finally, the volume mesh is updated by interrogating the B-spline volume at the
parameter values associated with the nodes of the initial mesh.

Creating a refined control mesh for an existing B-spline volume is also achieved
using the knot insertion algorithm. From Eq. 17, one can observe that the edge knot
vectors are spatially invariant; this implies that the knot insertion algorithm for B-
spline curves is still applicable to these edge knot vectors. Since the grids used in this
work consist of hexahedra, once the four edge knot vectors in the same direction are
refined simultaneously, all the other knot vectors in this direction can be subsequently
regenerated using Eq. 17. Hence, by re-solving the least squares problem, a new B-
spline volume can be established with a enlarged control mesh. Referring to the local
support property of the B-spline formulation, only some of the control points will be
altered on the edges, which implies that the change to the control mesh will be limited
to the corresponding sections. Figure 2(b) illustrates a control mesh refinement in the
spanwise direction (one more section is added).
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(a) initial control mesh (b) refined control mesh

Fig. 2 B-spline parameterization of a rectangular wing. The white spheres in plot (a) are the original
control points and the red spheres in plot (b) are the refined control points.

3 Overview of optimization routines

In order to perform an automated aerodynamic shape optimization, a set of analysis
and optimization routines are integrated together. The present optimization codes in
two and three dimensions contain the following essential components: 1) geometry
parametrization, 2) grid movement algorithm, 3) flow solver, 4) optimizer. Among
them, the geometry parametrization using a B-spline formulation is described in de-
tail in the previous section. A brief overview of the remaining routines is given here.

During an optimization, once the geometry is manipulated by the surface control
points, the surrounding computational grid has to conform to the new shape. Ne-
mec et al. (2004) proposed an algebraic grid movement algorithm that preserves the
location of the outer grid boundary and relocates the grid points in the normal direc-
tion proportional to the distance from the surface. This approach is demonstrated to
be robust and efficient for small shape changes. Truong et al. (2008) implemented
a mesh movement algorithm based on the linear elasticity equations with multiple
increments. This method is able to accommodate relatively large shape variation in
the optimization, but is rather computationally expensive. Hicken and Zingg (2010a)
integrated the linear elasticity grid movement algorithm with the B-spline volume
formulation such that the relatively coarse control mesh is moved by this algorithm,
and the fine computational grid is algebraically regenerated using the perturbed con-
trol mesh. Because usually there are two to three orders of magnitude fewer control
points than grid points, this approach is very efficient. In the present work, the al-
gebraic grid movement is used in the two-dimensional airfoil optimizations and the
linear elasticity grid movement is adopted in the three-dimensional wing optimiza-
tions.

To evaluate the aerodynamic performance of an existing geometry, a high fi-
delity flow solver is necessary. For a two-dimensional airfoil, an efficient Newton-
Krylov flow solver was developed by Nemec and Zingg (2002) to solve the Reynolds-
averaged Navier-Stokes equations with the Spalart-Allmaras turbulence model. Spa-
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tial derivatives in the governing equations are discretized by the second-order centred
finite-difference scheme, and temporal derivatives are neglected for steady flows. The
resulting flow residual equations are solved using a Newton-Krylov strategy. In the
solver for two-dimensional airfoils, the implicit Euler time marching method with ap-
proximate factorization is used to provide an initial value for the Newton iterations,
and the generalized minimal residual method is adopted to solve the linear systems.
In the three-dimensional optimization code, a parallel Newton-Krylov-Schur Euler
solver developed by Hicken and Zingg (2008) is used. This solver adopts a similar
Newton-Krylov strategy, but for the results presented in this paper, the start-up algo-
rithm is changed to the dissipation-based homotopy continuation (Hicken et al 2011),
and the Krylov solver is flexible GMRES with an approximate-Schur preconditioner.

The SNOPT computational package (Gill et al 2002) is used as the optimizer.
This algorithm handles constraints by forming a modified Lagrangian and solves for
the optimal point that satisfies the KKT optimality condition. It adopts a sequential
quadratic programming method; the quadratic subproblems are formed based on the
approximated Hessian of the Lagrangian using a full memory BFGS update, and the
solution of each subproblem is obtained using an active-set method (Gill et al 2006).
Since the Hessian approximation necessitates gradient evaluations, the gradients of
objective functions and constraints are computed using the well established discrete
adjoint method (Jameson 1988; Nemec et al 2004; Hicken and Zingg 2010a).

