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Aerodynamic Computations Using the Convective-Upstream
Split-Pressure Scheme with Local Preconditioning

M. Nemec ¤ and D. W. Zingg†

University of Toronto, Toronto, Ontario M3H 5T6, Canada

The implementation of the convective-upstream-split-pressure (CUSP) approach to numerical dissipation is
presented for an approximately factored algorithm in conjunction with time-derivative local preconditioning. An
inexpensive � ux limiter is used to blend the low- and high-order CUSP dissipation to capture shocks without
oscillations. The resulting algorithm is applied to several subsonic and transonic turbulent aerodynamic � ows and
compared with results computed using the matrix dissipation scheme. Grid convergence studies are used to assess
global errors. The results show the CUSP scheme to be very effective in providing good shock capturing, low
numerical dissipation in boundary layers, and low numerical errors. For the � ow regimes studied, accuracy is not
signi� cantly compromised when the limiter is based on the pressure variable only, leading to signi� cant savings in
computational expense. For freestream Mach numbers below 0.2, the convergence rate and accuracy of the solver
are signi� cantly improved by preconditioning the CUSP scheme. Overall, the CUSP scheme provides accuracy
similar to that of matrix dissipation at a reduced computational cost.

Introduction

N UMERICAL dissipation is a necessary evil in practical com-
putationsof aerodynamic� ows, that is, the differenceapprox-

imation for the convective� uxes cannot be purely skew symmetric.
The purpose of the symmetric, or dissipative, component of the dif-
ferenceapproximationis to producestableoscillation-freesolutions
without signi� cantly compromising solution accuracy, while min-
imizing the cost of the algorithm. A numerical dissipation scheme
has three components: 1) a basic symmetric operator applicable to
scalar � ux functions, 2) a � ux splitting that ensures that all waves
are appropriatelydissipatedwhen the precedingoperator is applied
to a hyperbolicsystem of equations,and 3) some sortof � ux limiting
or switch to avoid oscillations near shock waves and other discon-
tinuities without contaminating the solution in smooth regions of
the � ow. The strategies chosen for each of these components can
greatly in� uence the effectiveness and cost of the scheme.

During the early 1980s, the most popular numerical dissipation
scheme in aerodynamic computations was the scalar scheme of
Jameson et al.1 [referred to as the Jameson, Schmidt, and Turkel
(JST) scheme], coupled with a pressure switch for shock detec-
tion. The JST scheme is inexpensive and robust, but tends to be
excessively dissipative in boundary layers.2 , 3 Later in the decade,
more sophisticated high-resolution schemes gained in popularity,
primarily as a result of their improved discontinuity capturing ca-
pabilities. These include � ux-vector and � ux-difference split up-
wind schemes4 , 5 and the matrix dissipationscheme,6 possiblycom-
bined with � ux limiters based on total variation diminishing (TVD)
concepts.7 Typically, high-resolution schemes are more expensive
pergridnodethan the JST schemebut areusuallymore cost-effective
as a result of their improved accuracy.

More recently, Jameson8, 9 introduced the convective upstream
split pressure (CUSP) scheme and the symmetric limited positive
(SLIP) formulationfor the constructionof high-resolutionschemes.
The goal of the CUSP scheme is to provide the accuracy of a
high-resolution scheme at a computational cost comparable to the
JST scheme. There are two versions, ECUSP, and a variation that

Received 11 May 1998; presented as Paper 98-2444 at the AIAA 29th
Fluid Dynamics Conference, Albuquerque, NM, 15–18 June 1998; revision
received 4 February 1999; accepted for publication 17 August 1999. Copy-
right c° 1999 by M. Nemec and D. W. Zingg. Published by the American
Institute of Aeronautics and Astronautics, Inc., with permission.

¤ Graduate Student, Institute for Aerospace Studies, 4925 Dufferin Street;
marian@oddjob.utias.utoronto.ca.

†Professor, Institute for Aerospace Studies, 4925Dufferin Street. Member
AIAA.

admits isenthalpic steady solutions, denoted HCUSP. Initial results
for � at-plate laminar boundary layers and limited subsonicand tran-
sonic airfoil computationspresented by Tatsumi et al.10 , 11 were en-
couraging. Furthermore, Jiang and Damodaran12 used the HCUSP
scheme successfully for transonic viscous � ow computations with
various turbulence models. Also, Sheffer et al.13 implemented an
earlier version of the CUSP scheme, which is related to the ad-
vective upwind splitting method (AUSM) of Liou and Steffen,14

and obtained good results for hypersonic reacting � ows. However,
Swanson et al.15 performedan evaluationof the HCUSP schemeand
found it to be somewhat less accurateand up to 25% more expensive
than matrix dissipation with a simple pressure switch.

