
AIAA JOURNAL

Vol. 40, No. 6, June 2002

Newton–Krylov Algorithm for Aerodynamic Design
Using the Navier–Stokes Equations

M. Nemec¤ and D. W. Zingg†

University of Toronto, Toronto, Ontario M3H 5T6, Canada

A Newton–Krylov algorithm is presented for two-dimensional Navier–Stokes aerodynamic shape optimization
problems. The algorithm is applied to both the discrete-adjoint and the discrete � ow-sensitivity methods for
calculating the gradient of the objective function. The adjoint and � ow-sensitivity equations are solved using a
novel preconditioned generalized minimum residual (GMRES) strategy. Together with a complete linearization of
the discretized Navier–Stokes and turbulence model equations, this results in an accurate and ef� cient evaluation
of the gradient. Furthermore, fast � ow solutions are obtained using the same preconditioned GMRES strategy in
conjunction with an inexact Newton approach. The performance of the new algorithm is demonstrated for several
design examples, including inverse design, lift-constrained drag minimization, lift enhancement, and maximization
of lift-to-drag ratio. In all examples, the norm of the gradient is reduced by several orders of magnitude, indicating
that a local minimumhas been obtained. By the use of the adjoint method, the gradient is obtained in from one-� fth
to one-half of the time required to converge a � ow solution.

Introduction

T HE accuracy and ef� ciency of gradient-based algorithms for
aerodynamic design problems are in� uenced by the perfor-

mance of the following components: 1) the solution of the � ow-
� eld equations and 2) the evaluation of the objective function gra-
dient. Although still a subject of research, current algorithms for
the solution of the steady two-dimensional Navier–Stokes equa-
tions are accurate and ef� cient. Among the fastest algorithms are
the Newton–Krylov solvers (see Refs. 1–4). For example,promising
results are presented by Pueyo and Zingg,4 who used the precondi-
tioned generalized minimum residual (GMRES)5 Krylov subspace
method in conjunction with an inexact Newton strategy. A critical
component in this approach is a fast solution of the linear system
at each Newton iteration, which is provided by the preconditioned
GMRES algorithm. For the aerodynamic shape optimization prob-
lem, such Newton–Krylov algorithms are very appealing because
they not only provide fast solutions to the � ow� eld equations, but
the preconditionedGMRES algorithm can also be used to compute
the objective function gradient.

Among the most promising computational methods for the eval-
uation of the objective function gradient are the � ow-sensitivity,or
direct, method and the adjoint method.6 Both methods have been
applied to the Navier–Stokes designproblemand can be further sub-
divided into the continuous7¡11 and the discrete approach.12¡19 The
main advantageof the adjoint method is that the computationalcost
of the gradient calculation is virtually independent of the number
of design variables. However, � ow sensitivities can be useful for
design problems that contain constraints that are dependent on the
� ow� eld variables. Furthermore, it may be advantageousto imple-
ment both methods because the resulting information can be used
to accelerate the convergenceof the designproblemby constructing
better approximationsof the Hessian matrix.16;20;21

Jameson et al.8 derived the viscous adjoint terms for the contin-
uous approach for laminar and turbulent � ows on structured grids.
Although this formulation neglects the linearizationof laminar and

Received 29 June 2001; revision received 5 January 2002; accepted
for publication 22 January 2002. Copyright c° 2002 by M. Nemec and
D. W. Zingg. Published by the American Institute of Aeronautics and Astro-
nautics, Inc., with permission. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923; include the code 0001-1452/02 $10.00 in correspondence with the
CCC.

¤Graduate Student, Institute for Aerospace Studies, 4925 Dufferin Street;
marian@oddjob.utias.utoronto.ca.

†Professor, Institute for Aerospace Studies, 4925 Dufferin Street;
dwz@oddjob.utias.utoronto.ca.Senior Member AIAA.

turbulent viscosities, it has been successfully applied to a num-
ber of aerodynamic shape optimization problems, including two-
dimensionalhigh-liftcon� gurations22 with theBaldwin–Lomax and
the one-equationSpalart–Allmaras23 turbulence models.

Anderson and Venkatakrishnan13 analyzed both the continuous-
and discrete-adjoint methods for unstructured grids and im-
plemented the discrete approach for viscous design problems.
Anderson and Bonhaus14 extended this work to turbulent � ows by
differentiating the Spalart–Allmaras turbulence model23 by hand.
They report accurate gradients for turbulent design cases. Nielsen
and Anderson24 apply the same strategy to three-dimensionalturbu-
lent design problems and also demonstrate excellent gradient accu-
racy. Furthermore, their results show the in� uenceof varioussimpli-
fying assumptions in the linearization of the discretized governing
equations,such as theassumptionof constantturbulentviscosityand
a linearizationbasedon � rst-orderdiscretization.Theyconcludethat
most of these simplifying assumptions result in signi� cant gradient
errors. Similar results are obtained by Kim et al.18

