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A Newton-Krylov flow solver is presented for the Euler equations on unstructured
grids. The algorithm uses a preconditioned matrix-free GMRES method to solve the
linear system that arises at each Newton iteration. The preconditioner is an incomplete
lower-upper factorization of an approximation to the Jacobian matrix after applying the
reverse Cuthill-McKee reordering. The algorithm successfully converges for a wide range
of steady two- and three-dimensional aerodynamic flows. A ten-order reduction of the
density residual is obtained in a computing time equivalent to fewer than 520 and 1, 800
residual evaluations for the two-dimensional and three-dimensional cases, respectively.

Introduction
Advances in automated aerodynamic optimization

have increased the need for improvements in the speed
and reliability of algorithms for computing aerody-
namic flows. The Newton-Krylov family of algorithms
provides a promising option. Since the work of Wig-
ton et al.,1 a wide variety of such algorithms has been
proposed, including both approximate-Newton2 and
inexact-Newton3 approaches. The generalized mini-
mal residual (GMRES) Krylov subspace method4 for
nonsymmetric linear systems has been the linear solver
of choice. GMRES requires only matrix-vector prod-
ucts, which can be obtained without forming or stor-
ing the flow Jacobian matrix in what is termed the
matrix-free or Jacobian-free approach. Some approx-
imation to the Jacobian is often formed for use in
preconditioning the linear systems. An efficient pre-
conditioner is a key component in a Newton-Krylov
algorithm. Preconditioning strategies include lower-
upper symmetric Gauss-Seidel (LU-SGS),5 incomplete
lower-upper (ILU) factorization,3 and use of an ex-
isting solver.1 Newton-Krylov algorithms have been
applied to compressible and incompressible flows using
both structured and unstructured grids and to other
physical problems, such as non-equilibrium radiation
diffusion.1–3,5–12,14

One of the more efficient Newton-Krylov algorithms
was developed by Pueyo and Zingg,3 who demonstrate
a twelve-order reduction in the residual in a computing
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time equivalent to fewer than 1000 residual evalua-
tions for a range of two-dimensional inviscid, laminar,
and turbulent flows over airfoils. Pueyo and Zingg use
an inexact-Newton strategy with matrix-free GMRES
and an ILU preconditioner based on an approximation
to the flow Jacobian which has been tuned for optimal
performance. The start-up phase is handled using an
approximate-factorization algorithm on a coarse grid
initially, followed by five approximate-factorization it-
erations on the fine grid to provide a good initial solu-
tion for the inexact-Newton algorithm. The algorithm
of Pueyo and Zingg was limited to single-block struc-
tured grids (single-element airfoils), scalar numerical
dissipation, and the Baldwin-Lomax algebraic turbu-
lence model. Nemec and Zingg15 and Chisholm and
Zingg16 extended the algorithm to multi-block struc-
tured grids and the one-equation Spalart-Allmaras tur-
bulence model, thus permitting application to multi-
element airfoils. Chisholm and Zingg further incorpo-
rated a matrix numerical dissipation model and de-
veloped a start-up strategy which does not rely on
approximate factorization. The two start-up strate-
gies have yet to be compared, but the approximate
factorization approach is restricted in applicability to
structured meshes. The algorithm of Nemec and Zingg
has been applied extensively to aerodynamic optimiza-
tion.17,18

The objective of this paper is to apply the Newton-
Krylov strategy developed by Pueyo and Zingg3 with
the extensions reported in Refs. 15 and 16 to the solu-
tion of the two- and three-dimensional Euler equations
on unstructured grids. In particular, the start-up tech-
niques developed by Chisholm and Zingg16 are needed
for unstructured grids, since approximate factorization
cannot be used. Fast solution of the two-dimensional
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Euler equations using a similar Newton-Krylov algo-
rithm was reported by Blanco and Zingg7 for unstruc-
tured grids consisting strictly of triangles. Since the
present effort aims eventually to solve the Reynolds-
averaged Navier-Stokes equations, the current algo-
rithm is applicable to grids consisting of arbitrary
polygons in two dimensions and arbitrary polyhedra
in three dimensions.

