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This paper investigates the performance of two gradient-based optimizers, a quasi-
Newton algorithm that uses the quadratic penalty approach to handle constraints, and a
sequential quadratic programming (SQP) algorithm that uses an augmented Lagrangian
merit function (SNOPT). They are applied to the two-dimensional Navier-Stokes aero-
dynamic shape optimization problem. The aerodynamic analysis is performed using a
Newton-Krylov algorithm consisting of an inexact-Newton method and a preconditioned
Krylov solver. The gradient is computed through the discrete adjoint technique, and
the discrete adjoint problem is solved with a preconditioned Krylov algorithm. The
performance of the optimizers is demonstrated for several design examples, including
inverse design, maximization of lift-to-drag ratio, maximization of endurance factor, lift-
constrained drag minimization, and multi-point optimization. The SQP optimizer with an
augmented merit function is more robust and efficient than the quasi-Newton optimizer

with quadratic penalty terms for the majority of the test cases presented.

Introduction

Engineering design problems often involve a large
number of design parameters and a complex analy-
sis problem. For example, the aerodynamic design
of a wing requires a geometry parameterization with
enough variables to define a suitably flexible design
space and a means for determining the performance
of a given wing. Numerical solution techniques for
the Reynolds-averaged Navier-Stokes equations have
greatly reduced the reliance on wind-tunnel testing
of prospective configurations. With a sufficiently ac-
curate numerical analysis technique, a numerical op-
timization algorithm can be used to determine the
aerodynamic shape which minimizes a specified objec-
tive while satisfying certain constraints. This powerful
approach frees the designer from the tedious cut-and-
try process and permits more emphasis to be placed
on careful selection of objectives and constraints.

There are many different techniques available for
aerodynamic optimization, and a clear consensus has
yet to emerge. The two most popular current tech-
niques are evolutionary or genetic algorithms' and
gradient-based algorithms based on either the discrete
or continuous adjoint approaches.>® Gradient-based
algorithms are typically much faster, while genetic
algorithms can be more robust and more generally
applicable. Pulliam et al* provided a detailed dis-
cussion of the trade-offs and an example of a Pareto
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front computation in which a gradient-based algorithm
converged about thirty times faster than a genetic
algorithm. Other studies characterizing genetic and
gradient-based algorithms were performed by Wein-
erfelt> and Obayashi.® The challenge is to improve
the speed of genetic algorithms and the robustness of
gradient-based algorithms, or perhaps to combine the
two in a hybrid algorithm with the best characteristics
of both.

Given efficient algorithms for solving the analysis
problem and calculating the gradient, the overall effi-
ciency of a gradient-based algorithm is determined by
the effectiveness of the optimizer in determining the
local optimum while satisfying the constraints. If the
gradient can be calculated accurately, quasi-Newton
methods are generally preferred for unconstrained op-
timization problems. Such methods apply an updating
formula, such as the Davidon-Fletcher-Powell (DFP)
and Broyden-Fanno-Goldfarb-Shannon (BFGS) for-
mulas, to provide an approximation to the Hessian
or its inverse which can become exact under certain
conditions.”>® These formulas are typically used in
conjunction with an inexact line search. Jameson and
Vassberg? tested several such methods in the context
of a model optimization problem. Quasi-Newton al-
gorithms can be applied to constrained problems by
incorporating the constraints into the objective func-
tion through a quadratic penalty function!®!! or the
Kreisselmeier—Steinhauser (KS) function.!?15

Alternatively, constrained optimization problems
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Professor, Senior Canada Research Chair in Com can be solved using sequential quadratic program-
putational Aerodynamics, Senior ATAA Member, . 16-18 18
dwz@oddjob.utias.utoronto.ca. ming (SQP) methods. For example, SNOPT

(which stands for sparse nonlinear optimizer) uses an
1o0F 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



augmented Lagrangian merit function and a limited-
memory quasi-Newton approximation to the Hessian
of the Lagrangian. SQP algorithms were used by
Willcox and Wakayama'® to design wings for multi-
ple aircraft, by Soemarwoto and Labrujere? to reduce
pressure drag over a range of design Mach numbers, by
Li et al.?! to solve multi-point lift-constrained drag
minimization problems, and by Melvin et al.?? for
multi-point inverse design.