In the adjoint and � ow-sensitivity methods, the computational
cost of the gradient calculation is dominated by the solution of the
large linear system of equations that arises from the � ow Jacobian
matrix. A popular approach to solve the adjoint and � ow-sensitivity
equations is to use the same scheme that solves the governing � ow
equations, for example, the explicit and point-implicit multistage
Runge–Kutta schemes coupled with multigrid (see Refs. 8, 17, and
19), the approximate-factorization scheme,15 and also the lower-
upper symmetric Gauss–Seidel (LU-SGS) scheme (see Ref. 18).
The GMRES algorithm has been used to solve the discrete sensi-
tivity equation for laminar � ows25 and also to solve the discrete ad-
joint equation in conjunctionwith a backward-Eulertime-marching
scheme with multigrid for turbulent � ows.13;24 Generally, the com-
putational effort required to converge the adjoint equation suf� -
ciently to obtain accurate gradients is approximately equivalent to
one to two � ow� eld solutions; however, for the discrete adjoint
method, this effort may be signi� cantly increased if memory limi-
tations prohibit the storage of the � ow Jacobian matrix.18;26

In this work, we present a new algorithm for the calculation of
the gradient of the objective function via the discrete-adjoint and
discrete � ow-sensitivity methods. We carefully linearize the two-
dimensional Navier–Stokes equations coupled with the Spalart–
Allmaras turbulence model.23 We adopt the approach of Pueyo and
Zingg4 to solve the adjoint and � ow-sensitivity equations using the
GMRES algorithmin conjunctionwith a novelpreconditionerbased
on an approximation of the � ow Jacobian matrix. Furthermore,
the same preconditioned GMRES algorithm is also used within a
Newton–Krylov solver (see Ref. 4) for the solution of the � ow� eld
equations.
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The objective of this paper is to examine the following issues in
detail: 1) the accuracy of the gradient calculation using the adjoint
and � ow-sensitivity methods and 2) the ef� ciency of the gradient
calculation and the � ow solver. We investigate the performance of
the new design algorithm on several representative design prob-
lems, namely, inverse design, lift-constrained drag minimization,
lift enhancement, and maximization of lift-to-drag ratio.

Problem Formulation
The aerodynamic shape optimization problem consists of deter-

mining values of design variables X D , such that the speci� ed objec-
tive function J is minimized subject to constraint equations C j :

min
X D

J [X D; Q.X D/] (1a)

so that

C j [X D; Q.X D/] · 0; j D 1; : : : ; Nc (1b)

where Q, the � ow� eld variables, satisfy the governing � ow� eld
equations. In this work, the constraint equations represent airfoil
thicknessconstraintsthat are used to ensure feasibledesigns.Hence,
they are only a function of the design variables, that is, C j .X D/ · 0.

Objective Functions
We consider inverse design, lift-constrained drag minimization,

lift enhancement, and maximization of lift-to-drag ratio. In the in-
versedesignproblemthe objectivefunctionin discreteform is given
by

J D 1

2

NAX

j D 1

¡
Cp j ¡ C¤

p j

¢2
(2)

where C¤
p representsthe targetpressuredistributionthat is user spec-

i� ed and NA denotes the number of nodes on the airfoil. By min-
imizing J , the optimizer � nds the shape of the airfoil that, in the
least-squares sense, best matches the target pressure distribution.

For the lift-constraineddrag minimization and lift enhancement
problems, we use

J D !D

¡
1 ¡ CD

¯
C¤

D

¢2 C !L

¡
1 ¡ CL

¯
C¤

L

¢2
(3)

where C¤
D and C¤

L represent the target drag and lift coef� cients,
respectively. The weights !D and !L are user-speci�ed constants.
For the maximization of the lift-to-drag ratio problem, we use

J D CD =CL (4)

Design Variables
The geometry of the airfoil is describedwith B-spline curves.27;28

The coordinates of the B-spline control points are used as design
variables. An example is shown in Fig. 1, where cubic B-splines
constructed from 15 control points are used to approximate the
NACA 0012 airfoil. By increasing the number of control points, the
accuracyand � delity of the B-spline curve is improved.For the drag
minimization problem at � xed lift, the angle of attack ® becomes a
design variable as well. In this study, we only allow displacements
in the vertical direction for the B-spline control points.

Flow� eld Equations
The governing� ow equationsare the two-dimensional,thin-layer

Navier–Stokes equations in generalized coordinates:

@ OE. OQ; X D/

@»
C @ OF . OQ; X D/

@´
D Re¡1 @ OS. OQ; X D/

@´
(5)

where OQ D J ¡1 Q D J ¡1[½; ½u; ½v; e]T is thevectorof conservative
dependent state variables, » and ´ are the streamwise and normal
generalized coordinates, respectively, and J is the Jacobian of the
coordinate transformation from Cartesian coordinates. Vectors OE
and OF represent the convective � ux vectors, and the viscous � ux
vector is given by OS. Sutherland’s law is used to determine the
laminar viscosity. The equations are in nondimensional form. For
further details, see Ref. 29.

The turbulentviscosity is modeled with the Spalart–Allmaras tur-
bulencemodel.23 All test cases consideredin this study are assumed
to be fully turbulent,and, therefore, the laminar-turbulenttrip terms
are not used.

