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Optimization of High-Lift Configurations Using
a Newton–Krylov Algorithm

Marian Nemec∗ and David W. Zingg,†

University of Toronto Institute for Aerospace Studies
4925 Dufferin Street, Toronto, ON, M3H 5T6, Canada

A gradient-based Newton–Krylov algorithm for aerodynamic shape optimization is
applied to lift maximization of a multi-element landing configuration. The governing
flow equations are the two-dimensional compressible Navier–Stokes equations in conjunc-
tion with a one-equation transport turbulence model. The objective function gradient
is computed via the discrete-adjoint method. The design examples reveal a number of
difficulties for numerical optimization methods when applied to high-lift design problems,
which include flow solver convergence problems at stall and post-stall conditions and poor
off-design performance. Strategies are presented for addressing these difficulties, and an
example is provided to demonstrate the approach.

Introduction

THE principal challenge in the design of high-lift
systems is the complex nature of the flow result-

ing from the use of configurations with multiple ele-
ments, such as flaps and slats, at high angles of attack.
The dominant flow features include regions of sepa-
rated flow, confluent boundary layers and wakes, and
regions of supercritical flow.1 Such flow features have
a strong influence on the aerodynamic performance of
the configuration due to their nonlinear effects, which
must be carefully controlled in order to realize optimal
performance. In addition, the design problem inher-
ently involves multiple operating conditions, namely
take-off, cruise, and landing, and is further compli-
cated by strict geometry constraints.

Although the design of high-lift systems is a com-
plex task, an optimized configuration can significantly
improve the aerodynamic performance of an aircraft,
as well as provide weight savings and reductions in me-
chanical complexity.2 This has motivated the develop-
ment of effective design strategies based on numerical
optimization methods, where the selection of an op-
timal configuration is accomplished by a systematic
and potentially fast evaluation of candidate configu-
rations.3–10 In particular, a promising approach is
offered by gradient-based methods,4,6, 9, 10 since sig-
nificant performance improvements can be obtained
in relatively few evaluations of the objective function
and gradient. The validity of the optimization ulti-
mately depends on the accuracy of the flow solver.
Current algorithms for the solution of the Reynolds-
averaged Navier–Stokes equations provide reasonable

∗NRC Research Associate, presently at NASA Ames Re-
search Center, nemec@nas.nasa.gov

†Professor, Senior Member AIAA, http://goldfinger.utias.
utoronto.ca/∼dwz/

Copyright c© 2003 by M. Nemec and D. W. Zingg. Published by
the American Institute of Aeronautics and Astronautics, Inc. with
permission.

predictions of aerodynamic performance for complex
airfoil geometries up to stall conditions.1

In Refs. 11–13, we presented an accurate and ef-
ficient Newton–Krylov algorithm for the optimiza-
tion of single- and multi-element configurations, where
the objective function gradient is computed via the
discrete-adjoint approach. The flow is governed by
the two-dimensional compressible thin-layer Navier–
Stokes equations in conjunction with the Spalart–
Allmaras turbulence model.14 The objectives of this
paper are to demonstrate the performance of the
Newton–Krylov algorithm for lift maximization of
multi-element configurations and to identify and ad-
dress difficulties that can be encountered in a practical
aerodynamic design context.

Problem Formulation
The aerodynamic shape optimization problem con-

sists of determining values of design variables X, such
that the objective function J is minimized

min
X

J (X,Q) (1)

subject to constraint equations Cj :

Cj(X, Q) ≤ 0 j = 1, . . . , Nc (2)

where the vector Q denotes the conservative flowfield
variables and Nc denotes the number of constraint
equations. The flowfield variables are forced to satisfy
the governing flowfield equations, F , within a feasible
region of the design space Ω:

