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The convergence rates of explicit agglomeration multigrid algorithms for turbulent
flow problems are significantly worse than for inviscid flow problems. Two techniques for
reducing numerical stiffness are investigated and compared. Directional coarsening, con-
trolled by the parameter β, alters the agglomeration algorithm to generate coarse grids
that reduce localized cell stretching. Line-implicit smoothing, controlled by the parame-
ter α, adds implicit terms to the preconditioner along one-dimensional lines constructed
on the mesh. Optimal values of β and α are presented for structured and hybrid unstruc-
tured meshes. A factor of two improvement in asymptotic convergence rates has been
demonstrated. Substantial improvements in CPU time can be obtained for a five-order
residual reduction.

Introduction

COMPUTATIONAL fluid dynamics has become a
useful design and evaluation tool in the aerospace

industry. For CFD tools to remain valuable it is nec-
essary to provide algorithms that yield solutions of
sufficient accuracy in an efficient manner. We define
an efficient algorithm as one that strikes a balance be-
tween CPU and memory requirements as well as an
empirical measure of ease of use. It is the goal of
this research to provide an efficient multigrid turbulent
flow solver that provides accurate solutions through a
minimal set of parameters.

While explicit multigrid methods are attractive in
terms of memory costs, convergence rates of turbulent
flow problems lag significantly behind those of inviscid
flow problems.1,2, 3, 4, 5 Near theoretical convergence
rates for inviscid flow problems using explicit multigrid
methods have been demonstrated in the past.6,7, 8 To
efficiently resolve high Reynolds number turbulent flow
problems, high aspect ratio grids are required. Unfor-
tunately these grids introduce numerical stiffness that
severely reduces the convergence rate of turbulent flow
problems. Although a fully implicit solver would bet-
ter handle the presence of highly stretched cells, the
memory usage of a fully implicit solver grows rapidly
with an increasing number of nodes, particularly in
three-dimensions. We intend to strike a balance be-
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tween these two approaches, beginning with an explicit
multigrid algorithm and adding features to reduce sen-
sitivity to numerical stiffness.

Generating suitable grids for a multigrid sequence
can be a significant task. This research employs a
heuristic directional agglomeration algorithm to pro-
vide nested coarse grids suitable for use with a finite-
volume multigrid algorithm.9,10,11 The algorithm
works with any combination of structured, unstruc-
tured, or hybrid grids. In addition to automatic grid
generation, the agglomeration algorithm attempts to
alleviate numerical stiffness through directional coars-
ening.12,3, 7, 4, 13 Closely coupled to the directional
coarsening algorithm, a line-implicit smoothing algo-
rithm is employed to further reduce stiffness at a slight
increase in memory footprint.3,7,4, 13

This paper covers a detailed quantitative investi-
gation of the directional-coarsening and line-implicit
smoothing algorithms as applied to laminar and tur-
bulent flows. Substantial improvements in convergence
rates measured in terms of CPU time are demon-
strated while minimizing memory requirements.

Numerical Algorithm
Spatial Discretization

Our algorithm employs a cell-vertex finite-volume
spatial discretization of the Favre-averaged Navier-
Stokes equations. Mean turbulence is modelled with
the Spalart-Allmaras turbulence model.14 The spa-
tial discretization is applied to the centroidal-median
dual constructed from a given source grid. The semi-
discrete form of the equations can be written as follows
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dQ
dt

+R(Q) = 0 (1)

where the residual operator R(Q) is formed primar-
ily as face-based operations on the piece-wise constant
solution vector Q. Inviscid and viscous contributions
to the residual operator are formed by the surface in-
tegral of the flux contributions over the boundary of
each cell. Full viscous flux terms are formed using the
next-to-nearest cell neighbour. A blend of first- and
third-order artificial dissipation is applied through a
combination of Laplacian and biharmonic operators.15

The ith block of the residual vector R = R(Q) for
a given cell i with area/volume Ωi is

