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We present a parallel Newton–Krylov algorithm for solving the three-dimensional Euler equations on multiblock

structured meshes. The Euler equations are discretized on each block independently using second-order-accurate

summation-by-parts operators and scalar numerical dissipation. Boundary conditions are imposed and block

interfaces are coupled using simultaneous-approximation terms. The summation-by-parts with simultaneous-

approximation-terms approach is time-stable, requires only C0 mesh continuity at block interfaces, accommodates

arbitrary block topologies, and has low interblock-communication overhead. The resulting discrete equations are

solved iteratively using an inexact-Newton method. At each Newton iteration, the linear system is solved inexactly

using a Krylov-subspace iterative method, and both additive Schwarz and approximate Schur preconditioners are

investigated. The algorithm is tested on the ONERA M6 wing geometry. We conclude that the approximate Schur

preconditioner is an efficient alternative to the Schwarz preconditioner. Overall, the results demonstrate that the

Newton–Krylov algorithm is very efficient: using 24 processors, a transonic flow on a 96-block, 1-million-node mesh

requires 12 minutes for a 10-order reduction of the residual norm.

I. Introduction

S TATE-OF-THE-ART flow solvers are capable of finding
accurate solutions for flows with moderate separation [1,2];

however, run times remain a problem for three-dimensional
configurations, especially for applications such as unsteady flows
and shape optimization. This motivates the development of efficient
parallel flow solvers. Although serial solvers will continue to have a
role in, for example, preliminary design, improvements in parallel
computing architectures and libraries fuel interest in ever more
complex large-scale problems. In this paper, we describe an
algorithm to tackle such problems: an algorithm that combines a
technique for handling block interfaces and boundaries (simulta-
neous-approximation terms) with a solution strategy (Newton–
Krylov) to produce an efficient parallel solver.

Our choice of grid type and discretization is based on experience
with serial two- and three-dimensional flow solvers [3–5]. The
semistructured, or multiblock, approach provides the flexibility to fit
complex shapes while permitting accurate and efficient discretiza-
tions. In particular, multiblock finite difference discretizations can be
readily extended to high-order schemes.

Despite their apparent simplicity, multiblock finite difference
schemes present some challenges that must be addressed. Consider
the discretization at nodes along a block interface. If we use the inter-
ior discretization for the interface nodes (for example, through halo
nodes), then the mesh must be sufficiently smooth at the interface to
maintain the desired accuracy. This often motivates the use of ellip-
tic smoothing; however, although elliptic smoothing can improve
the grid continuity between blocks, it cannot eliminate mesh singu-
larities along edges and vertices that are inherent in the geometry or
the block topology. Resolving these singularities (via isotropic mesh
spacing, for example) is inefficient and unnecessary. Finally, the

requirement for smoothness in the interface-normal direction places
significant restrictions on how the mesh can be refined: one cannot,
for example, refine one block independently of another.

Another issue posed bymultiblock finite difference schemes is the
discretization at points along edges and vertices of the blocks. At
these points, the coordinate directions are either nonsmooth, as
already discussed, or ambiguous: consider an edge on which only
three blocks meet. An accurate and stable treatment of these
exceptional points is not obvious, even for second-ordermethods. As
the order of accuracy of the scheme increases, more points are
exposed to this difficulty. In parallel computations, the exceptional
points can introduce additional difficulties that diminish the appeal of
finite difference schemes.

The problems associated with block interfaces and exceptional
points can be eliminated with summation-by-parts (SBPs) operators
and simultaneous-approximation terms (SATs). The SAT method-
ology was originally developed to enforce boundary conditions in an
accurate and time-stable manner [6], but the method has also been
extended to handle domain interfaces [7–9]. SATs have been
successfully used by Mattsson et al. [10] for third- and fifth-order
discretizations of the Euler equations. High-order SBP–SAT
methods retain the advantages of the second-order scheme described
here (C0 mesh interfaces, time-stability, and exceptional point
treatment) without the increasing communication overhead that is
typical of halo approaches. This paper introduces the SBP–SAT
discretization and focuses on the solution strategy; a future paperwill
consider high-order SBP–SAT algorithms.

Coupling blocks with SAT penalties has been shown to
significantly reduce the maximum stable Courant–Friedrichs–Lewy
(CFL) number for explicit schemes [11,12]. This suggests that a
Newton–Krylov solution strategy may be well suited to SAT
discretizations. For serial computations, Newton–Krylov solution
strategies have proven to be efficient, both in flow simulation [5,13–
18] and optimization [4,19]. There are also many examples
demonstrating that the excellent serial performance of Newton–
Krylov algorithms can be extended to parallel algorithms [20–24].

Krylov solvers are readily parallelizable, with the possible
exception of the preconditioner. The preconditioner poses a
difficulty, because many of the best serial preconditioners tend to be
inefficient when parallelized directly [consider, for example,
incomplete lower/upper factorizations (ILU) [25]] andmany parallel
preconditioners tend to scale poorly. In the current work, we evaluate
an additive Schwarz preconditioner [25] and an approximately
factored Schur-complement preconditioner [26].
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The paper is organized as follows. Section II focuses on the
governing equations and their discretization. In particular, we
summarize the use of SBP operators and SATs for one-dimensional
problems. In Section III, we review the Newton–Krylov method for
solving the nonlinear equations and the resulting distributed linear
systems. Results are presented in Section IV, including an
assessment of the discretization and a comparison of the parallel
preconditioners. Conclusions can be found in Section V.