F(X,Q) = 0 ∀ X ∈ Ω (3)

which implicitly defines Q = f(X).
For the lift-maximization problem under considera-

tion here, the objective function is given by

J =
(

1− CL

C∗L

)2

(4)
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Fig. 1 Definition of gap and overlap distances

where C∗L represents the target lift coefficient. Note
that the lift-maximization problem is formulated by
setting C∗L to an unattainable value. In some problems,
the robustness and convergence of the optimization
can be improved by considering a sequence of lift-
enhancement sub-problems with increasing values of
the target lift coefficient. The weighted-sum method
is used for multi-point optimization problems:

Jm =
Nm∑

i=1

wi Ji (5)

where Nm denotes the number of design points (typi-
cally Mach numbers or angles of attack), and wi rep-
resents a user-assigned weight for each design point.

The design variables are the horizontal and vertical
locations of slats and flaps, as well as the angle of at-
tack of the configuration. The vertical and horizontal
design variables are used to control the gap and overlap
distances. We define the gap as the minimum distance
between the trailing edge of the upstream element and
the surface of the downstream element. The overlap
is defined as the difference between the x-locations of
the upstream element’s trailing edge and the down-
stream element’s leading edge, see Fig. 1. Although
not considered in this work, additional design variables
may include the slat and flap deflection angles, and the
shape of the configuration can be controlled by the use
of a B-spline parameterization15 of each airfoil surface,
see Refs. 11–13 for examples.

The constraint equations, Eq. 2, are used to enforce
upper- and lower-bound limits for the gap and overlap
distances. These constraints are necessary in order to
ensure a reasonable computational grid and are typi-
cally inactive at the optimal solution.

The governing flow equations are the compressible
two-dimensional thin-layer Navier–Stokes equations in
generalized coordinates:

∂Ê(X, Q̂)
∂ξ

+
∂F̂ (X, Q̂)

∂η
= Re−1 ∂Ŝ(X, Q̂)

∂η
(6)

where Q̂ = J−1Q = J−1[ρ, ρu, ρv, e]T is the vector
of conservative dependent state variables, ξ and η are
the streamwise and normal generalized coordinates, re-
spectively, and J is the Jacobian of the coordinate

transformation from Cartesian coordinates. Vectors
Ê and F̂ represent the inviscid flux vectors, the vis-
cous flux vector is given by Ŝ, and Re denotes the
Reynolds number. Sutherland’s law is used to de-
termine the laminar viscosity. The equations are in
non-dimensional form. For further details, see Ref. 16.
The turbulent viscosity is modeled with the Spalart–
Allmaras turbulence model.14 All cases considered in
this study are assumed to be fully turbulent, and there-
fore, the laminar-turbulent trip terms are not used.

Numerical Method
The aerodynamic shape optimization problem de-

fined by Eqs. 1–3 is cast as an unconstrained problem.
This is accomplished by lifting the side constraints,
Eq. 2, into the objective function J using a penalty
method. Furthermore, the constraint imposed by the
flowfield equations, Eq. 3, is satisfied at every point
within the feasible design space, and consequently
these equations do not explicitly appear in the for-
mulation of the optimization problem.

The unconstrained problem is solved using the
BFGS quasi-Newton method in conjunction with a
backtracking line search.11,17 At each step of the line
search, the objective function value and gradient are
required in order to construct a local cubic interpolant.
Note that the optimization problem is based on the
discrete form of the flowfield equations. Using the
discrete approach, we expect the gradient to vanish
at the optimum solution. In the following sections,
we present the formulation for the penalized objective
function, as well as the algorithms used for the flow-
field evaluation (objective function value), the gradient
evaluation, and the grid-perturbation strategy.

Objective with Constraints

A penalty method is used to lift the constraints
into the objective function. We re-define the objec-
tive given by Eq. 4 as

J = Jd + Jp (7)

where Jd denotes the design objective of lift maximiza-
tion, and Jp denotes constraint penalty terms which
are cast using a quadratic formulation. For example,
the formulation for the upper-gap constraint (Gu) is

Jp =
{

[1−Gu/G∗u]2 if Gu > G∗u
0 otherwise

(8)

where G∗u denotes the upper allowable limit.