4 Optimization sequence

With the above numerical routines available, an automated optimization process can
be established with the aid of an adaptive B-spline parametrization. Since this adap-
tive parametrization is able to produce consistent geometry representations as the
number of control points gradually increases, the proposed process is executed in a
progressive manner (Figure 3): initially, an optimization is started with relatively few
control points; once it converges or is close to convergence, the geometry parametriza-
tion is refined, and the next optimization begins with more control points based on the
obtained geometry. This procedure repeats continuously until the final termination.
To clearly present the results, finding an optimized geometry each time is regarded to
be the completion of an optimization cycle.

Although this optimization process is carried out following a straightforward se-
quence, there are still some questions to be addressed during a practical implementa-
tion. First, the knot insertion algorithm can be performed at different knot intervals,
so the additional control points can be placed at various locations. To choose the ef-
fective control points among all the candidates, we have established the following
selection criteria:

1. The number of parameters in each knot interval should remain above a certain
threshold. Since the B-spline control points are locally supported, clustering ex-
cessive control points in a particular region would not lead to significant improve-
ment.

2. Local non-linear constraints, such as minimum thickness, critically impact the
movement of control points. If a constraint is inactive, it implies that there exists



10 Xiaocong Han, David W. Zingg

Fig. 3 Optimization sequence with adaptive parametrization

a feasible region in the design space, and adding control points at this location
has a large probability to outperform adding control points in a region with active
local constraints. Therefore preference is given to refinements which add control
points to the regions containing inactive local non-linear constraints.

3. The satisfaction of the linear constraints on the control point coordinates is manda-
tory. Any parametrization refinement violating the linear constraints is dropped
from consideration.

4. If there are multiple candidates remaining after considering the above require-
ments, the magnitude of the sensitivity with respect to the proposed new control
points is used as a measure of the potential improvement. The prospective control
points with the highest sensitivity are selected.

Second, parametrization refinement (i.e. increasing the number of design vari-
ables) occurs at regular intervals during the optimization process, but it is hard to
identify a clear signal that triggers this procedure. Some authors (Martinelli and Beux
2008; Beux and Dervieux 1994) argue that when the number of design variables is
small, relatively few optimization iterations are enough and full convergence is un-
necessary since these optimization cycles are only intermediate steps. However oth-
ers (Sherar et al 2007; Duvigneau 2006) point out that the optimizations at the first
few cycles should be driven sufficiently close to the optimal shape, so that the current
shape can provide a good start for subsequent optimizations. At the current stage, we
choose to perform a well converged optimization at each cycle for the following two
reasons:

1. Inclusion of additional design variables is necessary only if the existing design
variables are no longer able to improve the objective function. Thus, all the opti-
mizations involved in the process are driven toward convergence to make full use
of each existing design variable.
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Table 1 Geometric constraints for airfoil optimization

Constraints 1 2 3

Location (c) 0.96 0.99 -

Thickness (c) 0.006 0.0012 -

Area (c2) - - 0.07790

2. One selection criterion uses the magnitude of the sensitivity as a test of different
parametrization refinements. This is only valid if the optimization is fairly well
converged.

Moreover, terminating the optimization cycles also requires a criterion. As pointed
out in the work of Zingg et al. (2008), the benefit of introducing control points after a
certain threshold is marginal. Thus, this process is terminated if significant improve-
ments are not achieved over two consecutive optimization cycles. Other termination
conditions are also posed; they will be stated in the optimization problems.

5 Results

The proposed optimization sequence based on the adaptive parametrization is ap-
plied to several aerodynamic shape optimization problems. To demonstrate its effec-
tiveness, the same problems are also solved using varying numbers of control points
that are uniformly placed. Here “uniform” means that, for a two-dimensional airfoil,
its knot vector obeys the stated cosine function, and for a three-dimensional wing,
its knot vectors evenly partition the parametric domain. The results from these two
approaches are compared and discussed.