Low-Mach-number � ows introduce additional dif� culties for
compressible � ow solvers as a result of the wide range of wave
speeds associated with this � ow regime, which can result in poor
convergence of an iterative method.16, 17 In addition, the accuracy
of the solver may degrade as the Mach number is reduced because
of poor scaling of the numerical dissipation. Local precondition-
ing techniques have been developed to address these dif� culties,
leading to greatly improved convergence rates and reduced numer-
ical errors at low Mach numbers.18 – 22 Unrau and Zingg23 showed
that the accuracy of the JST scheme at low Mach numbers can be
greatly improved using the preconditioner of Weiss and Smith.24

Tweedt et al.25 present results for low-Mach-number turbomachin-
ery � ows using a preconditionedscheme, which is equivalent to the
CUSP scheme, showing improvements in accuracyand degradation
in convergence relative to a preconditioned JST scheme. Edwards
and Liou26 present extensions of AUSM for use with local precon-
ditioning.

This paper has two objectives.First we present a thorough evalu-
ation of the ECUSP scheme in the context of subsonicand transonic
two-dimensionalturbulent � ow over airfoils.The ECUSP scheme is
comparedwith the matrix dissipationscheme in terms of dissipation
levels in boundary layers, shock-capturing capability, global solu-
tion errors, convergence rates, and computational expense. Global
errors are assessed through grid-convergencestudies. The implica-
tionsof different� ux-limitingoptionsare consideredas well, and an
inexpensive new approach is proposed. The second objective is to
present a locally preconditionedversion of the CUSP scheme using
the preconditioner of Weiss and Smith24 and to demonstrate that,
at low Mach numbers, the resulting scheme produces convergence
rates andsolutionswhicharevirtuallyindependentofMach number.

Governing Equations and Numerical Method
The matrix and CUSP numerical dissipation schemes have been

implementedin the thin-layerNavier–Stokes solverARC2D.27 This
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solver uses second-order centered differences in space through
a generalized curvilinear coordinate transformation and is thus
applicable to structured grids. Convergence to steady state is
achieved using the diagonal form of the Beam and Warming
approximate-factorization algorithm with local time stepping. The
effectsof turbulencearemodeledby theBaldwin–Lomax turbulence
model. A circulation correction is used at the outer boundary.

In two-dimensional generalized coordinates the thin-layer
Navier–Stokes equations are given by27

@Q̂
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+

@Ê

@n
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= Re ¡ 1 @Ŝ
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(1)

where Q̂ = J ¡ 1 Q = J ¡ 1[q , q u, q v , e]T is the vector of conserva-
tive dependent variables; Ê and F̂ are the convective � ux vectors;
Ŝ is the viscous � ux vector; n and g are the streamwise and normal
generalized coordinates, respectively; J is the Jacobian of the co-
ordinate transformation;and Re is the freestreamReynolds number
based on the speed of sound.

The implementation of local preconditioning into the ARC2D
solver is described by Unrau and Zingg23 and is based on the work
of Weiss and Smith,24 which is closely related to that of Choi
and Merkle19 and Turkel.20 , 28 The preconditioning technique not
only accelerates the convergence rate of the solver but also im-
proves the accuracy of the solution for low-Mach-number� ow. The

T j,k =
j p j + 1,k ¡ 2p j,k + p j ¡ 1,k j

(1 ¡ m j,k )( j p j + 1,k ¡ p j,k j + j p j,k ¡ p j ¡ 1,k j ) + m j,k ( p j + 1,k + 2p j,k + p j ¡ 1,k)

preconditioned form of Eq. (1) is obtained by introducing the pre-
conditioning matrix C as follows:
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To simplify the form of the preconditioningmatrix, the following
symmetry variables are used21:
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The symmetry variables are related to the conservative variables
through the transfer matrices given by

M =
@Q̂

@Q̃
, M ¡ 1 =

@Q̃

@Q̂
(4)

The local preconditioner formulated in terms of the symmetry
variables can be applied to the thin-layer Navier–Stokes equations
written in terms of the conservativevariables as follows23:
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The preconditioner of Weiss and Smith,24 written in terms of the
symmetry variables, has the following form:

˜C =

2
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(6)

where

² = min
£
1, max

¡
M2, ²1

¢¤
(7)

The parameter²1 is used to ensure that ² remains � nite in stagnation
regions and is given by

²1 = u M 2
1 (8)

where u = 1 for the presentedtest cases.Furtherdetailsof the imple-
mentation of local preconditioning,such as the time-step de� nition
and the treatment of the far-� eld boundary conditions, as well as
several results obtained using the JST scheme, are given in Ref. 23.