Flowfield Evaluation

The spatial discretization of the flowfield equations,
Eq. 6, is the same as that used in ARC2D16 and TOR-
NADO18 for multi-block H-topology grids. The dis-
cretization consists of second-order centered-difference
operators with second- and fourth-difference scalar ar-
tificial dissipation. The Spalart–Allmaras turbulence
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model is discretized as described in Refs. 14 and 19.
Overall, the spatial discretization leads to a nonlinear
system of equations:

R(X, Q̂) = 0 (9)

where Q̂ denotes the discrete vector of conserva-
tive dependent flow variables including the turbu-
lence model variable ν̃. Hence, at each node (j, k)
within the computational domain Q̂j,k =

(
J−1Q)

j,k
=

J−1[ρ, ρu, ρv, e, ν̃]Tj,k. The turbulence model equation
is scaled by J−1. On multi-block grids, the block inter-
faces are overlapped in the streamwise direction and
averaged in the normal direction. Two columns of
halo points are used at the streamwise block interfaces.
Although R is written as a function of the design vari-
ables, we emphasize that during a flowfield solution
the design variables, and consequently the computa-
tional grid, are constants. It is important to note that
TORNADO has been carefully validated for the anal-
ysis of high-lift, turbulent aerodynamic flows.19–21 In
particular, one of the cases studied by Godin et al.19

showed that this flow solver is able to predict trends
in the changes of the lift coefficient values due to vari-
ations in flap position.

Eq. 9 is solved in a fully-coupled manner, where
convergence to steady state is achieved using the pre-
conditioned GMRES algorithm in conjunction with
an inexact-Newton strategy.11,22 The main compo-
nents include matrix-free GMRES(40) and a block-fill
incomplete LU (BFILU) preconditioner. The matrix-
vector products required at each GMRES iteration
are formed with first-order finite-differences. Right
preconditioning is used, and the preconditioner is
based on an approximate-flow-Jacobian matrix. The
level of fill for most cases is 2 [BFILU(2)], but diffi-
cult multi-element cases may require BFILU(4). The
approximate-factorization algorithm of ARC2D in di-
agonal form16,18 in conjunction with a subiteration
scheme14 for the turbulence model equation is used
to reduce the initial residual by three orders of mag-
nitude in order to avoid Newton startup problems.

The approximate flow-Jacobian used for the pre-
conditioner is identical to the flow-Jacobian matrix,
∂R/∂Q̂, except for the treatment of the artificial-
dissipation coefficients.11 Hence, the preconditioner
contains the contributions from all components of the
residual vector, namely inviscid and viscous fluxes,
boundary conditions, block interfaces, and the tur-
bulence model. The artificial-dissipation coefficients,
which include the spectral radius and the pressure
switch, are assumed to be constant with respect to the
flowfield variables. Furthermore, the preconditioning
matrix is formed with only second-difference dissipa-
tion, but the second-difference coefficient is combined
with the fourth-difference coefficient as follows,

d
(2)
l = d(2)

r + φd(4)
r (10)

where the subscript r denotes the contribution from
the right-hand side, and the subscript l denotes the
resulting left-hand side value used in forming the pre-
conditioner. This modification does not affect the
steady-state solution or the convergence of the Newton
iterations. Fast convergence of GMRES is obtained
with the value of φ set to 6.0, which has been deter-
mined through numerical experiments.

Eq. 10 improves the diagonal dominance of the pre-
conditioning matrix and reduces the work and storage
requirements of the incomplete factorization. This
approach is similar to the ‘diagonal shift’ strategy
suggested by Chow and Saad.23 The present precon-
ditioning matrix is a compromise between a precon-
ditioner based on a first-order upwind discretization
of the flowfield equations and a preconditioner based
on the actual second-order discretization. This novel
‘intermediate’ preconditioner is significantly more ef-
fective than either of these more commonly used ap-
proaches.