II. Governing Equations and Discretization

A. Transformed Euler Equations

We consider the three-dimensional Euler equations:

@tQ� @xiEi � 0 (1)

where �x1; x2; x3� � �x; y; z�,
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and where �ij is the Kronecker delta. Our objective is to solve for the
conservative flow variables Q on multiblock structured grids; thus,
we consider diffeomorphisms of the following form:

x � F���; F: D! P and F 2 C1 on Dn@D
D� f� 2 R3j�i 2 �0; Li�; i� 1; 2; 3g

The hexahedral domain D represents one block in computational
space. Applying the diffeomorphism, the Euler equations become

@tQ̂� @�iÊi � 0 (2)

where ��1; �2; �3� � ��; �; ��,
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The scalar J denotes the Jacobian of the mapping, and Ui are the
contravariant velocities defined by Ui � uj@xj �i.

The discretization of the transformed Euler equations (2) is
performed independently on each computational block using
second-order centered differences in the interior and first-order one-
sided differences at the block sides. Boundary conditions are
introduced and blocks are coupled using SATs [6]. Section II.B
introduces the SAT methodology in a one-dimensional setting; the
results can be extended to three dimensions using Kronecker
products (see, for example, Nordström and Carpenter [9]).

B. Discretization for One-Dimensional Problems

In an effort to keep our presentation self-contained, this section
summarizes SBP operators and SATs applied to one-dimensional
problems: specifically, constant-coefficient advection and the quasi-
one-dimensional Euler equations. For further information on SBP
operators and SATs, we direct the reader to the literature on these
topics [6,8–10,27–29].

1. Summation-By-Parts Operators

In both the boundary and interface cases, the SATmethod relies on
difference operators that satisfy a discrete SBP property. The
difference operator P�1Q is an SBP operator if it satisfies the
following three properties [27]:

1) The vector of discrete derivatives ux has the form

P ux �Qu� 0; P@xv �Qv� PT

where u is the discrete solution vector, v is the exact solution
evaluated at the node locations, and T is the truncation error. For an
mth-order operator, the truncation error satisfies k T k �O��xmmax�.
This form of discrete first derivative encompasses both compact and
noncompact schemes.

2) The matrix P is symmetric positive definite. In particular,

c�x � ��P� � C�x

where ��P� denotes an eigenvalue ofP, and c andC are real positive
constants that are independent of the number of grid points.

3) The matrix Q is nearly skew-symmetric in the sense that
Q�QT �D, where D is a diagonal matrix of the form
D� diag��1; 0; . . . ; 0; 1�. Furthermore, Q0;0 �� 1

2
and QN;N � 1

2
.

The SBP definition encompasses operators of all orders; however,
for the present work, we consider only second-order operators. Note
that the standard second-order centered-difference operator with
first-order differences at the boundaries is an SBP operator if we
define

Q � 1

2

�1 1

�1 0 1

�1 0 1

. .
. . .

. . .
.

�1 0 1

�1 1

2
6666664

3
7777775

P �

�x0
�x1

. .
.

�xN

2
6664

3
7775

where �x0 � �x1 � x0�=2, �xN � �xN � xN�1�=2, and
�xi � �xi�1 � xi�1�=2 (i� 2; 3; . . . ; N � 1).

2. Constant-Coefficient Advection

The SATmethod adds a penalty term that forces the solution at the
boundary or interface toward the desired value. To introduce the
method, we consider a constant-coefficient one-dimensional linear
advection problem:

@tu� a@xu� 0 (3)

where a is the advection speed. Equation (3) is discretized on the
mesh x� �x0; x1; . . . ; xs; xs�1; . . . ; xN�T with N � 1 points and an
interface at xs � xs�1 (see Fig. 1). For simplicity, we will apply the
SATs at the interface only; the application of SATs for the boundary
conditions is similar [6].

Let the discrete solutions on the left and right domains be uL �
�u0; u1; . . . ; us�T and uR � �us�1; us�2; . . . ; uN�T , respectively. The
systems to be solved on each domain are

P L@tuL � aQLuL � �1�us � us�1�eL (4)

P R@tuR � aQRuR � �2�us�1 � us�eR (5)

Note that the unit vectors eL � �0; 0; . . . ; 1�T and
eR � �1; 0; . . . ; 0�T have lengths of s� 1 and N � s, respectively.

The terms appearing on the right-hand sides of Eqs. (4) and (5) are
the penalty terms that couple the two domains. For smooth solutions,
they introduce no truncation errors because the points coincide.
Therefore, although the discrete solution may develop a
discontinuity at the interface, this will not affect the global order of
accuracy. As an aside, if wewere applying a boundary condition at xs
rather than an interface condition,us�1would be replacedwithuBC in
Eq. (4), in which uBC is the appropriate boundary value of u.
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The coefficients �1 and �2 are determined using time-stability and
conservation arguments. First, consider conservation. Premultiply-
ing Eq. (4) by the constant vector 1� �1; 1; . . . ; 1�T and ignoring
boundary contributions, we obtain

1 TPL@tuL � a1TQLuL � �1�us � us�1�1TeL
d

dt
�1TPLuL� � a1T�DL �QT

L�uL � �1�us � us�1�

d

dt
�1TPLuL� � auTLQL1� �1�us � us�1� � aus

d

dt
�1TPLuL� � �1�us � us�1� � aus

Note thatuTLQL1� 0, because the constant vector is in the null space
of QL. Adding a similar expression for the right domain, we find

d

dt
�1TPLuL � 1TPRuR� � �us � us�1���1 � �2 � a� (6)

We want the right-hand side of Eq. (6) to vanish for global
conservation. In general, us and us�1 will not have the same value.
Thus, to ensure conservation on the whole domain, expression (6)
implies

�2 � �1 � a (7)

Relation (7) has also been shown to hold for nonlinear fluxes using a
weak form of conservation [8].