In this paper, we compare two optimizers, SNOPT
and a quasi-Newton method based on the BFGS
update formula with an inexact line search and a
quadratic penalty formulation for the constraints.'!
The two optimizers are applied to the design of air-
foils with the flow governed by the Reynolds-averaged
Navier-Stokes equations using the Newton-Krylov al-
gorithm of Nemec and Zingg!'! in which the gradient
is calculated through the discrete adjoint approach.
This algorithm has been successfully applied to numer-
ous optimization problems, including high-lift, multi-
point, and multi-objective problems.??24 The objec-
tive here is to determine whether the SNOPT algo-
rithm is more effective than the quasi-Newton algo-
rithm used by Nemec and Zingg. A key distinction
in the two algorithms lies in the treatment of con-
straints. SNOPT is designed for constrained optimiza-
tion, while the quasi-Newton method incorporates the
constraints through a penalty formulation.

Problem Formulation

The aerodynamic shape optimization problem con-
sists of determining values of design variables z such
that the specified objective function 7 is minimized
subject to constraint equations C):

min 7 [z,Q(2)] (1)
s.t. Cjlz,Q(x)] <0 j=1,...,N¢

where @), the flow variables, satisfy the governing flow
equations, and N¢ is the number of constraints. In
this work, the constraint equations represent airfoil
thickness constraints that are a function of the design
variables only, that is C;(z) < 0.

Design Variables

The geometry of the airfoil is described with fourth-
order B-spline curves. The coordinates of the B-spline
control-points are used as design variables. We only
allow displacements in the vertical direction for the B-
spline control points. The control points associated
with the leading and trailing edges remain fixed in
order to provide a round leading edge and a sharp
trailing edge. The design variables may also include
the angle-of-attack.

By increasing the number of control points, the flex-
ibility of the B-spline curve is improved. Figs. 1 to 3
show the locations of control points that are used to

D
Fig. 1 RAE 2822 airfoil with 6 out of 15 control
control points as design variables

Fig. 2 RAE 2822 airfoil with 12 out of 17 control
control points as design variables

£ rtee

Fig. 3 RAE 2822 airfoil with 24 out of 29 control
control points as design variables

approximate the RAE 2822 airfoil. The grey control
points are used as design variables for optimization.

Scaling Methods

For most of the test cases, the angle-of-attack is one
of the design variables. It is of a different order of mag-
nitude than the control-point design variables. One
way to ensure that the problem is well-scaled is to de-
vise a linear transformation that brings the diagonal
elements of the Hessian of the transformed problem as
closed to unity as possible. The purpose of scaling is to
make all the variables of a similar order of magnitude
with the aim of causing each variable to be of similar
weight during the optimization. Gill et al.l® provided
a good discussion on the pros and cons of scaling. We
consider a simple linear transformation of the variables
with the form

z =Dy (2)

where z is the vector of design variables, y contains
the transformed variables, and D is a constant diago-
nal matrix. The design variables are scaled before an
optimization iteration starts and transformed back to
the original scaling before a flow solve.

A natural approach to scaling is to choose d;, the
i-th diagonal entry in D, as the i-th design variable at
the first iteration of the optimization:

scaling option 1 :

d = { Z; control point design variables

* 7| AOA angle-of-attack design variable
3)
However, this scaling method depends on the initial
control point values. It gives more weight to the con-
trol points closer to midchord with larger magnitude.
It also gives more weight to the cases where the angle-
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of-attack is larger. An alternative scaling strategy is:

scaling option 2 :
d = 0.03 control point design variables (4)
*7 1 1.0 angle-of-attack design variable

The scaling factor 0.03 is chosen based on the initial
design variables for our test cases, which vary from
0.002 to 0.7.

Thickness Constraints

The airfoil thickness constraints are cast as inequal-
ity constraints given by the following term

(1 - t”fp) if ¢;(z) <t

CJ' = J (5)

0 otherwise

where t*(z) is the minimum allowable airfoil thickness
at some location z. If the airfoil thickness is below
the target value specified at the given chordwise lo-
cation, then a penalty is imposed on the objective
function. If the thickness to chord ratio is equal to
or greater than that specified, then the objective func-
tion is unaffected, and the constraint is described as
inactive. Some thickness constraints are imposed to
prevent crossover during the optimization. These are
typically inactive at convergence.

Numerical Method

Flow Solution

The spatial discretization of the flow equations is
the same as that used in ARC2D.2% The discretization
consists of second-order centered-difference operators
with second- and fourth-difference scalar artificial dis-
sipation. The Spalart-Allmaras turbulence model is
discretized as described in Ref. 26. Overall, the spatial
discretization leads to a nonlinear system of equations

R(Q,z) =0 (6)

where Q; = J71Q; = J[ps, (pu)i, (pv)s, i, 7] is
the vector of conservative dependent state variables,
and J~! denotes the grid-metric Jacobian. Note that
structured C-topology grids are used.