Gradient Evaluation

Using the discrete-adjoint method, the expres-
sion for the gradient, G, of the objective function,
J [X,Q(X)], is given by

G =
dJ
dX

=
∂J
∂X

− ψT ∂R

∂X
(11)

where we reduce the vector of design variables, X, to
a scalar in order to clearly distinguish between par-
tial and total derivatives. For problems with multiple
design variables, it may be helpful to note that G and
∂J /∂X are [1×ND] row vectors, ψ is a [NF×1] column
vector, and ∂R/∂X is a [NF ×ND] matrix, where ND

represents the number of design variables and NF rep-
resents the number of flowfield variables. We assume
that the implicit function Q(X) defined by Eq. 9 is
sufficiently smooth even in the presence of flow dis-
continuities such as shock waves.24–26

The vector ψ represents adjoint variables, which are
given by the adjoint equation:

∂R

∂Q
T

ψ =
∂J
∂Q

T

(12)

This is a large, sparse, linear system of equations that
is independent of the design variables. The GMRES
strategy from the flow solver is adopted to solve the
adjoint equation. Fast solutions are obtained with
GMRES(85) and for the preconditioning matrix we
use BFILU(6) and φ = 3.0. Multi-element airfoil cases
with complex flowfields may require φ = 6.0, which im-
proves the robustness of the adjoint solver. Due to the
transpose on the left-hand-side of Eq. 12, the matrix-
free approach used in the flow solver is not possible
for the adjoint equation. The flow-Jacobian matrix
is stored explicitly, where we include the contribution
from the spectral radius, but we treat the pressure
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switch associated with the artificial dissipation scheme
as a constant.

The remaining terms in Eqs. 11 and 12, namely the
objective function sensitivities ∂J /∂X and ∂J /∂Q,
as well as the residual sensitivity ∂R/∂X, are evalu-
ated using centered differences. The use of centered
differences for the evaluation of the partial derivative
terms is not computationally expensive. For example,
the centered-difference formula for the residual sensi-
tivities is given by

∂R

∂X i
=

R(X + hei,Q)−R (X − hei,Q)
2h

(13)

where
h = max

(
ε · |Xi|, 1× 10−8

)
(14)

and i = 1, . . . , ND. The ith unit vector is denoted by
ei, and a typical value of ε is 1×10−5. It is important to
realize that Eq. 13 involves two evaluations of only the
residual vector per design variable and not two flow-
field solutions. Note that the evaluation of residual
sensitivities includes the evaluation of grid sensitivi-
ties, since the design variables do not explicitly appear
in the residual equations except for the angle of attack
design variable.

Grid-Movement Strategy

As the position of a flap or a slat changes during the
optimization process, the location of the grid nodes is
adjusted from the baseline configuration to conform to
the new configuration. In Ref. 11, we use an algebraic
grid-perturbation strategy that preserves the distance
to the outer boundary and relocates the grid nodes in
the normal direction proportional to the distance from
the airfoil boundary. When the optimization problem
involves the horizontal and vertical translation of a
slat or a flap, the use of this strategy can result in
significantly skewed grid cells near the boundary.

In order to improve the quality of the modified
multi-block grids, we present a new grid-perturbation
strategy given by

ynew
k = yold

k +
∆y

2
[1 + cos (πSk)] (15)

where ∆y represents the airfoil shape change. Sk is
the normalized arclength distance given by

Sk =
1
Lg

k∑

i=2

Li k = 2, . . . , kmax − 1 (16)

where S1 = 0, Li is the length of a segment between
nodes k and k− 1, and Lg is the grid-line length from
the body to the outer boundary.