Numerical Dissipation Schemes
Matrix Dissipation with Pressure Switch

Because the matrixnumericaldissipationscheme is used for com-
parison purposes to evaluate the CUSP scheme, we present our im-
plementationhere. The matrix scheme is based on that of Swanson
and Turkel6 and is added to the second-order centered difference
scheme in generalized coordinates in the following manner:
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where d n is a second-order centered difference operator, D n and
r n are � rst-order forward and backward difference operators,U is
a contravariant velocity component, and j 2 and j 4 are constants.
Typical values of j 2 and j 4 are 1.0 and 0.02, respectively.The term
T j,k is a TVD pressure switch6, 29 used to control the � rst-order
dissipation near shock waves.

The matrix j A j is given by

j A j = Tn j K j n T ¡ 1
n (10)

where the columns of Tn are the right eigenvectors of A, the � ux
Jacobian, and

j K j n =

2
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with w =
p

( n 2
x + n 2

y ). The terms in the g direction are analogous.
Near stagnation points and sonic points some of the eigenvalues

of A approach zero. To avoid the problems this may introduce, the
elements of j K j n can be modi� ed as follows:

˜k 1 , ˜k 2 = max( k 1,2 , Vl r ), ˜k 3 = max( k 3, Vn r )

˜k 4 = max( k 4, Vn r ) (12)

where r represents the spectral radius of the � ux Jacobian. The
constants Vl and Vn can be set to zero for subsonic � ows, but � nite
values are needed for transonic � ows. Commonly used values are
Vl = 0.025 and Vn = 0.25. The scheme has been implementedusing
an ef� cient matrix-vectormultiply technique as presented in Ref. 6.

CUSP Dissipation Scheme
The CUSP8 , 9 scheme is formulated by a combination of differ-

ences of the state and � ux vectors. We consider the ECUSP version
only and refer to it as the CUSP scheme for the remainder of the
paper.
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The � rst-order CUSP scheme for the n coordinate direction is
given by

d j + 1
2 ,k = 1
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j + 1
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a w
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The vectors E and F are the � ux vectors written in Cartesian coor-
dinates. The factor c (local speed of sound) is included so that a w is
dimensionless.The parameters a w and b are given by

a w c = a c ¡ b Ū (14)
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where

k § = U § c
q
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and a is chosen to equal j Ū j / c. The symbol Ū is the arithmeticmean
contravariant velocity, whereas the eigenvalues k § are determined
at the Roe state. For supersonic � ows the CUSP scheme becomes
an upwind scheme. The CUSP scheme is not local-extremum-
diminishing (LED) and does not guarantee an oscillation-freesolu-
tion. This is discussed in Ref. 15 and shown through a numerical
experiment in Ref. 30. However, CUSP has been formulated to pro-
duce single-point shocks for inviscid � ows (if the Roe average is
used in determining the eigenvalues).

This choice of the parameters a w and b means that for Mach
numbers below 0.5 the CUSP scheme is a scalar scheme with a
scaling based on the contravariantvelocity component in the appro-
priate curvilinear coordinate direction. If the grid is aligned with
the � ow in a boundary layer, the scaling of the CUSP scheme in
the g direction is based on j V j , the contravariant velocity compo-
nent in the g direction, which can be small, much smaller than the
scaling j V j + c

p
( g 2

x + g 2
y) as in the JST scheme. Consequently,the

CUSP scheme produces much less dissipation than the JST scheme
in boundary layers.

To constructa higher-orderCUSP scheme, limiters are added that
activate near � ow discontinuities.Jameson8 introduced the follow-
ing limiter function:
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ê
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where we haveusedq = 2. A higher-orderCUSP scheme is obtained
by de� ning the limited average

L(u, v) = 1
2 R(u, v)(u + v) (17)

and then constructing the appropriate left and right states for each
variable:
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where the superscriptn representsthenth elementof the statevector.
Consequently, the dissipative � ux becomes
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Analogous terms appear in the g direction.
A modi� cation to the limited average is suggested by Swanson

et al.,15 wherea freeparameteris introducedto decoupletheconstant
scaling of the � rst-orderdissipation from the constant scaling of the
third-order dissipation. We found that for the test cases presented
the accuracy of the solution was not signi� cantly in� uenced by this
parameter.