To further fix the penalty parameters, a time-stability requirement
is imposed. Consider the time evolution of the norm:

kuk2P � uTLPLuL � uTRPRuR

Premultiplying Eq. (4) from the left by uTL and adding the transpose,
we find

d

dt
�uTLPLuL� � auTL�QL �QT

L�uL � 2�1�u2s � usus�1�

d

dt
�uTLPLuL� � auTLDLuL � 2�1�u2s � usus�1�

d

dt
�uTLPLuL� � 2�1�u2s � usus�1� � au2s

Adding a similar expression for the right domain, we obtain the
following energy estimate:

d

dt
kuk2P � � us us�1 �

2�1 � a ���1 � �2�
���1 � �2� 2�2 � a

� �
us
us�1

� �
(8)

The eigenvalues of the symmetric matrix on the right-hand-side of
Eq. (8) are �1 � 0 and �2 ��2a� 4�1. To ensure that the norm
does not grow with time, we need �2 � 0, which implies �1 � a

2
. To

satisfy this stability requirement, as well as conservation
requirement (7), we tentatively adopt the following values for �1
and �2, although other choices are possible:

�1 � 0; �2 ��a if a 	 0

�1 � a; �2 � 0 if a < 0 (9)

If we use Eq. (9) without modification, both penalty parameters
vanish ifa� 0. This can cause problems if the interface is located at a
sonic or stagnation point; thus, in analogy with Swanson and
Turkel’s [30] matrix dissipation model, we propose limiting the
penalty parameters as follows:

�1 ��1
2
�max�jaj; V� � a�; �2 ��1

2
�max�jaj; V� � a� (10)

where V > 0 is a constant. These values of the penalty parameters
satisfy conservation requirement (7). What about time stability? If
jaj 	 V, then�2 ��2jaj< 0 as required.Moreover, if jaj< V, then
�2 ��2V < 0, and so the penalty parameters defined by Eq. (10)
ensure stability. Notice that the SAT penalties are activated
depending on the direction of wave propagation.

3. Quasi-One-Dimensional Euler Equations

In this section, we review the use of SBPoperators and SATswhen
discretizing the Euler equations. Consider the (transformed) quasi-
one-dimensional Euler equations applied to a converging–diverging
nozzle:

@tQ̂� @�Ê � Ĝ� 0 (11)

where

Q̂� 1

J

�S
�uS
�ES

0
@

1
A; Ê� 1

J

�x�uS
�x��u2�p�S
�x�uHS

0
@

1
A; Ĝ� 1

J

0

p@xS
0

0
@

1
A

J� �x � �x���1 is the metric Jacobian, and S is the nozzle area.
Suppose that the one-dimensional domain is divided into two

subdomains. As before, assume that the grid points are located at
x� �x0; x1; . . . ; xs; xs�1; . . . ; xN�T , and let xs � xs�1 define the
interface between the two subdomains. The semidiscrete form of
Eq. (11) becomes

�PL 
 I 3�@tqL � �QL 
 I 3�fL � �PL 
 I 3�gL ��L

�PR 
 I 3�@tqR � �QR 
 I 3�fR � �PR 
 I 3�gR ��R

(12)

where I 3 is the 3 � 3 identity matrix and

q L � �Q̂
T
0 ; Q̂

T
1 ; . . . ; Q̂

T
s �T; qR � �Q̂

T
s�1; Q̂

T
s�2; . . . ; Q̂

T
N�T

fL � �ÊT
0 ; Ê

T
1 ; . . . ; Ê

T
s �T; fR � �ÊT

s�1; Ê
T
s�2; . . . ; Ê

T
N�T

gL � �Ĝ
T
0 ; Ĝ

T
1 ; . . . ; Ĝ

T
s �T; gR � �Ĝ

T
s�1; Ĝ

T
s�2; . . . ; Ĝ

T
N�T

The subscript denotes the location of the variable or flux [e.g.,

Q̂i � Q̂�xi�]. The operator 
 denotes the Kronecker product for
matrices: if A 2Mm�n and B 2Mp�q, then C� A
 B 2Mmp�nq

is defined by

Cp�i�1��k;q�j�1��l � AijBkl

The penalty terms in Eq. (12) are 3�s� 1� and 3�N � s� column
vectors given by

� L �

0
0
..
.

�1
2
�jAj � A��Q̂s � Q̂s�1�

0
BB@

1
CCA

�R �

�1
2
�jAj � A��Q̂s�1 � Q̂s�

0
..
.

0

0
BBB@

1
CCCA

where A is the flux Jacobian matrix at an averaged state; for the
present work, we use the simple average 1

2
�Qs �Qs�1�. The matrix

jAj � Xj�jX�1, where X denotes the right eigenvectors of A, and

j�j �
�1 0 0

0 �2 0

0 0 �3

2
4

3
5

where

Fig. 1 Example domain consisting of two subdomains with an interface

at xs � xs�1.
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�1 �max�ju� aj; Vn��A��; �2 �max�ju � aj; Vn��A��
�3 �max�juj; Vl��A��

where ��A� denotes the spectral radius ofA, and the constantsVn and
Vl are used to scale the spectral radius. For subsonic flows
Vn � 0:025, and for transonic flows Vn � 0:25. Vl � 0:025 is used
for all flows.