Numerical Algorithm
Spatial Discretization

The algorithm employs a cell-vertex finite-volume
spatial discretization of the Euler equations. The spa-
tial discretization is applied to the centroidal-median
dual constructed from a given source grid. The semi-
discrete form of the equations can be written as follows

dQ

dt
+ R(Q) = 0 (1)

where the residual operator R(Q) is formed primar-
ily as face-based operations on the solution vector
Q. Advective contributions to the residual operator
are formed by the surface integral of the flux contri-
butions over the boundary of each cell. A blend of
first- and third-order matrix artificial dissipation20 is
applied through a combination of Laplacian and bi-
harmonic operators controlled by a switch based on
pressure.

Inexact Newton’s Method

For steady flows, the discretized system of equations
can be written as

R(Q) = 0 (2)

An inexact Newton method is a generalization of New-
ton’s method, where at each iteration k, we find ∆Qk

in an iterative fashion such that

||R(Qk) + A(Qk)∆Qk|| ≤ ηk||R(Qk)|| (3)

where A(Qk) is the Jacobian of R(Qk). This involves
finding ∆Qk such that the residual of the linear prob-
lem is reduced by a factor ηk. The solution vector is
updated by Qk+1 = Qk + ∆Qk, which is known as
a Newton update or outer iteration. The process is
repeated until the desired convergence is reached. If
ηk = 0, Newton’s method is recovered. The inexact-
Newton method is motivated by the prohibitive cost of
direct solvers when solving large problems. In this pa-
per, the linear sytem is reduced by ηk = 0.1 for all test
cases, as suggested by Pueyo and Zingg.3 Although
this approach yields linear, rather than quadratic, con-
vergence, it is very efficient in terms of computing
time.

Linear Iterative Solver

The linear system of equations that arises by ap-
plying Newton’s method to Eq. 2 is solved using the

GMRES algorithm of Saad and Schultz.4 The GMRES
algorithm requires the computation of matrix-vector
products, which can be calculated using first-order for-
ward differences as follows

Av =
R(Q + εv)−R(Q)

ε
(4)

The parameter ε is calculated at every GMRES itera-
tion as a function of machine zero εmz and ‖v‖2.

ε =
√

εmz

‖v‖2 (5)

This matrix-free approach reduces the memory re-
quired to solve the linear system, since the Jacobian
matrix does not need to be formed explicitly. Further-
more, it provides an effective linearization even though
R(Q) is not differentiable (since the numerical dissipa-
tion includes the absolute value function).

Preconditioning

The Jacobian matrix of the Euler equations is of-
ten off-diagonally dominant and ill-conditioned. As a
result, the GMRES algorithm can converge slowly or
stall. A preconditioner is used to overcome this diffi-
culty. With right preconditioning, the system Ax = b
becomes

AM−1Mx = b (6)

where M is an approximation to A which is much
easier to invert than A. The idea is that the pre-
conditioner M−1 transforms the original matrix into
another one as close as possible to the identity matrix,
thus improving the performance of GMRES.

The preconditioner is formed using an approximate
Jacobian based on a first-order spatial discretization,
which reduces the memory requirements and computa-
tional cost. It tends to be more diagonally dominant
and better conditioned than the true Jacobian ma-
trix, thereby improving the performance of the linear
solver. The coefficient of second-order dissipation in
the preconditioner εPC

2 is formed by combining the
second- and fourth-difference dissipation coefficients as
follows3

εPC
2 = εRHS

2 + σεRHS
4 (7)

where the superscript RHS denotes the right-hand
side, and σ is a user-specified parameter. Increasing
the value of σ makes the system more diagonally dom-
inant, but results in an inferior approximation to the
true Jacobian. Consequently, large values of σ are ro-
bust but possibly slow. Values of σ equal to 5 or 6
are effective for a wide range of flow problems. Note
that the approximation given in Eq. 7 is applied to the
preconditioner only. Hence it affects neither the con-
vergence of the Newton iterations nor the accuracy of
the converged solution.