Eq. 6 is solved in a fully-coupled manner, where
convergence to steady state is achieved using the pre-
conditioned GMRES algorithm in conjunction with an
inexact-Newton strategy based on Pueyo and Zingg.2”
Details of the algorithm are provided in Refs. 11 and
28.

Gradient Evaluation

The adjoint method for calculating the gradient of
the objective function has been applied successfully by
Jameson et al.,> Nemec and Zingg,'! and several oth-
ers. It is extremely efficient, since the computational

expense of the gradient evaluation is effectively inde-
pendent of the number of design variables.

Using the discrete adjoint method, the gradient of
the objective function is given by

d_‘7 = 6_‘7 - T@ (7)
dz Oz Oz
where we reduce the vector of design variables = to a
scalar in order to clearly distinguish between partial
and total derivatives. The vector i represents the ad-
joint variables, which are determined from the adjoint
equation:
ORT aJ" 2
50 ¥ = 5 ®)
We adopt the preconditioned GMRES strategy from
the flow solver to solve the adjoint equation.?® With
this approach, the computing time required for the
gradient evaluation is typically about one-fifth of that
required for a flow solve.!!

Optimizers
BFGS Algorithm with Penalty Terms
We use the BFGS quasi-Newton algorithm? to solve
the unconstrained optimization problem. A quadratic
penalty method can be used to cast a constrained
problem as an unconstrained problem by incorporat-
ing the constraints in a composite objective function:

J =T+ Jr 9)

where 7, denotes the original objective function. Jt
is the quadratic penalty term defined as:

Nt
Jr =wr Z C]' (10)

j=1

where Nt is the number of thickness constraints, wr
is a user-specified constant, and the C; are the con-
straints defined as in Eq. 5. An unconstrained opti-
mization algorithm is then used to find the minimum
of the composite objective function.

A quadratic model of the composite objective func-
tion is formed at each iterate zy:

mi(p) = Ji + VI p+ 30 B (11)
where Bj is a symmetric positive definite matrix
which holds the curvature information. For Newton’s
method, By, is the Hessian matrix. However, the Hes-
sian matrix is often difficult, if not impossible, to ob-
tain. The quasi-Newton methods are based on the idea
of building up curvature information as the iterations
proceed, using the observed behaviour of the objec-
tive function and its gradient. The approximation to
the curvature of a nonlinear function can be computed
without explicitly forming the Hessian matrix. For the
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quasi-Newton method, By is an approximation of the
Hessian matrix that is updated at every iteration.
The minimizer py of this model, which we can write
explicitly as
pr = —B 'V, (12)

is used as the search direction, and the new iterate is

Th+1 = Tk + QkPk (13)

where ¢, is the step length determined by a line search.
At each step of the line search, the objective function
value and the gradient value are used to construct a
local cubic interpolant.

SNOPT Algorithm

Transformation to an unconstrained problem by in-
corporating the constraints into the objective function
can be an effective approach. However, with each addi-
tional constraint, the approximate Hessian matrix that
holds the curvature information may become more ill
conditioned near the minimizer.® This condition can
make unconstrained optimization algorithms, such as
the quasi-Newton method, perform poorly. The scal-
ing of the problem may also be adversely affected if the
constraints are not formulated carefully. One alter-
native optimization method is the SNOPT algorithm
based on sequential quadratic programming which has
been designed for problems with a large number of
variables and constraints.

SNOPT generates a search direction from the solu-
tion of a QP subproblem which minimizes a quadratic
model subject to linearized constraints. A smooth
augmented Lagrangian merit function is used to en-
sure convergence from an arbitrary starting point.!®
The merit function plays the role of the objective
function in unconstrained optimization; however, the
constraints are treated separately. For a detailed de-
scription of the SNOPT algorithm, see Gill, Murray
and Saunders.'® For an overview of SQP methods,
see, for example, Gill, Murray, and Wright,'® Mur-
ray,'” and Nocedal and Wright.®

The SNOPT algorithm is applicable to both con-
strained and unconstrained problems. In order to
clearly delineate the effect of the approach to con-
straint handling, we also apply SNOPT to the uncon-
strained problem with the composite objective func-
tion incorporating the quadratic penalty terms.