We omitted numerical dissipation in Eq. (12) to focus on the
SATs. In the present work, we use the Jameson–Schmidt–Turkel
scalar dissipation model [31,32] with second- and fourth-difference
dissipation; however, the discretization can easily be adapted to use
matrix dissipation [30] or upwinding [10].

Mattsson et al. [10] have shown that the dissipation based on the
standard difference operators does not produce an energy estimate.
Nevertheless, we did not experience problems when using the
standard dissipation operators in conjunction with SATs for steady-
state flows.

III. Solution Method

A. Newton–Krylov Approach

Discretizing the transformed steady Euler equations at each
computational node produces a set of nonlinear algebraic equations,
represented by the vector equation

F �q� � 0 (13)

where q is a block column vector; each block represents the
conservative flow variables Q at a node.

Applying Newton’s method to the discrete equation (13), we
obtain the following linear equation for each (outer) iteration n:

A �n��q�n� � �F �n� (14)

where F �n� �F �qn�,�q�n� � q�n�1� � q�n�, and

A �n�ij �
@F i

@qj
�q�n��

Newton’s method will converge quadratically, provided that the
initial iterate q�0� is sufficiently close to the solution of Eq. (13) [33].
As is well known, finding a suitable initial iterate for Newton’s
method can be difficult; thus, our algorithm is broken into two
phases:

1) The first phase is an approximate-Newton startup phase for
which the objective is to find a suitable initial iterate as efficiently as
possible.

2) The second phase is an inexact-Newton phase, which uses the
initial iterate and a slightly modified form of Eq. (14).

Both of these phases include a number of parameters. In most
cases, these parameters are bounded by robustness on one hand and
byCPU time on the other hand. The parameter valueswepresent next
have been validated for a range of cases and provide a good
compromise between these two objectives. For the results in Sec. IV,
the parameters are fixed unless otherwise stated.

1. Approximate-Newton Phase

The approximate-Newton phase uses a form of pseudotransient
continuation to find the initial iterate [24,32,34]. This strategy is
similar to discretizing the unsteady equation (1) with the implicit
Euler time-marching scheme. However, because we are seeking an
initial iterate for Newton’s method and not a time-accurate solution,
there are several important modifications that we can make to the
implicit Euler scheme. These modifications include a first-order
Jacobian matrix, a lagged Jacobian update, and a spatially varying
time step.

A first-order Jacobianmatrix can be effective during startup [5,34]
and is obtained here by eliminating the fourth-difference dissipation
terms from A�n� and increasing the coefficient for the second-
difference dissipation. Let �4 and �2 denote the fourth- and second-

difference dissipation coefficients used in the discrete equations F ,
and let ~�4 and ~�2 denote the corresponding coefficients used in the
modified Jacobian matrix during startup. Then

~� 4 � 0; ~�2 � �2 � ��4

Previous work suggests that the optimal value for the lumping
coefficient � is between 4 and 6 for three-dimensional inviscid flows
[5]. Lumping the dissipation coefficients in this way produces a
modified Jacobian that is only first-order-accurate, but this does not
affect the accuracy of the steady solution. We will useA1 to denote
the first-order Jacobian, to emphasize its accuracy and distinguish it
from the exact Jacobian.

The first-order Jacobian is factored using block ILUwith a level of
fillp to produce the preconditioner. Factoring thematrix is one of the
most expensive tasks required by the algorithm. The approximate-
Newton phase often requires many outer iterations, and so the cost of
the factorization can be particularly acute if it is performed each
iteration. This suggests periodically updating the first-order Jacobian
and therefore the factorization [35]. Let m be the number of outer
iterations between Jacobian updates. Then A1 is updated and
factored on iteration n if mod�n;m� � 0. Values m� f3; 4; 5g
provide a good compromise between CPU time and robustness [36].

Finally, a spatially varying time step has been shown to improve
the rate of convergence for schemes based on approximate
factorizations [32] as well as Newton–Krylov algorithms [5,37]. The
time step used in the current work for node �j; k;m� is

�t�n�j;k;m �
�t�n�ref

Jj;k;m�1�
�����������
Jj;k;m

3
p

�
(15)

This time step roughly approximates a constant CFL. The
appearance of the first J in the denominator of Eq. (15) is due to the

use of Q rather than Q̂ in the column vector q [see Eq. (2)]. The
reference time step is steadily increased according to the geometric
formula

�t�n�ref � a�b�mb
n
mc

where b�c is the floor operator (bxc gives the largest integer less than
or equal to x); this operator ensures that updates to �t�n�ref are
consistent with the update period m. Values for a and b used in the
present work are a� 0:1 and b� 1:7.

To summarize, during startup we replace Eq. (14) with the
approximate-Newton update equation:

~A �n��q�n� � �F �n� (16)

where

~A �n�  T �n�� �A�n
��

1

n� �mbn=mc, and T �n� is a diagonalmatrix containing the (inverse)
local time steps appropriate to each equation. Finally, we emphasize
that the update equation (16) is not solved exactly, but rather
inexactly, to a relative tolerance of 0.5 using a Krylov iterative
solver; the solution of the linear system is discussed further in
Sec. III.B.