Incomplete lower-upper factorization with level of
fill p (ILU(p)) is applied to form the preconditioner
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for the GMRES algorithm. In an incomplete factoriza-
tion, the matrix M is approximated by the product of
triangular matrices L and U computed using the Gaus-
sian elimination process by dropping elements that
exceed a certain level of fill. When the level of fill is
zero, the non-zero pattern of the preconditioner corre-
sponds to that of the Jacobian matrix. Both memory
and CPU cost to form and apply the factorization in-
crease by allowing a higher level of fill. On the other
hand, a high level of fill can increase efficiency and ro-
bustness by reducing the number of linear iterations.

Reordering

The ordering of the unknowns can affect the qual-
ity of the incomplete factorization.21 The reverse-
Cuthill-McKee ordering (RCM)22 has been found to
be effective when the root node is chosen to lie on the
downstream boundary.

Start up

Newton’s method is susceptible to slow convergence
or divergence during the initial iterations, especially
for transonic cases. To overcome this difficulty, a
time step is added which effectively damps the New-
ton updates. This also improves the conditioning of
the Jacobian, hence reducing the number of inner it-
erations required during the early Newton iterations.
The full Newton method, which corresponds to an in-
finite time step, is applied once the L2-norm of the
density residual has been reduced to 5 × 10−4 for the
2D cases and 8× 10−4 for the 3D cases.

Convergence of Newton’s method can also be im-
proved using grid sequencing, which consists of iterat-
ing on one or several coarser grids to obtain a better
initial guess for the fine grid instead of starting from
uniform flow. Two-level grid sequencing is used to
converge the ONERA M6 wing test case below. The
coarse grid was generated from the fine mesh by ag-
glomerating the fine grid cells using the algorithm
described by Zingg and Lassaline.19 Using grid se-
quencing, the computing time is reduced by roughly
50% for these cases.

Results
Several two- and three-dimensional test cases have

been studied in order to characterize the speed, accu-
racy, and robustness of the Newton-Krylov algorithm.
These include flows around the NACA 0012 airfoil, the
ONERA M6 wing, and the M100 wing-body configura-
tion. Numerical results are compared to a structured
solver in 2D and to experimental data in 3D.

NACA0012 Airfoil

Three subsonic and four transonic test cases were ex-
amined. The grid is composed of triangular elements
and has 14,193 nodes. Results were obtained using ma-
trix dissipation with Vl = Vn = 0.25, k4 = 0.1, σ = 5.0
and ILU(3), where k4 is the fourth-difference dissipa-

tion coefficient, while Vl and Vn control the eigenvalues
used in forming the dissipation matrix |A|. Values of
Vn and Vl equal to unity give scalar (spectral radius)
dissipation. The second-difference numerical dissipa-
tion coefficient k2 was set to 5 for the transonic cases
and 0 for the subsonic cases.

The residual convergence histories of all cases are
shown in Fig. 1 as a function of the CPU time required
for one residual evaluation. This work unit is deter-
mined by dividing the total CPU time by the CPU
time required for a residual evaluation. We use this
work unit in order to permit relatively straightforward
comparison between different algorithms and different
computing hardware. The Mach number and angle of
attack of each case are shown in the legend. In all
cases, the L2-norm of the residual is reduced by 10
orders of magnitude in a CPU time equivalent to less
than 520 residual evaluations. Note that the applica-
bility to arbitrary polygons and polyhedra increases
the cost of a residual evaluation, thus reducing the ap-
parent cost expressed in terms of equivalent residual
evaluations. During the full Newton phase, the GM-
RES solver took an average of 20 iterations for each
outer or Newton iteration.

In Fig. 2, the computed surface pressure coefficient
is compared to that from a 2D structured solver, CY-
CLONE, based on the ARC2D flow solver,23 for the
test case M = 0.8 and α = 1.25◦. The structured so-
lution was obtained on a C-mesh with approximately
89,000 nodes.