Fig. 1 B-spline curve and control points for the NACA 0012 airfoil.

Numerical Method
Airfoil Thickness Constraints

A penalty method is used to impose airfoil thickness constraints
by combining the objective function with the constraint equation:

J D JO C JT (6)

where JO denotes theobjectivefunctionsde� ned in Eqs. (3) and (4).
The thicknessconstraintsare cast as inequality constraintsgiven by
the following quadratic penalty term:

JT D

8
><

>:
!T

NTP
i D 1

µ
1 ¡

t .xi /

t¤.xi /

¶2

if t .xi / < t¤.xi /

0 otherwise (7)

where NT is the number of thickness constraints, t¤.x/ is the min-
imum allowable airfoil thickness at location x , and !T is a user-
speci� ed constant. We can also treat the thickness constraints as
equalityor mixed constraints.Additional constraintsor design vari-
ables that are useful for practical design include the leading-edge
radius and the trailing-edge angle. The present formulation works
well for the design cases presentedhere, but note that there are well-
known weaknesses of penalty methods,30 and more sophisticated
strategies for solving constrained problems are given in Refs. 20,
31, and 32.

Flow Solver
The spatial discretization for Eq. (5) is the same as that used

in ARC2D.29 The discretizationconsists of second-ordercentered-
difference operators with second- and fourth-differencescalar arti-
� cial dissipation:

@ OE
@»

¼ ±»
OE ¡ r» D1 D2 (8)

with

D1 D 2¾ j C 1
2 ;k J ¡1

j C 1
2 ;k

D2 D ²
.2/

j C 1
2 ;k

1» Q j;k ¡ ²
.4/

j C 1
2 ;k

1» r» 1» Q j;k

¾ j;k D jU j C c
q

» 2
x C » 2

y ; ²
.2/

j;k D ·2 max.7 j C 1;k; 7 j;k ; 7 j ¡ 1;k/

²
.4/

j;k D max
¡
0; ·4 ¡ ²

.2/

j;k

¢
; 7 j;k D

jp j C 1;k ¡ 2p j;k C p j ¡ 1;k j
jp j C 1;k C 2p j;k C p j ¡ 1;k j

where ±» is a second-ordercentered differenceoperator, 1» and r»

are � rst-order forward and backward difference operators, U is a
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contravariantvelocity component, and ·2 and ·4 are constants.Typ-
ical values of ·2 and ·4 are 1.0 and 0.01, respectively. The scalar
coef� cient ¾ is the spectral radius of the � ux Jacobian matrix. The
term 7 j;k is a pressureswitch to controltheuseof � rst-orderdissipa-
tion nearshockwaves. An analogoustermappears in the ´ direction.
A far-� eld circulation correction is also implemented.

The Spalart–Allmaras turbulence model is discretized as de-
scribed in Ref. 23. Overall, the spatial discretizationleads to a non-
linear system of equations:

R. OQ; X D/ D 0 (9)

where OQ D J ¡1 Q D J ¡1[½; ½u; ½v; e; Qº]T is the new vector of con-
servative dependent state variables, and the turbulencemodel equa-
tion is scaled by J ¡1 .

Equation (9) is solved in a fully coupled manner, where conver-
gence to steady state is achieved using the preconditionedGMRES
algorithm in conjunction with an inexact Newton strategy.4 The al-
gorithm can be summarized as follows:

1) For matrix-free GMRES(40), the matrix-vector products re-
quired at each GMRES iteration are formed using � rst-order � nite
differences.

2) The preconditioner is a block-� ll incomplete lower/upper
decomposition with a � ll-in of 2 [BFILU(2)] of an approximate
Jacobian matrix. Right preconditioningis used.

3) The reverse Cuthill–McKee reordering of unknowns is based
on initial double-bandwidthordering (see Ref. 4).

The approximate Jacobian is formed from the exact Jacobian
.@ R=@ OQ/ by treating the arti� cial dissipation coef� cients given in
Eq. (8), includingthe spectral radius,as constantsandcombiningthe
second- and fourth-differencedissipation coef� cients as follows:

²
.2/

l D ².2/
r C Á².4/

r (10)

where Á D 6:0, the subscript r denotes the contribution from the
right-hand side, and the subscript l denotes the resulting left-hand
side value used in the preconditioner. Note that this modi� cation
does not affect the steady-state solution. To avoid Newton startup
problems, the approximate-factorization algorithm of ARC2D in
diagonal form,29 in conjunction with a subiteration scheme23 for
the turbulence model equation, is used to reduce the initial residual
by two orders of magnitude. The preconditioner is frozen after the
� rst Newton iteration and the GMRES convergence tolerance is set
to 0.5 for the � rst 10 Newton iterations and 0.1 for any remaining
Newton iterations. For further details, see Ref. 4. The turbulence
model is fully linearized and included in the preconditioner. This
linearization is later reused in the adjoint and sensitivity methods,
as discussed in the following sections.

Adjoint and Flow-Sensitivity Solvers
The gradient of the objective function J [X D; Q.X D/] is given

by

dJ
dX D

D @J
@ X D

C @J
@ Q

dQ

dX D

(11)

where we reduce the vector of design variables X D to a scalar to
distinguish clearly between partial and total derivatives.