Ri =
1
Ωi

edges∑

ik

(Fik + Gik + Dik)− Si (2)

where the inviscid flux Fik, viscous flux Gik, and ar-
tificial dissipation Dik for each face ik are formed as

Fik =
1
2
(F (Qi,Nik) + F (Qk,Nik)) (3)

Gik = G(Qi,Qk,∇Qi,∇Qk,Nik) (4)

Dik = −1
2
|A(Qi,Qk,Nik)|(e(2)

ik (Qk −Qi)−

e
(4)
ik (Lk − Li))

(5)

Li =
edges∑

ik

(Qk −Qi). (6)

For a given face between cell i and k, the unit normal
is scaled by the length/area of the face to form Nik.
Source terms arising from the turbulence model are
added as cell-based vector Si.

Boundary conditions at solid walls are adiabatic
and no-slip for viscous flows. Boundary conditions
based upon Riemann invariants are applied at far-field
boundaries.

Relaxation Scheme

As we are interested in steady-state solutions, our
goal is to solve

R(Q) = 0 (7)

To further improve convergence we employ precondi-
tioning of the form

P−1R(Q) = 0 (8)

Applying an explicit multi-stage relaxation method,
we time-march our flow problem from to tn to tn+1

using an m-stage scheme

Q(0) = Qn (9)
. . .

Q(j) = Q(0) − αjP−1R(Q(0), . . . ,Q(j−1)) (10)
. . .

Qn+1 = Q(m) (11)

where the ith block of the residual vector R(j) =
R(Q(0), . . . ,Q(j−1)) is defined as

R(j)
i =

1
Ωi

edges∑

ik

(
F(j)

ik + G(0)
ik +

j−1∑

l

Γj,lD
(l)
ik

)

−S(0)
i

(12)

j−1∑

l=0

Γj,l ≡ 1 (13)

Γj,l =

{
γj if l = j − 1
(1− γj)Γj−1,l if l 6= j − 1

(14)

Block-Jacobi preconditioning is applied by forming the
preconditioner P from the diagonal blocks of the Ja-
cobian ∂R

∂Q

P =
[
∂Ri

∂Qi

]
(15)

The effect of cell stretching upon convergence rates
can be demonstrated by examining the application of
the relaxation scheme to a Fourier analysis of the resid-
ual operator. Fig. 1 illustrates the amplification factor
of the preconditioned residual operator as a function of
Fourier angle (θx,θy) for a uniform grid spacing versus
cell stretching in the flow direction. This five-stage re-
laxation method efficiently reduces the high-frequency
Fourier error modes that appear in the upper-left,
upper-right and lower-right quadrant of the uniformly
spaced mesh. However as the cell spacing in the y
direction is reduced the scheme becomes much less ef-
fective in the lower-right quadrant.

Line-implicit smoothing is applied by constructing
lines normal to cell stretching in the grid. By reorder-
ing the cells as they occur in the implicit lines and
adding implicit terms between each consecutive cell
on a line, the following tridiagonal preconditioner is
obtained

P =
[

∂Ri

∂Qi−1
,
∂Ri

∂Qi
,

∂Ri

∂Qi+1

]
(16)

The increase in the bandwidth of the preconditioner is
limited to regions of high stiffness.

Multigrid

Multigrid methods seek to further eliminate low-
frequency errors by recasting the system of equations
onto a sequence of coarser grids. Thus our coarse grids
employ the same relaxation scheme as above but solve
a forced version of the fine grid equations. Our coarse
grid relaxation scheme in Eq. 10 at stage i becomes

Q(i) = Q(0) − αiP−1(R(Q(0), . . . ,Q(i−1))

+ Ic
fR(Qf )−R(Q(0))) (17)

where Ic
fR(Qf ) is the restricted residual of the finer

grid in the grid sequence. Corrections are interpolated
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back to the finest grid through prolongation, using ei-
ther simple injection or linear interpolation.