Near a � ow discontinuityu and v in Eq. (16) have opposite signs,
and therefore R(u, v) ! 0. A problem with this limiter function is
that it is insensitive to the relative magnitudes of u and v . In near
constant regions of the � ow� eld, small � uctuations in u and v can
trigger the limiter randomly,which may stall the convergenceof the
solution.One way to overcome this dif� culty is to freeze the limiter
once the convergence rate stalls. A better approach is suggested by
Jameson,8 who follows the work of Venkatakrishnan.31 The limiter
function is modi� ed as follows:
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ê
ê
ê
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3
2
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where
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q

x2
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Note that all quantities are nondimensional.This soft limiter intro-
ducesa thresholdbelowwhich � rst-orderdissipationis not activated,
and, therefore, triggering of the limiter for small extrema does not
occur. For inappropriatevalues of e , the resulting threshold may be
too high,and, consequently,visibleoscillationsmay developaround
discontinuities.

Venkatakrishnan31 suggests values for e between 1.0 and 5.0. We
use e = 5.0 and refer to this limiter as the V limiter.

We also modi� ed Eq. (16) to create a new limiter, which is shown
next:

R(u, v) = 1 ¡
ê
ê
ê
ê

u ¡ v
j u j + j v j + e / ( j u j + j v j )

ê
ê
ê
ê

q

(21)

In this case the parameter e controls the activationof the limiter. For
transonic� ows appropriatevalues for e are between 10 ¡ 2–10 ¡ 4. We
use e = 10 ¡ 3 and refer to this limiter as the Z limiter. Note that this
limiter requires less expense than the V limiter, primarily because
it avoids the use of the max function.

The use of the limiters de� ned by Eqs. (16), (20), and (21) adds
considerable computational expense to the algorithm. The limiter
valuehas to be computedfor eachstatevariableat eachnode for each
direction (i.e., eight evaluations of the limiter function) compared
to just two evaluations per node of the pressure switch function.
Further, the inversion of the left-hand side of the implicit algorithm
becomes less ef� cient because the limiter may apply different val-
ues to each conservation equation. To increase the ef� ciency of
the algorithm, we also consider the use of the pressure variable in
the Z limiter, with the same limiting applied to each conservation
equation. We refer to this limiter as the ZP limiter. Its computa-
tional expense is equivalent to that of the pressure switch. Its use is
recommended only for � ows in which discontinuities (or near dis-
continuities) are characterizedby a discontinuouspressure � eld, as
opposed to discontinuities such as contact surfaces through which
the pressure is continuous.
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On the left-hand side of the implicit approximately factored al-
gorithm,we use the diagonal form. The eigenvaluesassociatedwith
the CUSP scheme and the appropriate limiter values are added to
the diagonal entries.

Locally Preconditioned CUSP Scheme
For low-Mach-number � ow the CUSP scheme reduces to scalar

dissipation with scaling proportional to the contravariant velocity
component. Swanson et al.15 note that with this scaling CUSP dis-
sipation is well suited for low-Mach-number� ow because a similar
scaling is used by the preconditionedJST scheme, provided that the
dissipation is augmented by the preconditioningmatrix.

To demonstrate the necessity of augmenting the CUSP dissipa-
tion vector by the preconditioningmatrix C , consider the following
analysis.We use the one-dimensionalEuler equationsto express the
order of magnitudeof the elements in the C matrix, state vector, and
� ux vector in terms of ². Recall that effective low-Mach-number
preconditioningis obtained with ² = M2 , which is given in Eq. (7).

For low-Mach-number� ow the changesin the state vectorq scale
with ² as follows:
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as can be derived from the isentropic relations. The order of mag-
nitude for a scalar scaling proportional to ū, as used by the CUSP
scheme for low Mach numbers, is (²1/ 2). Therefore, � rst-order
CUSP dissipation can be expressed in terms of the order of ² as
follows:
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The order of the dissipationvector should be the same as the � ux
vector. The order of magnitude for the � ux vector is
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Comparing Eq. (24) with Eq. (23) reveals that the mass and energy
conservation equations have insuf� cient numerical dissipation at
low Mach numbers, which can cause problems with stability and
convergence.