Results and Discussion

We examine the performance of the following opti-
mization algorithms:

e BFGS with the quadratic penalty approach
(BFGS)

e SNOPT with the quadratic penalty approach
(SNOPT-Q)

e SNOPT with constraints
(SNOPT-A)

handled explicitly

Inverse design, maximization of lift-to-drag ratio, max-
imization of endurance factor, lift-constrained drag-
minimization, and multi-point optimization problems
are considered. In all cases, the maximum number
of objective function and gradient evaluations is re-
stricted to 150. In some cases, the line search stalled
before 150 iterations were completed. These cases can
be restarted with the approximate Hessian inverse in
the BFGS algorithm reset to the identity matrix. If the
gradient was already reduced by several orders of mag-
nitude, then no restart was performed. If the stalling
occurred after at least 140 iterations, a restart was also
not performed.

Inverse Design

For the inverse design problem, the objective func-
tion is given by

Na

J =35> (Co, —Cy) (14)

=1

where C7 represents the target pressure distribution,
and N4 denotes the number of nodes on the airfoil.
For our tests we use a pressure distribution obtained
from a B-spline representation of the RAE 2822 airfoil.
Thus we are assured that there is a solution in the de-
sign space for which the objective function is equal
to machine zero. Flow conditions are M, = 0.2 and
Re = 2 x 109, with the angle-of-attack fixed through-
out the optimization. The initial shape is a B-spline
representation of the NACA 0012 airfoil. No thickness
constraints are imposed (so there is no distinction be-
tween SNOPT-A and SNOPT-Q).

Figs. 4 and 5 show the convergence of the objective
function with 6, 12, and 24 design variables (denoted
by 6dv, 12dv, and 24dv, respectively). Initially the
first scaling option (Eq. 3) is used for all test cases.
Results for the second scaling technique are presented
subsequently. The horizontal axis shows the number of
objective function and gradient evaluations. All cases
converge well with the two optimizers performing sim-
ilarly. For both optimizers, the number of iterations
needed for convergence increases as the number of
degrees of freedom increases. This is typical of quasi-
Newton methods. Fig. 6 shows the initial, final, and
target pressure distributions using 24 out of 29 control
points as design variables. Also shown is the SNOPT
solution after 15 design iterations, which is partially
converged.

Lift-to-Drag Maximization
For the maximization of the lift-to-drag ratio, the
objective function is given by

Cp

7-2 (15)
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Fig. 4 BFGS

Inverse design :
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iteration

Inverse design : SNOPT
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— Initial design

— - 15 design iteration
0.8 -6~ Final design H
—— Target design

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6 (), distribution comparison for the inverse
design problem (for 24dv case)

Constraint # 1 2 3 4 5
x/c 15.0 | 35.0 | 60.0 | 92.0 | 99.0
t/c 1.0 (164 | 7.0 | 1.0 | 0.1

Table 1
tion of lift-to-drag ratio and endurance factor

Thickness constraints for the maximiza-

Flow conditions are again M, = 0.2 and Re = 2x 105.
The RAE 2822 airfoil is used as the starting airfoil,
and the angle-of-attack is included as a design vari-
able.! In order to prevent the lower and upper airfoil
surfaces from crossing during the optimization process
and to ensure that an airfoil of reasonable thickness
is obtained, the thickness constraints given in Table 1
are imposed. The table shows a set of five thickness
constraints and their chord locations.

Figs. 7 to 9 compare the results for lift-to-drag
maximization. The lift-to-drag ratio is greatly in-
creased, with the increased flexibility associated with a
larger number of design variables leading to greater in-
creases. A significant portion of the increases obtained
is achieved within the first few iterations. Further iter-
ations are needed in order to reduce the gradient suffi-
ciently that one can be confident that a local minimum
has been found. Comparing BFGS and SNOPT-Q, we
see that the latter is somewhat faster. This shows that
SNOPT offers an advantage even when constraints are
imposed using the penalty approach. A much greater
advantage is obtained using SNOPT-A. For this prob-
lem, the explicit handling of constraints leads to much
faster convergence. SNOPT-A converges roughly twice
as fast as SNOPT-Q for the 6 and 24 design variable
cases. All of the methods converge to the same value
of the lift-to-drag ratio and the design variables. The
only exception is the 24 design variable case for which
BFGS is not converged after 150 iterations.