On a fine grid, the relaxation scheme is optimized
to quickly relax errors in the high frequency domain.
In reference to the amplification factor plot in Fig. 1,
relaxation on a coarse grid can be viewed as mapping
the lower-left quadrant (θx, θy ∈ [0, π/2]) to the fre-
quency domain θx, θy ∈ [0, π]. Directional coarsening
in the y direction would map the lower quadrants to
θx, θy ∈ [0, π]. Thus it is also possible to tailor our
relaxation scheme through selective agglomeration.

Agglomeration

To generate a coarse grid sequence we use agglom-
eration to selectively fuse fine grid cells to form a new
coarse grid. A sequence of nested coarse grids can
be produced by successively agglomerating the previ-
ous grid in the sequence. A sample grid sequence,
produced by agglomerating in the default manner, ap-
pears in Fig. 2.

The agglomeration algorithm begins with the
boundary cells and advances in a front, fusing all avail-
able fine grid cells. A pseudo-code algorithm can be
found in Algorithm 1. If all neighbours of a given seed
cell are fused, an isotropic distribution of coarse cells
is produced with a coarsening ratio of approximately
4 : 1 in two-dimensions and 8 : 1 in three-dimensions.
To force coarsening in a direction normal to local
cell stretching a weight ωi is assigned to each face
and coarsening is only applied across faces for which
ωi > βωmax, where ωmax is the maximum face weight
about the seed cell and β is typically between 0 and
1.13

Mavriplis13 has recommended a face weight propor-
tional to the magnitude of the face normal Nik. This
produces grids that are directionally coarsened in areas
of cell stretching and isotropically coarsened in regions
of uniform cell shape. As a further enhancement, a
face weight proportional to the largest eigenvalue of
the Jacobian of the residual operator would produce
a coarse grid that should alleviate stiffness more di-
rectly. As this would require a reasonable snapshot of
the solution, this weighting scheme is employed by re-
generating the coarse grid sequence between the outer
cycles of a full-multigrid sequence.

Implicit Line Construction

To construct one-dimensional lines of cells for use
with line-implicit smoothing, the same face-based
weights as used in directional coarsening are examined.
A pseudo-code algorithm appears in Algorithm 2. In
regions of local cell stretching implicit lines are con-
structed normal to cell stretching, while in regions of
uniform cell shape, lines containing only one cell are
produced, and the preconditioner in Eq. 16 reduces to
Eq. 15.

Algorithm 1 Agglomeration method
Form a priority queue of cells (weighting boundary
cells higher than non-boundary cells.)
while priority queue is not empty do

Pop a seed cell from the priority queue.
Form new coarse cell from seed cell.
for all neighbouring cells of seed do

if neighbour matches criteria and not already
fused then

Add the neighbour cell to coarse cell
end if

end for
end while

Algorithm 2 Implicit line construction
Form a priority queue of cells sorted by ωmax/ωmin.
while priority queue is not empty do

Pop a seed cell from the priority queue.
while ωmax/ωmin of seed cell is greater than α
do

Locate neighbour with largest ω in priority
queue
Remove neighbour from priority queue and
make neighbour new seed

end while
end while

Results

The following results were obtained with our re-
search code Hurricane. Figs. 4, 5 and 6 illustrate
convergence histories for various strategies applied to
laminar flow over a finite flat plate at M = 0.2 and
Re = 1 × 105. Five-level W-cycle full multigrid was
used for all cases with identical solver parameters. A
structured grid (Fig. 3) with an off-wall spacing of
5 × 10−6 and a maximum cell aspect-ratio of 26500
was selected to illustrate numerical stiffness. Isotropic
agglomeration, in which all available neighbours are
fused with a seed cell, is equivalent to a directional
coarsening coefficient β = 0.0. Fig. 4 demonstrates
a factor of 2 improvement in CPU time requirements
using β = 0.25. Holding β = 0.0 while varying the
line-implicit smoothing coefficient α demonstrates a
fairly uniform improvement in Fig. 5 with optimal α
in the 3 to 4 range.