To make the order of the dissipation vector consistent with the
� ux vector, consider the C matrix whose entries in terms of the order
of ² are
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Then the product C D q becomes
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Now, if the dissipation vector is augmented by the preconditioning
matrix in the following manner:

ū C D q =

2

664

¡
²

1
2
¢

(²)
¡
²

1
2
¢

3

775 (27)

the order of the dissipationvector is consistentwith the order of the
� ux vector.

Hence, to obtain the preconditionedCUSP scheme for � ow with
freestream Mach number below 0.5, modify Eq. (13) as follows:
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2 ,k
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where

a w = Ū / c

Both V and Z limiters can be used with the scheme; however, the
subsonic test case studied did not require these limiters.

Results and Discussion
To evaluate the CUSP numerical dissipation scheme, the follow-

ing test cases are examined:
1) M 1 = 0.16, a = 0 deg, Re = 2.88 £ 106, transition at 0.43

chords on both surfaces, NACA 0012 airfoil.
2) M 1 = 0.16, a = 6 deg, Re = 2.88 £ 106 , transition at 0.05 and

0.8 chords on the upper and lower surfaces, respectively, NACA
0012 airfoil.

3) M 1 = 0.7, a = 3 deg, Re = 9.0 £ 106 , transitionat 0.05 chords
on both surfaces, NACA 0012 airfoil.

4) M 1 = 0.729, a = 2.31 deg, Re = 6.5 £ 106 , transition at 0.03
chords on both surfaces, RAE 2822 airfoil.

5) M 1 = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4; a = 2.0 deg; Re = 2.88 £
106; transition at 0.05 and 0.25 chords on the upper and lower sur-
faces, respectively,NACA 0012 airfoil.

Table 1 is a summary of the grids used. All of the grids have a
C topology. In Table 1 JDIM represents the number of points in the
streamwise direction, KDIM represents the number of points in the
normal direction, Body points represents the number of points on
the body, Wake points represents the number of points in the wake,
and Off-wall spacing is the normal spacing to the � rst grid line off
of the surface in chords. The distance to the outer boundary is 12
chords for all grids.For grid A the leading-edgeclusteringis 0.0001,
and the trailing-edgeclustering is 0.0002. Grid B was generated by
removing every second node in both coordinatedirectionsfrom grid
A, and similarly grid C was generated by removing every second
node in both coordinate directions from grid B. Grid P is used for
case 5. Note that grid A, which has roughly 200,000 nodes, is much
� ner than grids generally used in practice. As we will see next,
results for grid A are approaching grid independence and thus can
be used as a benchmark to estimate solution errors.

Dissipation in Boundary Layers
We � rst examine the amount of numerical dissipation introduced

in boundary layers, and whether it interferes with the desired bal-
ance between convective and viscous � uxes. The streamwise mo-
mentum equation is typically most revealing.3 Figure 1 shows the
x-momentum � ux balance for case 1 computed on grid C with the
matrix and CUSP schemes. The user-selectedparameters for matrix
dissipation were set to j 2 = 0 and j 4 = 0.02 with Vn = Vl = 0. For
CUSP dissipationthe limiters were not activated.The station shown
is at x / c = 0.6, where the boundary-layerthicknessis roughly0.008
chords and the � ow is turbulent. There are roughly 25 points across
the boundary layer. Ideally, the viscous � ux should balance the con-
vective � ux with only a minimal contribution from the numerical
dissipation.This is well illustratedby both schemes in Fig. 1. Con-
sequently, the solutions obtained by the matrix and CUSP schemes
are very similar. Even on the coarser grid C, the drag coef� cient
was within 1.5% of the drag coef� cient computed on grid A for
both schemes.

Table 1 Summary of grids

Body Wake Off-wall
Grid JDIM KDIM points points spacing

A 1057 193 801 129 2.3 £ 10 ¡ 7

B 529 97 401 65 5.3 £ 10 ¡ 7

C 265 49 201 33 1.2 £ 10 ¡ 6

P 279 49 201 40 2 £ 10 ¡ 6
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Matrix dissipation CUSP dissipation

Fig. 1 Flux balance for case 1 on grid C at 60% chord.

a) Shock region for case 3 b) Shock region for case 4

Fig. 2 Computed pressure distributions around the shock region for cases 3 and 4 on grid C.