An example is presented in Fig. 2, which shows the
grid near the trailing edge of a main element and the
leading edge of a flap for a two-element configura-
tion. The flap is re-positioned such that the gap and

a) Original grid

b) Modified grid using Eq. 15

Fig. 2 Grid distortion resulting from a flap dis-
placement

overlap are reduced by roughly 0.4%c and 1.0%c, re-
spectively. Note that only blocks in the immediate
neighbourhood of the flap are modified, and that the
orthogonality of grid lines near the flap is maintained.
For additional details see Ref. 27, where a numerical
study is performed that compares the influence of grid-
perturbation strategies on the values of the resulting
aerodynamic coefficients.

Results and Discussion
The optimization problem under consideration con-

sists of increasing the maximum lift coefficient of a
two-element configuration based on the NACA 23016
airfoil. The flap deflection angle is 30◦, which is rep-
resentative of a landing setting and remains constant
throughout the optimization. The initial gap and over-
lap distances are 2.2%c and 2.7%c, respectively. These
settings were selected without the aid of formal opti-
mization techniques. The freestream conditions are
M∞ = 0.15 and Re = 5.39×106. The flow is assumed
to be fully turbulent. The main flow features include
a substantial region of separation on the upper sur-
face of the flap and a region of recirculating flow in
the cove of the main element. The presence of these
features is essentially independent of the angle of at-
tack. A multi-block H-topology structured grid is used
with roughly 50, 000 nodes and an off-wall spacing of
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Fig. 3 CL as a function of the angle of attack
(normalized by the maximum CL of the initial con-
figuration)

2 × 10−6c. The present grid can be expected to pro-
duce low numerical errors in lift, but numerical errors
in drag could be significant.28

The primary difficulty of high-lift design is the need
to obtain sufficiently converged flow solutions at high
angles of attack. As the configuration evolves dur-
ing the optimization, large changes in the geometry
can cause flow separation and stall, which can result
in inadequate convergence and even divergence of the
flow solver. In order to avoid flow-solver convergence
problems, we first perform the lift maximization at a
moderate and fixed angle of attack, and then exam-
ine the impact of this optimization on the value of the
maximum lift coefficient:

Case A Lift maximization at a fixed angle of attack
with two design variables, namely the horizontal
and vertical translation of the flap. The angle of
attack (α) is set to 12◦, and the target lift coeffi-
cient, C∗L in Eq. 4, is set to a value that represents
a roughly 11% increase from the lift coefficient of
the initial configuration at α = 12◦.

Case A converges to optimal gap and overlap values
of 1.7%c and 1.5%c, respectively. The lift coefficient
for a range of angles of attack is shown in Figure 3. A
significant lift increase is obtained at the design con-
dition of α = 12◦. The increase in lift is due to flow
reattachment on the upper surface of the flap. The im-
provement in the maximum lift coefficient, however, is
negligible.

In order to increase the maximum lift coefficient, we
consider the following optimization problem:

Case B Lift maximization with the angle of attack as
a design variable, in addition to the two transla-
tion design variables. The target lift coefficient,

Flow Solves and Gradient Evaluations
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Fig. 4 Optimization convergence history for Case
B

C∗L in Eq. 4, is set to a roughly 5% increase of the
maximum lift coefficient of the initial configura-
tion.

Note that the optimization is performed very close to
stall conditions, and therefore flow-solver convergence
difficulties are likely to occur. These difficulties are
avoided by the use of the following strategy. Since
the flow solver will not converge from freestream con-
ditions to conditions near maximum lift of the initial
configuration, the flow is first solved at a moderate
angle of attack and then re-converged with gradually
increasing angles of attack until maximum lift is ap-
proached. This solution is then used as the starting
guess for the optimization. Furthermore, for design-
variable updates that result in poor convergence of the
flow solver, the update stepsize is reduced by a factor
of two, and the previous converged solution is used to
“warm-start” the flow solver. Using this strategy, the
flow equations are converged at least eight orders of
magnitude for all examples presented in this work.