It should be noted that the directional coarsening al-
gorithm produces a coarsening ratio approaching 2 : 1
in anisotropic regions of the grid rather than the ideal
ratio of 4 : 1 produced by removing every other line
in both the streamwise and normal directions. Fig. 6
illustrates the convergence history obtained by per-
mutations of coarsening in the streamwise (“x-dir”)
and normal (“y-dir”) direction. To obtain a coarsen-
ing ratio of 4 : 1 the streamwise and normal direction
algorithms were repeated twice. The history labelled
“xy-dir” is equivalent to removing every other line in
both directions. It should be expected that the “xy-
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dir” algorithm is superior to the isotropic algorithm as
the latter does not preserve the structured nature of
the control-volumes on the coarse grids. It is interest-
ing to note that the directional-coarsening algorithm
utilizing β = 0.25 converges in less time than the con-
ventional structured grid coarsening algorithms.

The performance of the algorithm for turbulent flow
was tested by solving for the flow about an RAE 2822
airfoil at M = 0.754, α = 2.57◦ and Re = 6.2 × 106.
A structured 209 × 29 C-mesh with off-wall spacing
of 1 × 10−5 and maximum cell aspect-ratio of 3300
was used. Fig. 7 illustrates the convergence history
for isotropic agglomeration versus various directional-
coarsening β coefficients. Five-level W-cycle full multi-
grid was used for all cases with identical solver pa-
rameters. A significant improvement is demonstrated
for β = 0.25, particularly in reducing the cost of the
full multigrid cycle, with a factor of approximately 3
improvement at 5 orders of residual norm reduction.
Fig. 8 illustrates the convergence history for various
line-implicit smoothing coefficients. The line-implicit
algorithm demonstrates a relative improvement in con-
vergence rates. As the line-construction coefficient α is
reduced, the number of implicit terms in the precondi-
tioner increases. Fig. 10 illustrates the construction of
implicit lines with α ∈ [1, 4] for this structured mesh.
For a moderate α in the range of 3 to 4, the increase
in memory costs in solving the tridiagonal precondi-
tioner is generally on the order of 10 − 15%. Fig. 9
demonstrates a comparison of the two methods applied
separately and in conjunction. Further improvement
upon the β = 0.25 case is noted with the addition
of the line-implicit smoother. Table 1 lists the rela-
tive time required to obtain aerodynamic coefficients
Cl and Cd within 0.1% of fully converged values, nor-
malized relative to the isotropic coarsening strategy.
The relative performance improvement offered by the
combined scheme yields converged coefficients in as lit-
tle as 30% of the CPU time required for the default
scheme.

The same turbulent flow problem was repeated for a
hybrid unstructured mesh produced by wrapping a tri-
angulated mesh about the inner layer of the previous
structured C-mesh. With respect to grid anisotropy,
cell stretching in the hybrid mesh was limited to the re-
gion nearest the body and along the wake. The original
C-mesh contained additional regions of cell stretching
normal to the direction of the flow emanating from
the airfoil trailing edge toward the outer boundary.
Fig. 11 illustrates the convergence history for a variety
of directional-coarsening β coefficients relative to the
isotropic coarsening strategy. Five-level W-cycle full
multigrid was used for all cases with identical solver
parameters. The most significant improvement was
demonstrated for β = 0.5, again reducing the cost of
the full multigrid cycle. The convergence history for
various line-implicit smoothing coefficients is shown in

Fig. 12, with an all parameters demonstrating similar
performance. Fig. 14 illustrates the construction of
implicit lines with α ∈ [1, 4] for this hybrid mesh. In
comparison to the structured C-mesh, there are signif-
icantly less line segments produced for similar values
of α. The addition of line-implicit smoothing to the
β = 0.5 directional-coarsening strategy demonstrates
an increase in the cost relative to the β-only strategy as
illustrated in Fig. 13. Although the line-implicit strat-
egy reduces the number of multigrid cycles, it adds
negligible improvement to the best directional coars-
ening strategy in terms of CPU time.