2. Switching Between Phases

The algorithm should switch to the inexact-Newton phase as soon
as a suitable initial (Newton) iterate has been obtained; thus, wemust
determine what qualifies as a suitable initial guess. Several authors
have suggested switching when the nonlinear relative residual is
reduced below a certain threshold [5,37]:

kF �n�k2
kF �0�k2

 R�n�d � 	

For the Euler equations, 	 � 0:1 is usually sufficient and has been
used for all of the results presented in this paper.
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3. Inexact-Newton Phase

As with the startup phase, a diagonal matrix of spatially varying
time steps is used during the inexact-Newton phase. The reference
time step during the Newton phase is based on a method first used by
Mulder and van Leer [38]:

�t�n�ref �max�
�R�n�d ���;�t
�n�1�
ref �

where, for the present results, we used �� 2. The value of 
 is
calculated to avoid an abrupt change between the approximate-
Newton and inexact-Newton time steps. Specifically, if nNewt � 1 is
the last approximate-Newton iteration, then


� a�b�mb
nNewt
m c�R�nNewt�d ��

Each outer iteration during the inexact-Newton phase produces
the following linear system:

�T �n� �A�n���q�n� � �F �n� (17)

where, as before, T �n� is a diagonalmatrix of inverse time steps. Note
that the diagonal time-step matrix tends to zero quadratically with

R�n�d due to the value �� 2. Unlike the approximate-Newton phase,
the matrices on the left-hand side of Eq. (17) are recomputed at each
iteration, and the Jacobian matrix A�n� is not explicitly modified.
Indeed, because we use Krylov-subspace methods to solve Eq. (17),
we need only the Jacobian-vector products. These products can be
approximated using a first-order-accurate forward difference:

A �n�v�F �qn � �v� �F �qn�
�

(18)

The perturbation parameter must be chosen carefully to minimize
truncation error and avoid round-off errors [39]. For this work, we
used [14]

��
��������
N�

vTv

r

where �� 10�13 and N is the number of unknowns. In light of
approximation (18), we do not need to compute or store the Jacobian
matrix. We do compute and store the first-order Jacobian A1 at the
beginning of each inexact-Newton iteration, because this smaller
matrix is needed to build the preconditioner.

The inexact-Newton algorithmdoes not solve Eq. (17) exactly, but
rather to a certain relative tolerance:

kF �n� � �T �n� �A�n���q�n�k2 � �nkF �n�k2

The forcing parameter �n 2 �0; 1� controls the accuracy of solution
update �q�n� and the convergence rate of the inexact-Newton
method. If �n is too small, we obtain quadratic convergence at the
expense of oversolving the linear system. If �n is too large, the linear
system will be cheap to solve, but the number of outer iterations will
increase.

For this work, the forcing parameter is gradually decreased from
its startup value of 0.5 to 0.01 using a safeguard proposed by
Eisenstat and Walker [40]:

�n �maxf0:01; ��1�
��
5
p
�=2

n�1 g (19)

We found that formula (19) helps avoid oversolving during the early
iterations of the inexact-Newton phase. Eisenstat and Walker [40]
also give an adaptive formula for the forcing parameter that allows q-
superlinear convergence. Although their adaptive � formula reduces
the number of Newton iterations, the CPU and memory costs do not
warrant the additional Krylov iterations.

B. Solving The Distributed Linear System

During both the startup andNewton phaseswe use aKrylov solver
[for example, the generalized minimal residual method (GMRES)
[41]) to inexactly solve sparse systems of the form

Ax� b (20)

To solve the preceding equation in parallel, the unknownsx and their
corresponding equations are assigned to unique processes according
to some domain decomposition; for the present work, one or more
blocks are assigned to a process. For a given process i, three types of
unknowns can be identified for linear system (20):

1) Internal unknowns appear only in equations on the process i.
2) Internal-interface unknowns are assigned to process i but are

coupled to unknowns on another process j ≠ i.
3) External-interface unknowns are assigned to other subdomains

but appear in equations on process i.
For example, when the Euler equations are discretized using

SATs, the internal- and external-interface unknowns correspond to
nodes that are coincident for adjacent blocks.

If the unknowns and equations are grouped (i.e., ordered) by
subdomain, thenwe canwrite the equations corresponding to process
i as

Aix�i� � Eiy�i;ext� � b�i� (21)

where x�i� and b�i� denote the unknowns and right-hand-sides
assigned to process i, and y�i;ext� are the external-interface unknowns
coupled with unknowns on process i. With this grouping, the global
linear system for four subdomains has the structure shown in Fig. 2.
Note that internal-interface unknowns are ordered last in each
subdomain. This convention allows more efficient interprocessor
communication and reduced local indirect addressing during matrix-
vector multiplication [26].

With the internal-interface unknowns ordered last, we obtain the
(local) partitioning:

x �i� �
u�i�
y�i�

� �
; b�i� �

f�i�
g�i�

� �

where u�i� are the local internal variables, and y�i� are the local
internal-interface variables. The subvectors f�i� and g�i� are the
analogous partitions of b�i�. Hence, the local Eqs. (21) on process i
take the form

Bi Fi
Ei Ci

� �
u�i�
y�i�

� �
�

0P
j2Ni
Eijy�j�

 !
� f�i�

g�i�

� �
(22)

The neighboring subdomains of subdomain i are denoted by the set
Ni.

When using a Krylov-subspace method to solve the distributed
system (20),wemust parallelize the inner products, thematrix-vector
products, and the preconditioner. The inner products are
straightforward: they are computed by summing the local products
[e.g., vT�i�z�i�, using the MPI command MPI_Allreduce()].