5.1 Airfoil optimization: lift-constrained drag minimization

The objective of this optimization is to minimize the drag coefficient of an airfoil
at a Mach number of 0.74 and a Reynolds number of 2.7 million in a fully turbu-
lent flow. The lift coefficient is kept constant at 0.733, and the geometric constraints
are listed in Table 1. The initial shape for the optimization is the RAE2822 airfoil.
The angle of attack is not treated as a design variable but adjustable to satisfy the
lift constraint (Zingg and Billing 2007). The computational grid has a “C” topology
with 289 nodes in the chordwise direction and 65 nodes in the normal direction. We
parametrize this initial geometry with 15 B-spline control points which are evenly
placed around the airfoil. Three points at the leading edge and two points at the trail-
ing edge are frozen to prevent translation and unrealistic curvature. The ordinates of
the remaining 10 control points serve as design variables.

In this problem, the area constraint affects every design variable, thus it behaves as
a global constraint. The thickness constraints only influence the nearby control points,
so they are referred to as local constraints. As discussed in Section 4, the activeness
of the local constraints is taken into account when implementing parametrization
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Fig. 4 Optimized geometry and pressure distribution of the airfoil optimization
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refinement and additional control points are preferred in the regions with inactive
constraints. Moreover, a geometric restriction is imposed to ensure that each knot
interval contains at least 5% of the total mapping parameters, and the entire process
is terminated when two successive optimization cycles result in negligible improve-
ment. Figure 4(a) displays the surface change and the inserted control points upon
the completion of the optimization. Figure 4(b) shows a comparison of the pressure
distributions. The shock is completely eliminated by the optimized airfoil, and the
drag coefficient is reduced by 29.7%.

The optimal solution is compared with a series of optimization results with vary-
ing numbers of control points uniformly distributed around the airfoil. Figure 5 de-
picts the objective function (drag coefficient) scaled by its initial value. In this figure,
a consistent reduction of the objective function is observed from the optimization
sequence with adaptive parametrization. Using 21 control points, the proposed opti-
mization sequence is able to reach an optimal solution that is comparable to the result
obtained using 27 design variables evenly around the airfoil.
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5.2 Planform optimization

The following problem investigates induced drag minimization for three-dimensional
finite span wings. According to the classical Prandtl lifting line theory (Anderson
2001), the induced drag coefficient is given by

CD =
C2

L

πΛe
(18)

Here, CD and CL are the induced drag and lift coefficients, respectively, Λ = b2/S

is the aspect ratio, b is the span, and S is the reference area. The value of the span
efficiency, e, depends on the shape of a particular configuration, and it is regarded as
a useful measure of induced drag reduction for different geometries. In theory, the
minimum induced drag for a planar wake occurs when the spanwise lift distribution
is elliptical, which produces e = 1.

A typical solution for induced drag minimization is by planform variation, i.e. de-
termination of the optimum spanwise variation of the chord length. The optimization
starts with a B-spline volume approximation of a 12-block flat-plate grid consisting
of 1.1 million nodes. Once the volume control mesh is generated, a rectangular wing
with a chord of 2/3, a semi-span of 2, and NACA0012 sections is formed as the base-
line geometry. The chord and span are non-dimensionlized by the chord length of the
flat-plate grid. The planform area S = 4/3 is used as the reference area for coeffi-
cient calculations, and remains fixed during the optimization. The freestream Mach
number is 0.5, and the lift coefficient is constrained at 0.35. The angle of attack is
considered a design variable, and its initial value produces the target lift coefficient
with the baseline geometry.

The initial parametrization for each block is 7× 7× 6. On the wing surfaces,
there are 7 control points in the chordwise and spanwise directions. To perform an
optimization through planform variation, all the control points except the ones on
the trailing edge are free to move in the chordwise direction, and the entire trailing
edge is fixed to reduce the impact of a nonplanar wake. The leading edge control
points possess complete freedom in the chordwise direction. Other interior points are
coupled with the leading edge control points to provide a scaling once the leading
edge changes. Therefore, the initial effective design variables are the 7 chord lengths
and the angle of attack. One additional box constraint is imposed to confine the wing
within −0.5 ≤ x ≤ 0.5, where x is the chordwise coordinate. The parametrization
refinement is formulated such that additional sets of control points are added at span-
wise stations. Hence, the number of effective design variables is gradually increased.
By experience, each knot interval is required to contain at least 15% of the total num-
ber of parameters in the spanwise direction, so that the B-spline control points lie
sufficiently far apart.