Conclusions
We have demonstrated an algorithm for improving

convergence rates and reducing CPU time require-
ments for explicit multigrid algorithms without sig-
nificantly increasing memory requirements. Utilizing
agglomeration with directional-coarsening and line-
implicit smoothing, we have demonstrated an auto-
mated coarse grid generation algorithm that produces
superior grid sequences for use with explicit multigrid.
Optimal values of the directional-coarsening param-
eter β and the line-implicit smoothing parameter α
appear to be consistent for different flow problems. A
factor of two improvement in asymptotic convergence
rates has been demonstrated. Substantial improve-
ments in CPU time can be obtained for a five-order
residual reduction.
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a) Source grid

b) Dual grid

c) Agglomerated grid

d) Second agglomerated grid

Fig. 2 A sample source grid with generated dual
and agglomerated grid.

Fig. 3 A rectilinear mesh with maximum cell as-
pect ratio of 26500 and off-wall spacing of 5× 10−6

about a flat plate aligned with the x axis from
x ∈ [0, 1].
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Fig. 4 Convergence history for various directional
coarsening β coefficients for laminar flow over a flat
plate at M = 0.2 and Re = 1 × 105. Computed on a
rectilinear mesh with cell aspect ratio on the order
of 26500.
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Fig. 5 Convergence history for various line-
implicit smoothing α coefficients for laminar flow
over a flat plate at M = 0.2 and Re = 1× 105. Com-
puted on a rectilinear mesh with cell aspect ratio
on the order of 26500.
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lo
g 10

||R
(ρ

)|
| 2

0 0.25 0.5 0.75 1
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Isotropic
x-dir
x-dir, twice
y-dir
y-dir, twice
xy-dir

Fig. 6 Convergence history for explicit directional
coarsening for laminar flow over a flat plate at M =
0.2 and Re = 1 × 105. Computed on a rectilinear
mesh with cell aspect ratio on the order of 26500.
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Fig. 7 Convergence history for various directional
coarsening β coefficients for flow about an RAE
2822 airfoil at M = 0.754, α = 2.57◦ and Re = 6.2×106.
Computed on a structured C-mesh with cell aspect
ratio on the order of 3300.
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Fig. 8 Convergence history for various line-
implicit smoothing α coefficients for flow about
an RAE 2822 airfoil at M = 0.754, α = 2.57◦ and
Re = 6.2 × 106. Computed on a structured C-mesh
with cell aspect ratio on the order of 3300.
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Fig. 9 Convergence history for combined direc-
tional coarsening and line-implicit smoothing for
flow about an RAE 2822 airfoil at M = 0.754,
α = 2.57◦ and Re = 6.2× 106. Computed on a struc-
tured C-mesh with cell aspect ratio on the order of
3300.
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a) α = 1

b) α = 2

c) α = 3

d) α = 4

Fig. 10 Implicit line construction for a structured
mesh about an RAE 2822 airfoil for α ∈ [1 : 4].
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Fig. 11 Convergence history for various direc-
tional coarsening β coefficients for flow about an
RAE 2822 airfoil at M = 0.754, α = 2.57◦ and
Re = 6.2×106. Computed on a hybrid unstructured
mesh with cell aspect ratio on the order of 3300.
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Fig. 12 Convergence history for various line-
implicit smoothing α coefficients for flow about
an RAE 2822 airfoil at M = 0.754, α = 2.57◦ and
Re = 6.2×106. Computed on a hybrid unstructured
mesh with cell aspect ratio on the order of 3300.
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Fig. 13 Convergence history for combined direc-
tional coarsening and line-implicit smoothing for
flow about an RAE 2822 airfoil at M = 0.754,
α = 2.57◦ and Re = 6.2 × 106. Computed on a hy-
brid unstructured mesh with cell aspect ratio on
the order of 3300.

a) α = 1

b) α = 2

c) α = 3

d) α = 4

Fig. 14 Implicit line construction for an unstruc-
tured hybrid mesh about an RAE 2822 airfoil for
α ∈ [1 : 4].
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