Fig. 2 Sparsity structure of the global system matrix with unknowns

grouped by subdomain and internal-interface variables listed last;

sparse submatrices with nonzero elements are shaded.
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Parallelizing the matrix-vector products and the preconditioner
requires more care.

For the matrix-vector products, we see that only internal-interface
unknowns are affected by the product:

Eiy�i;ext� �
X
j2Ni
Eijy�j�

Thus, communication time can be partially hidden by using a
nonblocking communication of the interface variables [42]. During
the communication the local matrix is multiplied, and once the
external-interface unknowns are received, the contribution due to
Eiy�i;ext� is calculated and added to y�i�. Note that explicit matrix-
vector products are only required for the approximate-Newton stage.

Preconditioners are the most critical component of an efficient
parallel linear solver. Although excellent serial preconditioners exist
for Newton–Krylov flow solvers [5,16,17], these preconditioners
cannot be implemented efficiently in parallel; for example, although
using ILU�p� on the global systemmatrixA has proven to work well
in serial, a parallel version results in substantial idle time and
communication. The essence of the challenge is that a good parallel
preconditioner must balance the competing objectives of scalability
and serial performance.

C. Preconditioning

For the current work, two parallel preconditioners were
investigated: one based on the additive Schwarz method and one
based on an approximate Schur method. Both of the underlying
methods require an exact or inexact inversion of local submatrices.
The preconditioners presented here use an incomplete lower/upper
factorization of the local submatrix of the modified Jacobian:

LiUi � �T �n� �A�n�1 �i � Ri

where Ri is the error in the factorization. A block version of
incomplete lower/upper factorization with a level of fill p [ILU�p�]
[43] is used to obtain the factorization LiUi. The blocks are
composed of the flow unknowns at each node. Notice that the
factorization itself does not require interprocessor communication,
because block ILU�p� [BILU�p�] is applied to the local submatrices
only. For the remaining sections, the submatrix Ai refers to the

modified Jacobian submatrix �T �n� �A�n�1 �i.

1. Additive Schwarz Preconditioner

The simplest form of additive Schwarz preconditioning is
essentially a block Jacobi iteration (see, for example, Saad [44]).
Given the vectorw, the local component of the preconditioned vector
z is given by the exact or inexact solution to the system:

Aizi � wi (23)

Equation (23) can be solved using a direct method or iteratively
using, for example, GMRES. For this work, we solve Eq. (23)
approximately using a single application of the ILU factorization:
zi �U�1i L�1i wi. We investigated the use of preconditioned GMRES
to solve Eq. (23), but solving the local systemmore accurately in this
way was not found to be competitive.

Additive Schwarz methods can employ overlapping domains to
improve the quality of the preconditioner (i.e., reduce the number of
Krylov iterations). Numerical experiments by Gropp et al. [45]
suggested that domain overlap, although capable of reducing the
number of Krylov iterations, increases the overall CPU time; hence,
we do not consider overlapping as a convergence strategy in this
work.

2. Approximate Schur Preconditioner

The idea behind Schur-complement methods is the elimination of
the internal unknowns to form a reduced system of equations called
the Schur-complement system. Saad and Sosonkina [26] proposed a
preconditioning technique based on an approximate factorization of

the Schur-complement system. Their contribution is summarized
next.

Considering Eq. (22), we see that the internal variables can be
written as

u �i� � B�1i �f�i� � Fiy�i�� (24)

Substituting u�i� into the equation for y�i�, we obtain the following
system for the internal-interface variables on process i:

Siy�i� �
X
j2Ni
Eijy�j� � g�i� � EiB�1i f�i�  g0�i� (25)

where Si � Ci � EiB�1i Fi is the local Schur-complement matrix
[26]. Assembling all of the local Schur-complement systems for each
process, we obtain a linear system for all of the internal-interface
unknowns:

S1 E12 . . . E1P

E21 S2 . . . E2P

..

. . .
. ..

.

EP1 EP2 . . . SP

0
BBB@

1
CCCA

|��������������������{z��������������������}
S

y�1�
y�2�

..

.

y�P�

0
BBB@

1
CCCA�

g0�1�
g0�2�

..

.

g0�P�

0
BBB@

1
CCCA (26)

The coefficient matrix S appearing in Eq. (26) is the Schur
complement [44]. Following Saad and Sosonkina [26], we will refer
to this matrix as the global Schur complement to distinguish it from
the Si, which are the diagonal blocks of S.

We could assemble the global Schur-complement matrix, solve
system (26), and then solve for the local internal unknowns on each
process using Eq. (24). In practice, however, forming the Schur-
complementmatrix and solving for the interface unknowns exactly is
not competitive with other methods [26]. Instead, we consider
systems that approximate Eq. (26) and act as preconditioners for the
global system (20).

Consider the following block factorization of Ai:

Ai �
Bi Fi
Ei Ci

� �
� Bi 0

Ei Si

� �
I B�1i Fi
0 I

� �
(27)

Next, suppose that Ai has been factored instead into Ai � LiUi,
where

Li �
LBi 0

EiU
�1
Bi

LSi

� �
; Ui �

UBi L�1Bi Fi
0 USi

� �

Comparing the factors in Eq. (27) with Li and Ui, we can show that
[26]

Si � LSiUSi (28)

Thus, we can obtain a lower/upper (LU) decomposition of the local
Schur complement by extracting the relevant blocks from the LU de-
composition of Ai. Similarly, and more relevant to preconditioning,
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Fig. 3 Coefficient of drag as a function of nominal mesh spacing for a

subsonic zero-angle-of-attack flow.
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we can obtain an approximate factorization of Si by extracting the
relevant blocks from the ILU factorization of Ai.