The dif� culty in Eq. (11) is the evaluation of the term dQ=dX D ,
referredto as the � ow sensitivities.To compute the � ow sensitivities,
differentiate Eq. (9) with respect to the design variables:

dR

dX D
D

@ R

@ X D
C

@ R

@ OQ
d OQ
dX D

(12)

and realize that dR=dX D D 0 because, for any design variable,
Eq. (9) is always satis� ed. Furthermore, note that @ OQ=@ Q D J ¡1 I ,
where I is the identity matrix, and consequentlyEq. (12) becomes

@ R

@ Q

dQ

dX D
D ¡ @ R

@ X D

(13)

The direct, or � ow-sensitivity, method results from solving
Eq. (13) for the � ow sensitivities dQ=dX D and using these values

in Eq. (11) to obtain the gradient. To formulate the discrete-adjoint
method, substitute Eq. (13) into Eq. (11) to obtain

dJ
dX D

D @J
@ X D

¡ @J
@ Q

³
@ R

@ Q

´¡1
@ R

@ X D

(14)

From the triple-productterm in Eq. (14), de� ne the following inter-
mediate problem:

@ R

@ Q

T

Ã D
@J
@ Q

T

(15)

This is known as the adjoint equation, and the vector Ã represents
the adjoint variables. By the substitution of Ã into Eq. (14), the
expression for the gradient becomes

dJ
dX D

D @J
@ X D

¡ ÃT @ R

@ X D

(16)

Note that Eq. (13) must be solved for each design variable,
whereas Eq. (15) is independent of the design variables. If a di-
rect solver is used to solve Eq. (13), then the lower/upper (LU)
factorization can be reused with different right-hand-side vectors.
Unfortunately, direct solvers are presently only suitable for small,
two-dimensionalproblems.A straightforwardimplementationof it-
erative solvers leads to resolving Eq. (13) for each design variable,
which is computationally expensive. See Ref. 33 for modi� cations
to iterative solvers that focus on linear systems with multiple right-
hand sides; however, even with these solvers, the computational
overhead is still signi� cant.

We adopt the GMRES strategy from the � ow solver to solve both
the adjoint and � ow-sensitivity equations. We use right precondi-
tioning with the preconditioner based on the � rst-order Jacobian
matrix described earlier. Fast adjoint and � ow-sensitivity solutions
are obtained with Á D 3:0, BFILU(6), and GMRES(85), but these
settings are conservative and are further discussed in the Results
and Discussion section. For the � ow-sensitivity equation, we use
matrix-free GMRES with second-order accurate � nite differences.
In addition to memory savings, the matrix-freeapproach is easier to
implement because an accurate linearizationof cumbersome func-
tions in the residual equations, such as the pressure switch [Eq. (8)]
and the far-� eld circulation correction, is automatically provided.
Becauseof the transposeon the left-handsideofEq. (15), thematrix-
free approach is not possible for the adjoint equation.

For the inverse design objective function, the term @J =@ Q is
evaluated analytically,whereas for the drag minimization objective
function, it is evaluated using centered differences. The remain-
ing terms in Eq. (16), namely, the objective function sensitivity
@J =@ X D and the residual sensitivity @ R=@ X D , are also evaluated
using centered differences.Note that the evaluationof residual sen-
sitivities includes the evaluation of grid sensitivities because the
design variables do not explicitly appear in the residual equations,
except for the angle-of-attack design variable. The computational
cost of the gradient calculationcould be reduced by neglectinggrid
sensitivities for grid points suf� ciently far from the airfoil. How-
ever, this approach can introduce substantial errors in the gradient
calculation.24 Because the computational cost of the regrid proce-
dure (discussed hereafter) and of the residual evaluation is only a
small fraction of the overall gradient calculation, we evaluate the
residual sensitivities at every node in the domain.

Optimizer
The optimizer used to solve the aerodynamicdesign problem de-

� ned by Eq. (1) can have a signi� cant impact on the ef� ciency of
the optimizationprocedure.34 Note that by using the penaltymethod
to incorporate constraints, we cast the optimization problem as an
unconstrainedproblem. We solve the unconstrainedproblem using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton al-
gorithmcoupledwith a backtrackingline search.A detaileddescrip-
tion of the optimizer is provided in Ref. 35. At each step of the line
search, the objective function value and the gradient value are re-
quired to construct a local cubic interpolant.The stopping criterion
for the optimization is based on an appropriately scaled L2 norm of
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the gradient.35 We require a reduction of at least � ve orders of mag-
nitude in the scaled L2 norm of the gradient to ensure convergence
to a local optimum.

Grid Movement Strategy
C-topology structured grids are used. As the shape of the airfoil

evolves during the optimization process, the position of the grid
nodes is adjusted to conform to the new shape. The grid movement
strategy is summarized hereafter for grid lines in the normal di-
rection. This strategy is similar to one of the strategies outlined
in Ref. 36. An analogous formulation holds for the streamwise
direction.