Figure 6 shows the planform deformation at each optimization cycle. As more
spanwise stations are added, the chord length variation becomes more significant in
the regions close to the root and tip. The lift distributions are plotted in Figure 7(a),
and it can be seen that the final lift distribution is close to the classical elliptical dis-
tribution for the most part but substantially different at the tip. This phenomenon has
been identified by Hicken and Zingg (2010b), who point out that the presence of
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Fig. 6 Planform deformation
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the sharp wing tip causes the vortex to release along the tip edge, which ultimately
results in a nonplanar wake. Nevertheless, the purpose of this example is to demon-
strate the effectiveness of the adaptive parametrization. Figure 7(b) plots the span
efficiency versus the number of spanwise control points for the adaptive and uniform
parametrizations (The optimization with 10 evenly placed spanwise control points
does not converge, thus it is not plotted). In terms of the span efficiency, the proposed
optimization sequence exhibits a consistent upward trend, achieving an increase of
2.4%. In contrast, the optimizations with uniform parametrizations do not receive
significant benefits from adding effective design variables, and their performance is
inferior compared to the adaptive counterpart with the same number of spanwise
control points. Finally, a span efficiency of unity is not quite achieved due to a small
numerical error in the drag coefficient.
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5.3 Winglet optimization

With regard to induced drag reduction, the effect of a non-planar structure has been
well recognized (Kroo 2001). In this problem, the optimization sequence based on
adaptive parametrization is adopted to investigate an optimal spanwise vertical struc-
ture that yields minimum induced drag. The baseline geometry is the same rectan-
gular wing used for the previous example. The freestream Mach number is 0.5, the
planform area, S = 4/3, is considered as the reference area, and the lift coefficient
is constrained at the value of 0.35. The angle of attack is fixed at 3.94321 degrees,
which ensures the baseline geometry satisfies the lift constraint.

Initially, the upper and lower surfaces of the wing are parametrized using 7 con-
trol points in the chordwise direction and 5 in the spanwise direction. The vertical
coordinates of the surface control points are free to move, and a box constraint is
imposed to confine the entire geometry within −0.2 ≤ z ≤ 0.2. To maintain the sec-
tion shape, the z coordinates of interior control points at each spanwise station are
associated with the corresponding leading and trailing edge points so that their ver-
tical position relative to the chord line is maintained. Also, the control points near
the wing tip are maintained in a consistent manner. The formed winglet can be either
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upward or downward with wavy surface details, but an abrupt change of the bend-
ing angles is avoided. This is done by defining the maximum dihedral and anhedral
between adjacent control points to be 145 and 35 degrees respectively. These rela-
tions are expressed in terms of linear constraints which effectively restrict the total
number of degrees of freedom; complete freedom is only given to the vertical coordi-
nates of the control points located at the leading and trailing edges. Consequently, the
parametrization refinement occurs along the spanwise direction, adding more effec-
tive design variables. The limitation on knot interval size still applies, which requires
that each interval should contain at least 20% of the total number of parameters in the
spanwise direction

Figure 8 shows an upward winglet produced during the optimization. The added
control points provide additional degrees of freedom to enable the winglet to be more
vertical than permitted by the initial parametrization. The last two refinements fail
to provide sufficient improvement, so the optimization is terminated with 9 spanwise
stations. The drag coefficient is reduced from 0.006730 to 0.005835, and the span
efficiency is increased from 0.9656 to 1.1137. This result is compared to the optimal
solutions if control points are uniformly distributed in Figure 9, which shows that the
optimization sequence based on adaptive parametrization reaches a better optimum
with fewer design variables.

5.4 Box-wing optimization

Another nonplanar geometry for induced drag reduction is a box-wing. In this exam-
ple, the adaptive parametrization is applied to a box-wing configuration. The baseline
box-wing geometry has a semi-span of 3.0, a chord length of 1.0, and NACA0012
sections. The initial height to span ratio is 0.105. The geometry is embedded in a
6-block grid consisting of roughly 6.02×105 nodes, and this grid is initially approx-
imated using B-spline volumes with 9 control points in the chordwise direction and
5 in the spanwise and vertical directions. The planform area considering the contri-
bution from two horizontal wings is 5.87; it is used as the reference area and is con-
strained to this value during the optimization. The imposed lift constraint requires a
lift coefficient of 0.25. The angle of attack is fixed to reduce the chance of non-unique
optimal designs, and its value is chosen to meet the lift constraint with the baseline
geometry.