Figure 4 shows the optimization convergence history
for case B. The gradient is reduced by five orders of
magnitude, indicating that at least a local optimum
has been attained. The objective function converges
to a non-zero value, which indicates that the target
maximum lift coefficient could not be achieved. The
optimization convergence history for case A is similar.

The lift coefficient for a range of angles of attack is
shown in Figure 3. Case B converges to a relatively
large gap of 2.85%c, and a small overlap of 0.7%c. As
shown in Figure 3, this configuration results in a 1.7%
increase in the maximum lift coefficient at a slightly
higher angle of attack when compared with the initial
configuration. The lift curve shows an abrupt increase
in slope just prior to reaching maximum lift, which is
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Fig. 5 Hysteresis near maximum lift for case B

due to reattachment of the flow on the upper surface
of the flap. This highly nonlinear behaviour, which is
also present to some degree in the initial configuration,
could lead to undesirable aircraft handling qualities.
Furthermore, Figure 5 reveals a hysteresis effect in the
region of the abrupt lift change. One flow solution is
obtained as the angle of attack is increased (labelled as
forward sweep) and a different flow solution is obtained
as the angle of attack is decreased (labelled as back-
ward sweep). Note that the flow solver is warm-started
from the previous solution during an angle-of-attack
sweep.

The results presented in Figure 3 for case B demon-
strate the typical difficulties encountered in optimiza-
tion problems that consider only a single operating
condition. Studies by Drela,29 Li et al.,30 and Huyse et
al.31 reveal similar difficulties in the design of airfoils
for transonic flow conditions. For the present prob-
lem, we seek a compromise between the improvement
in maximum lift, i.e. case B, and the well-behaved
lift curve that was obtained for case A. Consequently,
the following two-point optimization problem is con-
sidered:

Case C Weighted sum of cases A and B.

The objective function is given by Eq. 5, where the
weights w1 and w2 are set to 0.125 and 0.875, re-
spectively. Weight w1 is associated with the objective
based on case A, while w2 is associated with the ob-
jective based on case B. The selection of these weights
required a few trial optimizations. It is important to
note that only the flap translation design variables are
used for the first design condition, while the angle of
attack and the flap translation design variables are
used for the second design condition.

For case C, the optimization converges to gap and
overlap distances of 1.87%c and 1.29%c, respectively,

Design Iterations
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Fig. 6 Optimization convergence history for case C

in 26 design iterations. The gradient is reduced by 3.5
orders of magnitude, as shown in Fig. 6. Since this is a
two-point optimization problem, each design iteration
corresponds to two flow and gradient evaluations. Fig-
ure 7 shows the lift curve for the optimal configuration.
The maximum lift coefficient is increased by 0.8% over
the initial configuration. Furthermore, the undesirable
behaviour of the lift coefficient shown in Figure 3 for
case B and the initial configuration is eliminated, re-
sulting in a smooth lift curve and a significantly higher
lift coefficient throughout the angle-of-attack range.
Pressure distributions for the initial and case C con-
figurations at low, moderate, and high angles of attack
are shown in Fig. 9. The region of separated flow on
the flap is reduced, which results in a higher lift and
lower drag for the optimal configuration. The pitching
moment for the optimal configuration is moderately in-
creased due to the aft movement of the flap, as shown
in Fig. 8; however, the variation in the moment co-
efficient is reduced due to the smoother lift curve.

Conclusions

The results demonstrate that gradient-based meth-
ods can provide an effective strategy for high-lift de-
sign problems. Key reasons for the effectiveness of
the present Newton–Krylov algorithm are the use of
a warm-start procedure for the flow solver, where the
design-variable updates are progressively reduced to
ensure convergence near stall conditions, and a care-
ful formulation of the objective function that includes
multiple operating conditions. Future work should
concentrate on the assessment of the physical models,
including the treatment of laminar-turbulent transi-
tion, in order to establish the validity of the optimal
designs.
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