Given a displacementof the B-spline control point in the vertical
direction, the grid movement strategy preserves the location of the
outer boundary. The interior nodes along a normal grid line are
positioned as determined by

ynew
k D yold

k C 1y1.1 ¡ Sk / (17)

where 1y1 represents the airfoil shape change. Sk is the normalized
arclength distance given by

Sk D
Pk

i D 2
L iPkmax

i D 2 L i

(18)

where L i is the length of each segment between nodes.

Results and Discussion
The CPU times reported in the following sections are obtained

on a 667-MHz Alpha 21264 processor (SPECfp 2000 rating of 562
peak). All subsoniccases are computedon a 265 £ 53 grid,whereas
for transonic cases, a 257 £ 57 grid is used. For all grids, the dis-
tance to the outer boundary is 24 chords, the off-wall spacing is
2 £ 10¡6 chords, the leading-edge clustering is 5 £ 10¡4 chords,
and the trailing-edgeclustering is 2 £ 10¡3 chords. These grids are
very similar to those used for detailed accuracy studies presented
in Ref. 37 and provide suf� cient numerical accuracy for the design
cases consideredhere. The circulation correction is not used unless
explicitly stated.

Flow Solver Performance
We evaluate the performance of the Newton–Krylov algorithm

on the following test cases: 1) NACA 0012 airfoil at M1 D 0:3,
® D 6 deg, and Re D 2:88 £ 106; and 2) RAE 2822 airfoil at
M1 D 0:729, ® D 2:31 deg, and Re D 6:5 £ 106. Both cases are fully
turbulent.

Figure 2 shows that the Newton–Krylov (NK) algorithm is ap-
proximately from two to three times faster than the approximate-
factorization (AF) algorithm. For many cases, this speedup can be

Fig. 2 Performance of the NK algorithm vs the AF algorithm.

evenlarger.Initially, theconvergencerate of both algorithmsis iden-
tical because the AF algorithmis used as a startup procedurefor the
NK algorithm.

One of the main dif� culties associated with Newton’s method is
the startupprocedure.This startupprocedurecan be quite expensive,
as shown in Fig. 2 for case 2, where the startup time takes almosthalf
of the � ow solve time. The NK algorithm is particularlywell suited
for the design problem because, once we obtain the solution for
the initial airfoil shape, we warm start the remaining � ow solves. If
the stepsizes during the linesearchprocedure are suf� ciently small,
the startup procedure is not necessary.The warm started � ow solves
typically converge in two-thirds of the original � ow solve time, or
roughly 60 s for the cases considered here.

Gradient Accuracy
The factor that in� uences the accuracyof the gradientcalculation

most signi� cantly is the linearization of the discretized residual
equations,Eq. (9), to obtain the � ow Jacobianmatrix .@ R=@ OQ/. For
the adjoint method, we carefully linearize the residual equations
by hand, including all terms in the Spalart–Allmaras turbulence
model.23 However, exact linearization is complicated by the use of
nondifferentiablefunctionssuchas themaximumandabsolutevalue
functions. These functions are used in the calculation of the pres-
sure switch and spectral radius, as shown in Eq. (8). Furthermore,
the absolute value function is required in the calculationof vorticity
and in the � rst-order upwind discretization of the advective terms
in the Spalart–Allmaras turbulence model.

An additional complication is the linearization of the far-� eld
circulationcorrectionbecause the calculationof the vortex strength
leads to couplingbetween airfoil surface points and far-� eld bound-
ary points. The vortex strength calculation can be linearized as de-
scribedby Korivi et al.,15 but in the present linearizationof the resid-
ual equationsfor the adjoint method we treat the vortex strengthand
the pressure switch used for shock capturing as constants. We lin-
earize the spectral radius of the arti� cial dissipation scheme, the
calculation of vorticity, and the advective terms of the Spalart–
Allmaras turbulencemodel.23 Note that thederivativeof theabsolute
value function is not de� ned when the function argument changes
sign.The matrix-freeimplementationof the � ow-sensitivitymethod
avoids these linearizationdif� culties.

We examine the accuracy and ef� ciency of the gradient calcula-
tion for two representativetest cases:1) subsonic inverse designand
2) transonic drag minimization at � xed lift.

For case 1, the freestream conditions are M1 D 0:3, ® D 6 deg,
and Re D 2:88 £ 106 . The NACA 0012 pressure distribution at the
given freestream conditions is used as the target pressure distribu-
tion. The initial pressure distribution is obtained by replacing the
NACA 0012 leading edge with the Royal Aerospace Establishment
(RAE) 2822 leading edge, which modi� es the location of B-spline
control points numbered 6, 7, 9, and 10 in Fig. 1.

The gradientof the inversedesignobjectivefunction[Eq. (2)] with
respectto thedesignvariablesassociatedwith the fourcontrolpoints
is calculatedusing centereddifferences, the adjointmethod, and the
matrix-free � ow-sensitivity method. The � nite difference stepsize
is 1 £ 10¡5 , and we converge the � ow solution 14 orders of magni-
tude.The adjoint and � ow-sensitivityequationsare convergedeight
orders of magnitude. The calculated gradient values are shown in
Table 1, where the agreement between the � nite difference,adjoint,
and matrix-free � ow-sensitivity (S-MF) gradients is very good.