Shock Capturing
Both matrix and CUSP dissipation capture the shock very well

as shown in Figs. 2a and 2b. The quality of shock capture for the
pressure-based ZP limiter is approximately the same as for the Z
limiter, but the computational expense of the algorithm is signif-
icantly reduced. Note that single-point shocks are obtained when
using the CUSP scheme for inviscid � ows if the Roe average is
used in computing the eigenvalues.

Accuracy
Figures 3–5 show the grid convergenceof the lift coef� cient Cl ,

drag coef� cient Cd , the pressure drag component Cdp , and the fric-
tion drag componentCd f for cases2, 3, and 4. The resultsare plotted
vs 1/ N , where N is the total number of grid nodes. In all cases the
percent difference between solutions on successivegrids decreases
with re� nement, indicating that the grid A solutions approach grid
independence. For example, in Fig. 3 the difference between Cd

computed on grids A and B is roughly 3%, whereas grids B and C
differ by 12%. These � gures show that overall the errors obtained
using CUSP are similar in magnitude to those obtained using ma-
trix dissipation.Use of the JST scheme leads to much larger errors.3

Matrix dissipation is slightly more accurate in predicting the lift
coef� cient and the frictiondrag coef� cient. The CUSP scheme pro-
duces more accurate pressure drag values for the transonic cases.
Note that error cancellation between the Cdp and Cd f values may
in� uence the global Cd error. Results computed with the less ex-
pensive ZP limiter are very similar to those obtained using the full
Z limiter.

Computational Expense
The residual convergencehistories for cases 2 and 4 are shown in

Fig. 6. Similar convergence rates are obtained using the CUSP and
matrix dissipation schemes. The matrix scheme with the pressure
switch requires15–20%morecomputationaleffortper iterationthan
the JST scheme,dependingon thedetailsof the implementation,pri-
marily as a result of the need to form the necessary matrix-vector
products. The CUSP scheme with the ZP limiter has a computa-
tional cost only 5–10% greater than that of the JST scheme. The
cost is associated with the use of the Roe average, which is not
strictly necessary for the class of � ows considered here. With the Z
limiter the CUSP scheme requires about 35% more effort than the
JST scheme and with the V limiter about 40%, which is because of
the evaluation of the limiter. Clearly the use of the simple pressure-
based limiter providessigni� cant savingsfor the � ow regimesunder
considerationhere.

Local Preconditioning
Results for case 5 are presented in Fig. 7, which shows the vari-

ation of the computed drag with the freestream Mach number for
the CUSP scheme on grid P with and without local precondition-
ing. The original CUSP scheme without preconditioning shows a
dependence on the Mach number for Mach numbers less than 0.2.
The preconditioned CUSP scheme correctly produces drag coef� -
cients that are independentof the Mach number for the given Mach
number range.

Figure 8 shows the number of iterations required to converge the
lift and drag to within 0.1% of their converged values as a func-
tion of the freestream Mach number. With local preconditioning
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Fig. 3 Grid convergence for case 2.
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Fig. 4 Grid convergence for case 3.
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Fig. 5 Grid convergence for case 4.

Case 2 Case 4

Fig. 6 Residual convergence history on grid C.

the convergence is virtually independent of Mach number, leading
to signi� cant bene� ts for Mach numbers below 0.2. Given that the
increase in computational expense per iteration associated with the
present implementation of local preconditioning is roughly 30%,
this translates into substantial savings in overall computational ex-
pensefor steadycomputationsat low Mach numbers.Figure 9 shows
an improvement in the convergence history of the residual for the
preconditionedCUSP schemeat a freestreamMach numberof 0.05.

Although the accuracy of the JST scheme at low Mach numbers
is greatly improved through the use of local preconditioning,23 it

remains inferior to the CUSP scheme. The local preconditioning
basicallyeliminates the speed of sound as an importantparameter in
the eigenvaluesof the � ux Jacobian matrices. Thus the sound speed
in the locally preconditionedsystem is of the same magnitudeas the
convective speed, independent of the Mach number. However, the
JST numericaldissipationnormal to the surfaceremainsmuch larger
than that arising from the preconditionedCUSP scheme because the
preconditioned sound speed is much larger than the contravariant
velocity component j V j in a boundarylayerwhen the grid is aligned
with the � ow.



NEMEC AND ZINGG 409

Fig. 7 Computed drag coef� cient for case 5.

Fig. 8 Convergence of lift and drag for case 5 as a function of the
freestream Mach number.