Suppose that the local matrix has been factored as
Ai � LiUi � Ri. Then we can define the following approximate
local Schur-complement system using Eqs. (25) and (28):

y �i� �U�1Si L
�1
Si

�
g0�i� �

X
j2Ni
Eijy�j�

�
(29)

The preceding equation is a single iteration of block Jacobi on the
local internal-interface unknowns. This system can be further
accelerated using a Krylov-subspace method such as GMRES [44].
Once the approximations to the y�i� have been exchanged, we can
substitute the y�i;ext� into Eq. (21) and apply the ILU factorization to
obtain approximate values for x�i�.

We implemented an approximate Schur preconditioner that is
closely based on Algorithm 3.1 of Saad and Sosonkina [26]. Two
important clarifications to the original algorithm involve the
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Fig. 4 Comparison of the coefficient of pressure at a Mach number of 0.699 around the ONERA M6 wing.
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complete forward and backward solves �LiUi��1 on lines 5 and 25 of
their algorithm. These forward–backward solves are modified with
partial operations involving USi and LSi , such that our algorithm is
equivalent mathematically, but it is approximately 20% more
efficient computationally. The relevant modifications can be found
on lines 1, 22, and 23 of algorithm A1 in Appendix A. These

modifications, although transparent in a mathematical sense, are
essential if the approximate Schur preconditioner is to be competitive
with additive Schwarz.

A linear solver that uses the approximate Schur preconditioner
must be a flexible variant; that is, the solver must be compatible
with preconditioning that varies from iteration to iteration. For this
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Fig. 5 Comparison of the coefficient of pressure at a Mach number of 0.84 around the ONERA M6 wing.
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reason, we use flexible GMRES (FGMRES) [46] with the Schur
preconditioner. FGMRES uses approximately twice the memory
of GMRES, although it is essentially identical in terms of CPU
time.

In the context of the approximate Schur preconditioner, one
advantage of using SATs to couple the blocks is that the reduced
system size is independent of the order of the interior scheme;
therefore, we anticipate that the approximate Schur preconditioner
will be well suited to parallel implicit high-order finite difference
schemes.

IV. Results

We obtained all results on a symmetric multiprocessor HP
Itanium Beowulf-class cluster. Each node on the cluster consists of
4 Itanium 2 processors with 6 MB L3 cache and a clock speed of
1500 MHz. The nodes each have at least 8 GB of RAM and are
connected with a high-bandwidth low-latency Myrinet network. We
used only 1 processor per node to eliminate memory contention
observed with this architecture [36].

The results presented in the following subsections have been
obtained on grids for the ONERA M6 wing. All grids use an H–H
topology and 25 chord lengths to the far field. For a given grid, each
block has identicalNj,Nk, andNm dimensions. Sizing the blocks this
way allows for better load-balancing; futureworkwill consider block
decomposition as a means of load-balancing arbitrarily structured
grids.

A. Discretization Assessment

The use of SATs in computational aerodynamics is not common,
and so a demonstration of solution accuracy and convergence is
warranted. We assess the SAT discretization using four grids for the
ONERAM6 wing. Each grid contains 96 blocks, and the finest grid
has 33 � 33 � 33nodes on each block. Successively coarser grids are
obtained by removing every other node in each direction from the
next finer grid; hence, the coarser grids have 17 � 17 � 17 nodes,
9 � 9 � 9 nodes, and 5 � 5 � 5 nodes per block.

We use the coefficient of drag to establish the order of accuracy of
the scheme: recall that for a symmetric inviscid subsonic flow, CD
vanishes. Figure 3 plots jCDj as a function of nominal mesh spacing

defined by �x  N�13, where N is the total number of nodes. We
calculated the coefficient of drag resulting from a far-field flowwith a
Mach number of 0.5 and zero angle of attack; the ONERA M6 has
symmetric sections. Figure 3 demonstrates that the discretization is at
least second-order-accurate, as expected.

Validating the code using experimental results is also useful,
although only qualitative comparisons can be made using the
inviscid code.We obtained flow solutions atMach numbers of 0.699
and 0.84 on the finest grid (96 blocks with 3:45 � 106 nodes). The
angle of attack was fixed at 3.06 deg. Figures 4 and 5 compare our
results with the experimental results of Schmitt and Charpin [47].
Discontinuities in the solutions are visible near the midchord and
mark the location of block interfaces. As discussed earlier, such
discontinuities are permitted by the SAT methodology and do not
affect the stability or the order of accuracy, as shown in Fig. 3.
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Fig. 6 Mesh and pressure contours at the symmetry plane of the ONERA M6 wing; Mach number of 0.699.
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Consequently, any dependence the solution has on the block
topology is on the order of the discretization.

Recall that the SBP–SAT methodology does not require
slope continuity of grid lines at block interfaces. Indeed,
the preceding grids used were obtained using transfinite

interpolation without elliptic smoothing. Figure 6 shows the
symmetry plane of the finest mesh and the pressure contours at
a Mach number of 0.699 obtained on that mesh. A close-up of
the leading edge shows the slope discontinuities that the scheme
can handle.
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B. Preconditioner Comparison

To test the parallel efficiency of the preconditioners,flowsolutions
were timed for the grids listed in Table 1. The grids allow us to
evaluate the preconditioners for different numbers of blocks and
mesh sizes on the same ONERA M6 geometry.