For case 2, the freestreamconditionsare M1 D 0:7, CL D 0:4728,
and Re D 9 £ 106. The initial airfoil geometry is the NACA 0012
airfoil. We compute the gradient of the objective function, Eq. (3),
with respect to control points 9, 10, 11, and 12 (see Fig. 1), as

Table 1 Gradient accuracy for case 1

Control Finite Adjoint, S-MF,
point no. difference % difference % difference

6 ¡127.82 0 ¡0.008
7 618.91 0 0
9 ¡2093.8 0 0
10 ¡526.58 ¡0.002 0
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Table 2 Gradient accuracy for case 2

Control Finite Adjoint, S-MF,
point no. difference % difference % difference

9 22.465 ¡7.0 0.004
10 29.592 4.1 ¡0.01
11 ¡16.428 ¡6.2 0.006
12 2.4066 ¡8.9 0.47
® 0.57486 0.52 0.06

Table 3 Gradient accuracy for case 2 with frozen
pressure switch

Control Finite Adjoint, S-MF,
point no. difference % difference % difference

9 20.895 ¡0.03 ¡0.005
10 30.803 ¡0.06 ¡0.02
11 ¡15.416 ¡0.03 0.04
12 2.1940 ¡0.01 ¡0.02
® 0.57798 ¡0.02 0.03

Table 4 Gradient accuracy for case 2 with circulation
correction (frozen pressure switch and all absolute

value functions)

Control Finite Adjoint, S-MF,
point no. difference % difference % difference

9 17.954 ¡0.1 0
10 27.992 ¡0.1 0
11 ¡12.370 ¡0.7 ¡0.008
12 2.7021 1.7 0
® 0.54509 0.3 0

well as the angle of attack ®. The target drag value C¤
D is set equal

to 0.0112, which represents a 30% reduction from the initial drag
value. No thickness constraints are imposed, and the values of !L

and !D in Eq. (3) are set to 2.0 and 1.0, respectively.Table 2 shows
that there is some error in the adjoint gradients relative to the � nite
difference gradients, which is due to the treatment of the pressure
switch. Note that the pressure switch was not used for case 1. The
agreement between the matrix-free � ow-sensitivity gradients and
the � nite difference gradients is not quite as good as for case 1 but
remains excellent.

To demonstratethat the differencesin Table 2 are due to the treat-
ment of the pressure switch, we perform the following numerical
experiment.We � rst converge the � ow solver and store the pressure
switch values, and then we reuse these values when we compute
the two neighboring states in the centered-differencegradient cal-
culation.Hence, during the � nite differencegradient calculationthe
pressure switch is treated as a constant, which is consistent with
the linearization of the residual equations. The results are summa-
rized in Table 3, where the values obtained from the adjoint method
agree well with the � nite differenceand matrix-free � ow-sensitivity
values. The minor differences that appear in Table 3 are due to the
linearizationof the absolute value function.

The effect of the far-� eld circulation correction on the gradient
accuracyis shown in Table 4. We performa similar numericalexper-
iment to that just performed; however, we freeze both the pressure
switch and all absolutevalue functionssuch that we completely iso-
late the error contributionfrom the far-� eld circulationcorrectionin
the adjoint equation. The agreement between � nite differences and
matrix-free � ow sensitivities (S-MF) is very good, and the error in
the adjoint gradients is small. These results suggest that treating the
vortex strengthas a constanthas a relativelysmall effect on gradient
accuracy.

Ef� ciency of Gradient Calculation
Figs. 3 and 4 show the convergencehistories of the adjoint equa-

tion and the � ow-sensitivity equation for the inverse design prob-
lem, labeled as case 1, and the drag minimization problem, labeled
as case 2a, both introduced in the preceding section. The GMRES
solver parameters are Á D 3:0, BFILU(6), and GMRES(85). The
adjoint equation for the inverse design problem takes more itera-

Fig. 3 GMRES convergence for the adjoint equation.

Fig. 4 GMRES convergence for the sensitivity equation (� rst design
variable shown).

tions to converge than the drag minimizationproblem, and note that
GMRES is forced to perform a restart on iteration 86 as shown in
Fig. 3. The � ow-sensitivityequationconvergeswell for both the in-
verse design problem and the drag minimization problem as shown
in Fig. 4. The reasonfor the slower convergenceof the inversedesign
adjoint equation is not fully understood. However, our experience
suggests that the slower convergencerate is not due to the given � ow
conditions. Furthermore, not every inverse design adjoint equation
suffers from the slower convergencebehavior.

Note that residuals of both the adjoint and sensitivity equations
shouldbe reducedby threeordersofmagnitudeto obtaingradientsof
suf� cient accuracy.26;38 For fast GMRES performance, the number
of search directions should be selected such that at least a three-
order-of-magnitude reduction in the residual is obtained without
restarting GMRES.