Fig. 9 Residual convergence history for case 5 at M1 = 0:05.

Conclusions
The implementation of a locally preconditioned CUSP scheme

has been presented for an approximately factored algorithm in gen-
eralized curvilinear coordinates. In addition, an inexpensive � ux
limiter has been presented and tested. Based on our results for sub-
sonic and transonic airfoil � ows, we can draw the following con-
clusions regarding the use of CUSP for this class of � ows:

1) The CUSP scheme providesaccuracy that is comparable to the
matrix numerical dissipation scheme.

2) When used together with the inexpensive ZP limiter based on
pressure, the cost of the CUSP scheme is comparable to that of the
original JST scheme.

3) At low Mach numbers the locally preconditioned algorithm
produces convergence and accuracy that are virtually independent
of Mach number.

Hence the CUSP scheme achieves its goal of providing accuracy
comparable to a high-resolution scheme, at least for aerodynamic
computations, at a cost similar to that of the JST scheme.

Acknowledgments
The � rst author was supported by an Ontario Graduate Scholar-

ship grant of the Government of Ontario. This research was sup-
ported by AEA Technology–Advanced Scienti� c Computing, Ltd.,
and the Natural Sciences and Engineering Research Council of
Canada.

References
1Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solutions of the

Euler Equations by Finite Volume Methods Using Runge–Kutta Time Step-
ping,” AIAA Paper 81-1259, June 1981.

2Allmaras, S. R., “Contamination of Laminar Boundary Layers by Arti� -
cial Dissipation in Navier–Stokes Solutions,” Numerical Methods for Fluid
Dynamics, edited by M. J. Baines and K. W. Morton, Clarendon, Oxford,
1993.

3Frew, K., Zingg, D. W., and De Rango, S., “Arti� cial Dissipation
Schemes for Viscous Airfoil Computations,” AIAA Journal, Vol. 36, No. 9,
1998, pp. 1732–1734.

4Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Dif-
ference Schemes,” Journal of Computational Physics, Vol. 43, No. 2, 1981,
pp. 357–372.

5Van Leer, B., “Flux Vector Splitting for the Euler Equations,” Lecture
Notes in Physics, Vol. 170, Springer–Verlag, 1982, pp. 507–512.

6Swanson, R. C., and Turkel, E., “On Central-Difference and Upwind
Schemes,” Journal of Computational Physics, Vol. 101, No. 1, 1992, pp.
292–306.

7Harten, A., “High Resolution Schemes for Hyperbolic Conservation
Laws,” Journal of Computational Physics, Vol. 49, No. 2, 1983, pp. 357–

393.
8Jameson, A., “Analysis and Design of Numerical Schemes for Gas Dy-

namics I: Arti� cial Diffusion, Upwind Biasing, Limiters and Their Effect
on Accuracy and Multigrid Convergence,” InternationalJournal of Compu-
tational Fluid Dynamics, Vol. 4, 1995, pp. 171–218.

9Jameson, A., “Analysis and Design of Numerical Schemes for Gas Dy-
namics II: Arti� cial Diffusion and Discrete Shock Structure,” International
Journal of Computational Fluid Dynamics, Vol. 5, No. 1, 1995, 1–38.

10Tatsumi, S.,Martinelli, L., and Jameson, A., “Flux-LimitedSchemes for
the Compressible Navier–Stokes Equations,” AIAA Journal, Vol. 33, No. 2,
1995, pp. 252–261.

11Tatsumi, S., Martinelli, L., and Jameson, A., “A New High Resolution
Scheme forCompressibleViscousFlowwith Shocks,”AIAA Paper 95-0466,
Jan. 1995.

12Jiang,Y. T., and Damodaran, M., “High-ResolutionFiniteVolumeCom-
putation of Turbulent Transonic Flow past Airfoils,” AIAA Journal, Vol. 35,
No 7, 1997, pp. 1134–1142.

13Sheffer, S. G., Martinelli, L., and Jameson, A., “An Ef� cient Multigrid
Algorithm for Compressible Reactive Flows,” Journal of Computational
Physics, Vol. 144, No. 2, 1998, pp. 484–516.

14Liou,M.-S., and Steffen, J., Jr., “A New FluxSplittingScheme,” Journal
of Computational Physics, Vol. 107, No. 1, 1993, pp. 23–39.

15Swanson, R. C., Radespiel, R., and Turkel, E., “Comparison of Several
Dissipation Algorithms for Central Difference Schemes,” AIAA Paper 97-
1945, June 1997.