Endurance Factor Maximization

The third design problem is the maximization of the
endurance factor with the same flow conditions, initial
airfoil, and thickness constraints as the previous prob-
lem. The objective function, which is the inverse of
the endurance factor, is given by3°

Cp

TG

(16)

Figs. 10 to 12 show the results for this design problem.
The convergence patterns are similar to the previous
case. The endurance factor is greatly increased, more
than tripled with 12 and 24 design variables, with a
large fraction of the improvement occurring in the first
ten iterations. The SNOPT-Q algorithm again con-
verges more rapidly than the BFGS algorithm; the
latter fails to converge within 150 iterations for the

INote that there is thus actually one more design variable
than indicated in the labelling in the figures. “6dv” means that
there are six control-point design variables, seven in total.
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Fig. 7 Lift-to-drag ratio: BFGS
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Fig. 8 Lift-to-drag ratio: SNOPT-Q
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Fig. 9 Lift-to-drag ratio: SNOPT-A
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Fig. 10 Endurance factor: BFGS

75

Endurance factor

L L T
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Fig. 11 Endurance factor: SNOPT-Q

Endurance factor

L L L L
20 40 60 80 100 120 140 160
iteration

Fig. 12 Endurance factor: SNOPT-A

12 and 24 design variable cases. SNOPT-A converges
very well for the 6 and 12 design variable cases, but
does not converge within 150 iterations for the 24 de-
sign variable case. It is not clear why the performance
of SNOPT-A for the 24 design variable case is infe-
rior to its performance with 24 design variables for the
lift-to-drag ratio maximization.
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Fig. 14 Inverse design using second scaling option:
SNOPT

Effect of Design-Variable Scaling

All of the results presented thus far have used the
first scaling option, Eq. 3. We now examine the perfor-
mance of BEGS and SNOPT-A with the second scaling
option, Eq. 4. Figs. 13 to 18 show the results for the
three optimization problems using the second scaling
option. With a few exceptions, the second option leads
to significantly improved convergence. For the inverse
problem with 24 design variables, the number of itera-
tions is cut in half for both SNOPT-A and BFGS. For
lift-to-drag ratio maximization using BFGS with 24
design variables, convergence is obtained in about 80
iterations when more than 150 iterations were required
with the first scaling method. Using SNOPT-A for
lift-to-drag ratio maximization with the second scaling
method, convergence is obtained in about 20 iterations
independent of the number of design variables, and
most of the improvement is realized in the first 10 it-
erations. The endurance factor maximization problem
is again more difficult, but the second scaling option
is superior in most cases.

Inverse design using second scaling option:

60

30 P L L L L L L
0 20 40 60 80 100 120 140 160
iteration

Fig. 15 Lift-to-drag ratio using second scaling op-
tion: BFGS

35

— 6dv
- - 12dv
— 24dv

30 L L L L L L
0 20 40 60 80 100 120 140 160
iteration

Fig. 16 Lift-to-drag ratio using second scaling op-
tion: SNOPT-A

Lift-Constrained Drag Minimization

Finally we consider single- and multi-point lift-
constrained drag-minimization. The objective func-
tion is given by!!

2 2
wL(l—g—E) +wD(1—gg) ifCD>CB
otherwise

Tlal-g)
(17)

where Cf and C} represent the target lift and drag
coefficients. The weights wr, and wp are user-specified
constants. This is a very useful objective function
which can be used to achieve a variety of goals. For
drag minimization at fixed lift, the target lift coefhi-
cient is set to the desired value, and the target drag
coefficient is set to an unattainably low value. The
designer can control the process by careful selection of
the target drag coefficient and the weights. For the
present test, Cf and C}j are set to 0.733 and 0.013,
respectively. The weights are both set to unity. The
initial airfoil is the RAE 2822 airfoil, and the thick-
ness constraints are listed in Table 2. The constraint
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Fig. 17 Endurance factor using second scaling op-
tion: BFGS
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Fig. 18 Endurance factor using second scaling op-
tion: SNOPT-A

Constraint # 1 2 3
x/c 35.0 | 96.0 | 99.0
t/c 12.06 | 0.5 | 0.12

Table 2 Thickness constraints for the lift-
constrained drag minimization

at 35%c maintains the initial airfoil thickness, while
the constraints near the trailing edge are used to pre-
vent airfoil surface crossover. The Reynolds number is
2.88 x 108.