The values of the � ll level in the BFILU decomposition and the
number of search directions can be signi� cantly reduced for the
drag minimization objective function. For example, consider case
2b shown in Figs. 3 and 4, which is the drag minimization problem
evaluated with BFILU(4) and GMRES(60). There is only a min-
imal reduction in performance, whereas the memory savings are
signi� cant.

The ef� ciency of the adjoint solver for cases 1, 2a, and 2b is
summarized in Table 5. Tprec refers to the time required to form
the preconditioner,TGMRES refers to the time required to reduce the
adjoint residual by three orders of magnitude, and � ow solve refers
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Table 5 Ef� ciency of adjoint solvera

Case Tprec TGMRES Total Flow solve

1 4.2 22.9 27.1 75.2
2a 4.2 7.0 11.2 65.0
2b 2.6 6.6 9.2 65.0

aCPU time measured in seconds.

Table 6 Ef� ciency of matrix-free
� ow-sensitivity solvera

TGMRES, Total,
Case per DVb for all DV

1 5.8 27.4
2a 6.1 34.7
2b 6.5 35.1

aCPU time measured in seconds.
bDesign variables.

Fig. 5 Pressure distribution and airfoil shape summary for case 2
obtained with the adjoint method.

to the time required for a Newton–Krylov � ow solve to converge
10 orders of magnitude. In all design examples in this study, we
converge the � ow� eld solutionat least 10 orders of magnitude, and,
therefore, the � ow solve times in Table 5 provide a good reference.
Overall, for case 1, the time to calculate the gradient is just over
one-third of the � ow solve time, whereas for case 2 it is close to
one-sixthof the � ow solve time. Case 2b, which uses the BFILU(4)
preconditioner,is even faster because the time to form and apply the
preconditionerhas been reduced.

The ef� ciencyof thematrix-free� ow-sensitivitysolveris summa-
rized in Table 6, where TGMRES refers to the time per design variable
required to reduce the residual of the � ow-sensitivity equation by
three orders of magnitude, and total is the total time required to
calculate the gradient given by Tprec C NDV ¢ TGMRES, where NDV is
the number of design variables.The time to form the preconditioner
and the � ow solve time are shown in Table 5.

Design Examples
Having demonstrated the accuracy and ef� ciency of the gradi-

ent calculation, we now solve the aerodynamic shape optimization
problemfor case 2, which is the drag minimizationproblem at � xed
lift described earlier. Note that this problem does not have a unique
solution. We solve this problem with the adjoint and S-MF meth-
ods to examine the impact of gradient accuracy on the optimization
problem.

Figure 5 indicates that after 18 design iterations the upper surface
shock is eliminated. We only plot the adjoint results because those
obtained with the S-MF method are very similar. The values of CL ,
CD , and ® at this stage are 0.4713, 0.01144, and 2.83, respectively,
for the adjoint method and 0.4724, 0.01144, and 2.84, respectively,

Fig. 6 Comparison of the adjoint method and matrix-free sensitivity
method for case 2.

for the � ow-sensitivity method. At this point, the adjoint method
does not appear to be signi� cantly affected by the errors in its gra-
dient calculation. The convergence of the objective function stalls
during the subsequent search direction for the adjoint method, as
shown in Fig. 6. The BFGS algorithm is restarted using the steepest
descent direction, and the adjoint method catches up to the S-MF
method after 40 design iterations.The � nal values of CL , CD , and ®
are 0.4727, 0.01123, and 3.33, respectively, for the adjoint method
and 0.4726, 0.01123, and 3.28, respectively, for the M-FS method.
The � nal pressure distribution and the airfoil shape are shown in
Fig. 5.

Note that the stallingof the adjoint method appears to be case de-
pendent, and we � nd that for most design problems the two methods
have very similar convergencehistories. The BFGS algorithm gen-
erates positive-de�nite approximations to the Hessian matrix only
if exact line searches are performed. Hence, the corrupted search
direction that causes the stall in the optimization procedure may
be a result of inexact line searches and numerical error, as well as
gradient inaccuracy.

Three additional design examples are provided to demonstrate
the accuracy and ef� ciency of the present aerodynamic shape opti-
mization algorithmfor more complex design problems. The adjoint
method is used for all examples. The � rst example is an inverse de-
sign at transonicspeed.The initial pressuredistributioncorresponds
to the NACA 0012 airfoil and the target pressure distribution cor-
responds to a B-spline approximation of the RAE 2822 airfoil at
M1 D 0:7, ® D 3 deg, and Re D 9 £ 106 . The airfoil shape is de-
scribed with 15 B-spline control points, of which 12 are used as
design variables. The control point at the leading edge and the two
control points at the trailing edge (points 1, 8, and 15 in Fig. 1) are
kept constant during the optimization.

Figure 7 shows the initial pressure distribution correspond-
ing to the NACA 0012 airfoil, the target pressure distribution
corresponding to the RAE 2822 airfoil, and the � nal design pres-
sure distribution, as well as the corresponding airfoil shapes. Also
shown in Fig. 7 are the pressure distribution and airfoil shape, after
30 design iterations, that are very close to the target. The optimiza-
tion history is summarized in Fig. 8. Note that about 90 � ow solves
and gradient evaluations are required to reduce the L2 norm of the
gradient by 10 orders of magnitude, although plotting accuracy is
achievedwithin 60 design iterations. In terms of CPU time, plotting
accuracy is achieved in approximately 1.5 h.