16Zingg, D. W., “Low Mach Number Euler Computations,” Canadian
Aeronautics and Space Journal, Vol. 36, No. 3, 1990, pp. 146–152.

17Volpe, G., “On the Use and Accuracy of Compressible Flow Codes at
Low Mach Numbers,” AIAA Paper 91-1662, June 1991.

18Turkel, E., “Review of Preconditioning Methods for Fluid Dynamics,”
Applied Numerical Mathematics, Vol. 12, 1993, pp. 257–284.

19Choi, Y. H., and Merkle, C. L., “The Application of Preconditioning in
Viscous Flows,” Journal of Computational Physics, Vol. 105, No. 2, 1993,
pp. 207–233.

20Turkel, E., “Preconditioned Methods for Solving the Incompress-
ible and Low Speed Compressible Equations,” Journal of Computational
Physics, Vol. 72, No. 2, 1987, pp. 277–298.

21Van Leer, B., Lee, W. T., and Roe, P., “Characteristic Time-Stepping or
Local Preconditioning of the Euler Equations,” AIAA Paper 91-1552, June
1991.

22Turkel, E., Fiterman, A., and Van Leer, B., “Preconditioning and the
Limit of the Compressible to the Incompressible Flow Equations for Finite
Difference Schemes,” Frontiers of Computational Fluid Dynamics 1994,
edited by D. A. Caughey and M. Hafez, Wiley, New York, 1994, pp. 215–

234.

http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^281998^2936:9L.1732[aid=151]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9991^281998^29144:2L.484[aid=158]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9991^281993^29107:1L.23[aid=159]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9991^281993^29105:2L.207[aid=162]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^281998^2936:9L.1732[aid=151]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9991^281998^29144:2L.484[aid=158]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9991^281993^29107:1L.23[aid=159]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9991^281993^29105:2L.207[aid=162]


410 NEMEC AND ZINGG

23Unrau, D., and Zingg, D. W., “Viscous Airfoil Computations Using
Local Preconditioning,”AIAA Paper 96-2088, June 1996.

24Weiss, J. M., and Smith, W. A., “Preconditioning Applied to Variable
and Constant Density Flows,” AIAA Journal, Vol. 33, No. 11, 1997, pp.
2050–2057.

25Tweedt, D. L., Chima, R. V., and Turkel, E., “Preconditioning for Nu-
merical Simulation of Low Mach Number Three-Dimensional Viscous Tur-
bomachinery Flows,” AIAA Paper 97-1828, June 1997.

26Edwards, J. R., and Liou, M.-S., “Low-Diffusion Flux-Splitting Meth-
ods for Flows at All Speeds,” AIAA Paper 97-1862, June 1997.

27Pulliam,T. H., “Ef� cient SolutionMethodsfor the Navier–StokesEqua-
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chinery Bladings, von Kármán Inst. for Fluid Dynamics, Brussels, Belgium,
Jan. 1986.

28Turkel, E., Radespiel, R., and Kroll, N., “Assessment of Precondition-

ing Methods for Multidimensional Aerodynamics,” Computers and Fluids,
Vol. 26, No. 6, 1997, pp. 613–634.

29Jorgenson, P., and Turkel, E., “Central Difference TVD Schemes for
Time Dependent and Steady State Problems,” Journal of Computational
Physics, Vol. 107, No. 2, 1993, pp. 297–308.

30Nemec, M., “Aerodynamic Computations Using the Convective Up-
stream Split Pressure Scheme with Local Preconditioning,” M.S. Thesis,
Dept. of Aerospace Science and Engineering, Univ. of Toronto, Toronto,
ON, Canada, April 1998.

31Venkatakrishnan, V., “Convergence to Steady State Solutions of the
Euler Equations on Unstructured Grids with Limiters,” Journal of Compu-
tational Physics, Vol. 118, No. 1, 1995, pp. 120–130.

P. Givi
Associate Editor

http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^281997^2933:11L.2050[aid=164]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0045-7930^281997^2926:6L.613[aid=165]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9991^281993^29107:2L.297[aid=166]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9991^281995^29118:1L.120[aid=167]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^281997^2933:11L.2050[aid=164]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0045-7930^281997^2926:6L.613[aid=165]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9991^281993^29107:2L.297[aid=166]
http://lucia.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9991^281995^29118:1L.120[aid=167]