ONERA M6 Wing

Three flows were computed about the ONERA M6
wing:24 a) M = 0.7003 and α = 1.08◦, b) M = 0.7019
and α = 5.06◦, c) M = 0.84, α = 3.06◦. The grid has
roughly 235,000 nodes and is composed of tetrahedral
cells. Fig. 3 shows a view of a coarser grid with 50,000
nodes. The computed Mach contours for the M =
0.84, α = 3.06◦ case are depicted in Fig. 4.

The runs are started on a coarse grid from ini-
tial conditions with the scalar first-order dissipation
scheme (Vl = Vn = 1.0, k2 = 1.0, k4 = 0), ILU(2), and
a local time step corresponding to a CFL number of 2.
After 5 iterations, the CFL number is increased to 500,
and the iterations are continued until the L2-norm of
the density residual is reduced to 10−2. After inter-
polating the solution to the fine grid, 8 iterations are
performed on the fine grid using the first-order scalar
dissipation scheme with a CFL number of 2. The CFL
number is increased to 500, and the iterations are con-
tinued until the L2-norm is reduced to 10−2. At this
point, third-order scalar dissipation is applied. Five
iterations are performed with a CFL number of 5. A
CFL number of 30 is then used until the L2-norm of
the residual is again reduced to 10−2. The final stage
of convergence is then performed using matrix dissi-
pation with Vl = Vn = 0.25, k2 = 5.0, k4 = 0.1,
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σ = 6.0 and ILU(1). Five iterations are performed
with a CFL number of 5, then a CFL number of 100
is used until the residual reaches 8 × 10−4. The full
Newton method is then used until the residual is re-
duced to 10−10. During the final phase, an average
of 18 GMRES iterations are needed per Newton iter-
ation. The convergence histories are shown in Fig. 5.
The L2-norm of the residual was reduced 10 orders
of magnitude in a computing time equivalent to fewer
than 1, 800 residual evaluations in each case.

To assess the accuracy of the 3D solver, the M =
0.84, α = 3.06◦ test case was solved on three grids
with 50, 000, 111, 000 and 235, 000 nodes. A compar-
ison of the coefficient of pressure for the three grids
is presented in Fig. 6. The results agree with the ex-
periment as well as can be expected from an inviscid
solution.

M100 Wing-Body Configuration

A subsonic flow was computed for the M100 wing-
body configuration25 with M = 0.6, α = 1.733◦. The
grid, illustrated in Fig 7, has approximately 177, 000
nodes and is composed of tetrahedral cells. Computed
Mach number contours are depicted in Fig. 8.

The start-up strategy is similar to that used for the
ONERA M6 wing, except that grid sequencing and
first-order scalar dissipation are not needed for this
subsonic flow and relatively coarse grid. The scalar
dissipation scheme is used until the residual norm is
reduced to 10−2, and then the matrix scheme is used.
An infinite time step is initiated once the residual
norm reaches 8 × 10−4. The parameters used are
Vl = Vn = 0.25, k2 = 0.0, k4 = 0.1, σ = 6.0, and
ILU(1). As shown in Fig. 9, the density residual is
reduced 10 orders of magnitude in a CPU time equiv-
alent to approximately 450 residual evaluations.

Conclusions

A preconditioned matrix-free inexact Newton-
Krylov algorithm for solving the Euler equations on
2D and 3D unstructured grids has been presented and
its performance demonstrated for a number of test
cases. Specific start-up strategies have been described,
including grid sequencing during the start-up phase,
which lead to fast and robust convergence. Future
work will concentrate on the development of simpler
start-up strategies. The results presented are suffi-
ciently promising to justify extension of the Newton-
Krylov algorithm to three-dimensional turbulent flows.
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Fig. 3 Close-up of the Onera M6 wing (50,000 nodes)

Fig. 4 Mach contours of the ONERA M6 wing for the M = 0.84, α = 3.06◦ case
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Fig. 6 Cp plots for the ONERA M6 wing, M = 0.84, α = 3.06◦
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Fig. 7 Grid for the M 100 wing-body configuration

Fig. 8 Mach contours of the M 100 wing-body for the M = 0.6, α = 1.733◦ case
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