The control points along the horizontal wings are allowed to move in the vertical
direction, and the control points on the vertical plate are free to move in the spanwise
direction. The y coordinates of control points at the horizontal wings are linearly in-
terpolated using the coordinates of the root and junction. Similarly, the z coordinates
of control points at the vertical plate are scaled by the upper and lower junctions.
For control points in the same section, linear relations are established to couple them
with the leading and trailing edges. Thus only the leading and trailing edge control
points have complete freedom. In addition, dihedral and anhedral angle limitations
are defined between successive control points, so no abrupt bending is allowed. At
the junctions of the horizontal wings and the vertical plate, control points are extrapo-
lated based on adjacent sections including the points at the leading and trailing edges.
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Fig. 10 Shape changes of the Box-wing optimization

Besides these couplings, a box constraint is imposed to restrict the entire geometry
within 0 ≤ y ≤ 3,−0.315 ≤ z ≤ 0.315. The parametrization refinements occur along
the span and the vertical plate; additional sections are simultaneously inserted at the
upper and lower horizontal wings as well as the vertical plate.

Figure 10 shows the geometry deformation at the end of each cycle. The process
ceases after cycle 5 because further parametrization refinements are not able to satisfy
the predefined linear constraints. Since the adopted grid is relatively coarse, the ob-
tained optimal solutions are recomputed using a refined grid with 4.8 million nodes.
The span efficiency of different parametrizations is depicted in Figure 11. From this
plot, one can see that the optimization based on adaptive parametrization gains a
small benefit from the added design variables, while its uniform counterparts do not
exhibit much dependence on the enriched design variables. This confirms the effec-
tiveness of critical design variables, and the capability of the proposed optimization
sequence is reinforced.

5.5 Wing optimization using adaptive constraints

The last problem is an exploratory example. Its objective is to use the established
optimization sequence to produce a complete wing design which is not limited to
designated geometry changes. Thus, a large number of control point coordinates are
treated as independent design variables, and no effective variables are specified.

The baseline geometry, reference area, lift constraint and operating conditions are
identical to the planform optimization problem. The initial parametrization places 6
control points in the chordwise direction and 5 in the spanwise direction on both the
upper and lower surfaces of the wing. In order to reduce the possibility of multiple
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Fig. 11 Box-wing optimization

local optima, the angle of attack is constrained to 3.939685 degrees which generates
the target lift coefficient with the baseline configuration.

Even though this optimization seeks significant shape manipulation, not every
single control point coordinate possesses complete freedom. The following linear
equality constraints are imposed: 1) The control point at the root section trailing edge
is fixed to eliminate translational motion. 2) The y coordinates of the control points
on the symmetry plane (the root section control points) are frozen. 3) The interior
control points of each spanwise station attain their x coordinates by interpolating the
corresponding leading and trailing edge points. 4) The y coordinates of the interior
control points at every chordwise station are interpolated between the corresponding
root and tip points.

The remaining control point coordinates serve as the design variables and are
manipulated by the optimizer. However, convergence difficulties occur when a large
quantity of unbounded design variables are present. Therefore, to facilitate conver-
gence, each individual control point coordinate is assigned adjustable bounds using
a set of linear inequality constraints, and these bounds are gradually loosened during
successive optimization cycles. A summary of the inequality constraints is provided
below:

1. At the tip section, the trailing edge control point is related to the leading edge
control point as follows:

|xT E − xLE − c| ≤ ∆x |yT E − yLE | ≤ ∆y |zT E − zLE | ≤ ∆z1

where c is the initial chord length. ∆x = 1
4 c, ∆y = 0.1, and ∆z1 = 0.1 are the initial

offsets.
2. At the root section, the leading edge control point is associated with the trailing

edge control point:

|xT E − xLE − c| ≤ ∆x |zT E − zLE | ≤ ∆z1

3. The coordinates of interior leading and trailing edge control points are defined
based on their corresponding root and tip points:

|x− (1− rk)xroot − rkxtip| ≤ ∆x |z− (1− rk)zroot − rkztip| ≤ ∆z1
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Table 2 Surface parametrization and span efficiency of each optimization cycle

Cycle Number of chordwise CPs Number of spanwise CPs Span efficiency

Initial 6 5 0.9302

1 6 5 1.0752

2 6 6 1.0854

3 7 6 1.0989

4 7 7 1.1002

5 8 7 1.1181

6 8 8 1.1219

where k is the spanwise index of the interior control points, and
rk = |y− yroot|/|ytip − yroot|.