The second optimizationexample involves the design problemof
attaining speci� ed lift while holding drag constant. The initial air-
foil is the NACA 0012, and the freestreamconditionsare M1 D 0:3,
® D 6 deg, and Re D 2:88 £ 106 . The correspondinglift and drag co-
ef� cients are 0.6694and 0.01493,respectively.For the optimization
problem, we specify a target lift coef� cient of 0.9 and a target drag
coef� cient equal to the initial drag coef� cient. The initial airfoil
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Fig. 7 Pressure distribution and airfoil shape summary for the inverse
design problem (12 design variables).

Fig. 8 Optimization convergence history for the inverse design prob-
lem (12 design variables).

shape is described with 19 B-spline control points, and we use 14
control points as design variables, as well as the angle of attack.
The B-spline control point at the leading edge and the four B-spline
control points at the trailing edge are kept constant during the op-
timization. The values of !L and !D in Eq. (3) are set to 2.0 and
1.0, respectively. In addition, we specify four thickness constraints.
The value of !T in Eq. (7) is set to 1.0. Note that, for truly practical
designs, multipoint optimization must be used.38;39

Figure 9 shows the � nal pressuredistributionand the correspond-
ing airfoil shape. Figure 10 shows that the optimization required 90
design iterations to converge. Because the objective function value
is reducedby 15 ordersof magnitude,all of the thicknessconstraints
are satis� ed. The angle of attack is reduced from 6:0 to 3:56 deg.

The third and � nal design problem we consider is the maximiza-
tion of the lift-to-drag ratio. The initial airfoil is the NACA 0012,
and the freestream conditions are M1 D 0:25, ® D 9 deg, and
Re D 2:88 £ 106. The airfoil shape is described with 15 B-spline
control points, of which 10 are used as design variables. The an-
gle of attack is � xed during the optimization.This case is similar to
one of the cases consideredby Liebeck.40 Five thicknessconstraints
are speci� ed, with the minimum allowable thickness at 25% chord
equal to 10%. The value of !T in Eq. (7) is set to 0.05.

Figure 11 shows the initial pressuredistributioncorrespondingto
the NACA 0012airfoil, the � nal designpressuredistribution,and the
corresponding airfoil shapes. The lift coef� cient is increased from

Fig. 9 Pressure distribution and airfoil shape summary for the lift
enhancement problem with thickness constraints (15 design variables).

Fig. 10 Objective function convergence history for the lift enhance-
ment problem with thickness constraints (15 design variables).

Fig. 11 Pressure distribution and airfoil shape summary for the max-
imization of CL /CD with thickness constraints (10 design variables).
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Fig. 12 Optimization convergence history for the maximization of
CL /CD with thickness constraints (10 design variables).

0.967 to 1.49, whereas the drag coef� cient increases from 0.01969
to 0.02443. Correspondingly, the lift-to-drag ratio increases from
49.1 to 61.1, and the L2 norm of the gradient is reduced by � ve
orders of magnitude as shown in Fig. 12. Three of the � ve thickness
constraintsare active. The largest thicknessviolationoccurs at 25%
chord, where the � nal thickness is 9.85%. The coef� cient of skin
friction indicates that the � ow is separated over the last 1.5% of
chord.

Conclusions
We have presented a novel algorithm for two-dimensional aero-

dynamicshapeoptimization,includingboth the discrete-adjointand
discrete � ow-sensitivity approaches. Based on our results, we can
draw the following conclusions:

1) The adjoint gradients show excellent accuracy for subsonic
cases, with some error in transonic cases. The error is primarily
caused by treating the pressure switch used for shock capturing
and the vortex strength associatedwith the far-� eld circulationcor-
rection as constants during the linearization of the residual equa-
tions. The small resultingerror does not signi� cantly affect the � nal
design.

2) The � ow-sensitivity gradients show excellent accuracy in all
cases as a result of the matrix-free implementation of GMRES,
which is not possible with the adjoint method. However, for prob-
lems with a large number of design variables, the adjoint method is
more ef� cient.

3)By theuseof theadjointmethod,theobjectivefunctiongradient
is calculated in one-� fth to one-half the cost of a warm-started � ow
solve. Note that the adjoint residual is reduced at least three orders
of magnitude to ensure suf� ciently accurate gradients.

4) For all design examples, the L2 norm of the gradient is reduced
by several orders of magnitude, which indicates convergence to a
local optimum.

The new algorithm provides an ef� cient means of applying the
discrete-adjointmethod to aerodynamic design problems governed
by the Navier–Stokesequations.This is particularlyrelevantto prob-
lems in which viscous drag and boundary-layer separation are im-
portant. With the present algorithm, the relative expense of the gra-
dient calculation is signi� cantly less than that of the � ow solver.
Future work should concentrateon the optimizer used to update the
design variables to reduce the number of � ow solves and gradient
calculations required to reach the optimum solution.
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