The operating conditions were fixed at a Mach number of 0.699
and an angle of attack of 3.06 deg. The discrete equations were
solved to a relative tolerance of 10�10 using the Newton–Krylov
algorithm. The linear subproblems were solved using FGMRES
limited to 60 iterations for the 12-block grid and 80 iterations for the
48- and 96-block grids. During the approximate-Newton phase, a
Jacobian update period ofm� 5was used for the 12-block grid and a
period of m� 4 was used for the two larger grids.

Figures 7a–7c compare the CPU time and parallel efficiency of the
two preconditioners. For serial computations, note that both
preconditioners reduce to BILU(1). The results demonstrate that the
best preconditioner is grid-dependent, although both preconditioners
scale well on all three grids.

Some remarks are necessary regarding the superlinear speedup for
the 12-processor additive Schwarz time observed in Fig. 7b. Both
parallel preconditioners change as the number of processors
increases; therefore, the solution algorithm with N processors is not
strictly the same as the serial algorithm. The superlinear speedup in
Fig. 7b would not appear if we had used an identical block Jacobi
preconditioner for the serial computation. This leads to another
question: why is global BILU(1) worse than additive Schwarz in this
case? One possible explanation could be the additional cache misses
experienced in the serial computation. Another explanation is that
ILU is sensitive to the ordering of unknowns [18], and so the 12-
processor case may have a better ordering.

The preconditioners can also be assessed by comparing the total
number of FGMRES iterations used during a flow solution. Figure 8
shows that the iterations required by the approximate Schur

preconditioner are independent of the number of processors for the
range of processors considered here. In contrast, the additive
Schwarz preconditioner requires more iterations as more processors
are added. This difference reflects the implicit coupling between
domains achieved by the approximate Schur preconditioner.
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Table 1 ONERAM6 grids and their dimensions used to

evaluate the preconditioners

Blocks Dimensions (Nj � Nk � Nm) Grid size (nodes)

96 23 � 23 � 23 1,168,032
48 33 � 17 � 17 457,776
12 23 � 23 � 23 146,004
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Although the approximate Schur preconditioner requires fewer
Krylov iterations, the results suggest that, on average, both
preconditioners are comparable in terms of CPU time. The Schwarz
preconditioner is preferable if memory considerations are important,
because the Schur preconditioner requires FGMRES, whereas the
Schwarz preconditioner can use GMRES (see the discussion at the
end of Sec. III.C.2).

C. Algorithm Performance

We evaluate the performance of the algorithm from two
perspectives. First, we consider the number of Krylov iterations
needed to reduce the relative residual Rd by 10 orders. We hope
this measure will be useful for other developers of Newton–Krylov
solvers. Second, we plot the residual convergence versus
equivalent residual evaluations, a form of normalized CPU time
that offers an architecture-independent comparison with other flow
solvers.

The relative residual is plotted versus Krylov iterations in Fig. 9.
We define a Krylov, or inner, iteration as the application of a matrix-
vector product with preconditioning. The symbols in the figure
denote the outer (Newton) iterations. Residual histories are shown
for serial and parallel computations; for the parallel runs, we used
both preconditioners and 24 processors. The flow solution is for the
96-block 1:168 � 106 node grid, and the far-field Mach number and
angle of attack are 0.699 and 3.06 deg, respectively. Thefigure shows
that for the inexact-Newton phase, the maximum number of
allowable matrix-vector products (80) are used during each outer
iteration. As a result, we obtain linear convergence. As noted earlier,
it is possible to achieve superlinear convergence using a smaller
tolerance and more matrix-vector products; however, we find that
superlinear convergence increases CPU time.

Although counting inner iterations is useful for comparing with
other Krylov solvers, this measure ignores preconditioner
factorization time and the change in matrix-vector products [i.e.,
from explicit to the matrix-free Eq. (18)]. For more general
comparisons, we include Fig. 10, which plots Rd versus equivalent
residual evaluations. An equivalent residual evaluation is the CPU
time needed to compute the residual equationF , which includes all
flux and SAT evaluations. We use the same grid and flow conditions
as in Fig. 9. The residual history for the serial and 24-processor cases
are shown. We used the Schur preconditioner for the 24-processor
case, but the results for the Schwarz preconditioner are similar (see
Fig. 7c). The coefficient of lift obtained at each outer iteration of the
serial computation is also included in Fig. 10. The history of CL for
24 processors is similar. The algorithmobtains 3-digit accuracy inCL
in 1483 and 1845 equivalent residual evaluations for the serial and
24-processor runs, respectively.

V. Conclusions

We described a second-order SBP–SAT solver for the Euler
equations. The SBP–SAT discretization can accommodate grids
withC0 continuity at the block interfaces, and no special treatment of
the points at block edges and vertices is required. The discrete
equations are solved using a parallel Newton–Krylov approach. We
compared two preconditioners for the Krylov iterative solver: an
additive Schwarz and an approximate Schur preconditioner.

We draw the following conclusions:
1) A second-order discretization of the Euler equations using

SATs at the boundaries and interfaces is well suited to a parallel
Newton–Krylov solution strategy.

2) For the Euler equations, the approximate Schur preconditioner
outperforms the additive Schwarz preconditioner in terms of Krylov
iterations, but the preconditioners have similar CPU time
requirements.

3) Because the approximate Schur preconditioner must use a
flexible iterative solver (e.g., FGMRES), which may require more
memory, the Schwarz preconditioner is a good choice whenmemory
is limited.

Appendix A: Pseudocode for Approximate Schur
Preconditioner
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