4. The interior control points on the wing tip edge are coupled with its leading and
trailing edge points:

|y− (1−λ j)xLE −λ jxT E | ≤ ∆y |z− (1−λ j)zLE −λ jzT E | ≤ ∆z1

where j is the chordwise index of the interior control points, and λ j = |x −
xLE |/|xTE − xLE |.

5. The interior control points of inboard sections are free to move in the vertical
direction within the following bound:

|z− (1−λk)zLE −λkzT E −h| ≤ ∆z2

where k is the spanwise index of the inboard sections, h is the initial vertical
distance relative to the chord line, and λk = |x− xLE |/|xT E − xLE |. The offset ∆z2

is set to be 0.02.
6. A global box constraint is imposed to confine the entire configuration within |x| ≤

2/3, |y| ≤ 2.2 and |z| ≤ 0.22.

The loosening of the control point bounds is achieved by increasing the linear con-
straint offsets. At the end of each optimization cycle, all the inequality constraints
are examined. If one constraint becomes active, its offset is increased by half of the
initial value.

The adaptive parametrization refinements also take place as the optimization pro-
ceeds. Additional control points are inserted in both chordwise and spanwise direc-
tions. However, adding points close to the trailing edge is excluded to prevent exces-
sive manipulation of the trailing edge region. As a result, this proposed optimization
process not only gradually increases the number of design variables but also progres-
sively loosens the constraints on the design variables.

The shape deformations at the end of optimization cycles are shown in Figure 12, and
the flow analysis of each optimal geometry is recomputed on a fine grid consisting
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Fig. 12 Geometry deformation as the parametrization is gradually refined and the constraints are progres-
sively released

of 74 million nodes. Table 2 summarizes the evolving parametrization and the cor-
responding span efficiency. It can be easily noticed that substantial improvement is
obtained in the first cycle, which is mainly attributed to the increase of the span and
the generation of the nonplanar geometry. Upon the completion of cycle 1, the span
efficiency increases by 15.6%. The following cycles introduce three control points in
the spanwise direction and two points in the chordwise directions. The appearance of
these additional design variables reinforces the vertical structure so that the nonpla-
nar effect becomes more prominent. Moreover, sectional variations are also distinct,
and a complex twisted shape emerges at the region close to the wing tip. Besides the
effect of new control points, the planform variations are primarily due to releasing
the boundaries of the design variables. As can be seen from the planform shape of
cycles 2 to 6, the chord length of the wing tip progressively increases from 0.5777 to
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1.0833, while the root chord decreases from 0.5 to 0.3105. Of course, the resulting
geometry is undoubtedly far from optimal from an aerostructural point of view, but
structural considerations, e.g. wing weight, are ignored here. Finally, from cycle 2 to
cycle 6, the span efficiency is further increased by 4.3%, which reveals the potential
of using the present adaptive geometry parametrization to investigate unconventional
configurations.

6 Conclusion

In the present work, a B-spline approximation method is coupled with a knot inser-
tion algorithm to form an adaptive geometry parametrization algorithm for aerody-
namic shape optimization. This algorithm is able to provide a gradually increasing
number of design variables for shape optimization problems. An optimization se-
quence taking advantage of this feature is presented that continuously adds critical
design variables to improve the design objective. Several aerodynamic shape opti-
mization problems have been solved using this proposed process, and the results are
compared with solutions obtained from optimizations with uniform parametrizations.
These comparisons consistently demonstrate that the optimization based on the adap-
tive parametrization is more efficient in achieving a better design with fewer design
variables. This research opens up numerous avenues for future work. For example,
the adaptive parametrization can be applied to further exploratory aerodynamic shape
optimization problems and to multidisciplinary optimization. Moreover, the idea of
gradually loosening linear constraints has the potential to aid in converging difficult
optimization problems.
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