Convergence histories obtained using BFGS and
SNOPT with the first scaling option for this design
problem are shown in Figs. 19 and 20. For the SNOPT
results the lift constraint is imposed through the ob-
jective function, and the thickness constraints are im-
posed explicitly. With both methods the target lift
is achieved reasonably well but not exactly. In or-
der to achieve the target lift more closely, the weight
wr, must be increased. The superior convergence of
SNOPT relative to BFGS seen in the previous cases is
not seen in this case. In fact, with 24 design variables

0.017

0.0165

0.016

0.0155

0.015

0.0145

0.014

ool b s
0 60 80 100 120 140 160

iteration

Fig. 19 Lift and drag for lift-constrained drag-
minimization: BFGS

0.017

0.0165

0.016

0.0155

0.015

0.0145

0.014

PR IRV EPATAVITAN APUVETIVN EAVAVIVEN IAFAVATIN APTAVAVEN EAVATAVE P
0 20 40 60 80 100 120 140 160

iteration

Fig. 20 Lift and drag for lift-constrained drag-
minimization: SNOPT

BFGS converges faster than SNOPT and produces a
lower drag coefficient after 150 iterations. The re-
sulting airfoil and the associated pressure distribution
for the 24 control-point design variable case obtained
using BFGS are displayed in Fig. 21. The leading
edge geometry is probably not practical for a vari-
ety of reasons, indicating that additional objectives
or constraints should be applied to achieve a practi-
cal airfoil. Furthermore, as shown in Fig. 22, although
the drag-divergence Mach number has been success-
fully increased, there is a significant drag penalty at
Mach numbers below 0.71. This is the motivation for
multi-point optimization.

The weighted-sum method is used for multi-point
optimization problems,2*

M

m=1
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Fig. 21 (), distribution for lift-constrained drag-
minimization (BFGS, 24dv)
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Fig. 22 Drag coefficient for lift-constrained drag-
minimization (BFGS, 24dv)

Mach number Weight (w,)

Single-point 0.74 1
Two-points 0.68, 0.74 1,2
Four-points  0.68, 0.71, 0.74, 0.76 1,1,2,3

Table 3 Mach numbers and weights for the multi-
point optimization problem

where M denotes the number of design points, w,, rep-
resents a user-assigned weight for each design point,
and J,, represents the objective function associated
with a specific operating point. For our example we
will consider lift-constrained drag minimization at sev-
eral Mach numbers. The goal is to increase the drag-
divergence Mach number without increasing the drag
at lower Mach numbers. Each operating point, i.e.
Mach number, has its own angle-of-attack as a design
variable. Table 3 shows a list of design Mach numbers
and the weight assigned to to each Mach number for
single-point, two-point, and four-point optimization.
Figs. 23 to 26 show the results for the two-point

0.017

0.0165

0.016

0.0155

0.015

0.0145

0.014
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60 80 100 120 140

iteration

0.0135
160

Fig. 23 Lift and drag for the two-point optimiza-
tion problem: BFGS
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o
S
2
&
a
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o
>
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Fig. 24 Lift and drag for the two-point optimiza-
tion problem: SNOPT

optimization problem. BFGS again converges some-
what faster than SNOPT. The airfoil and pressure
distribution are displayed in Fig. 25, and the drag coef-
ficient is plotted in Fig. 26. The drag is slightly higher
at a Mach number of 0.74 than that obtained using
single-point optimization, but the drag is lower than
the original airfoil for the entire Mach number range
shown.

Finally, we consider a four-point optimization in
which low drag is sought for a Mach number of 0.76
without sacrificing performance at lower Mach num-
bers. The results are shown in Figs. 27 to 30. For this
problem BFGS substantially outperforms SNOPT,
producing significantly higher lift and lower drag after
150 iterations. The performance of SNOPT is inade-
quate in this case, as it is far from convergence after
150 iterations, as demonstrated by the BFGS results.
Furthermore, the SNOPT results are quite flat so there
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is no indication that convergence will be achieved with
further iterations. If the BFGS results were not avail-
able, the designer could be forgiven for falsely assum-
ing that the SNOPT results are converged. Since the
case labelled “6 dv” has only seven design variables
and three constraints, it is not clear why SNOPT con-
verges so poorly.

Conclusions

Two gradient-based optimization algorithms with
various constraint handling approaches have been ap-
plied to aerodynamic design. These include the BFGS
optimizer with a quadratic penalty method and the
SNOPT optimizer with the active-set method and
the quadratic penalty method. Two different scalings
have also been tested. The scaling option in which
the control-point design variables are weighted equally
(option 2) leads to significantly faster convergence for
the cases tested and should be studied further. The
comparison between constrained optimization using
SNOPT and unconstrained optimization using BFGS
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tion problem: SNOPT
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with penalty terms is inconclusive. SNOPT is clearly
superior for several design problems but equally clearly
inferior for one important objective function. Further
study is needed to better understand these results.
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