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Abstract We analyze the stability and functional superconvergence of discretizations of di↵usion
problems with the narrow-stencil second-derivative generalized summation-by-parts (SBP) operators
coupled with simultaneous approximation terms (SATs). Provided that the primal and adjoint so-
lutions are su�ciently smooth and the SBP-SAT discretization is primal and adjoint consistent, we
show that linear functionals associated with the steady di↵usion problem superconverge at a rate of
2p when a degree p+1 narrow-stencil or a degree p wide-stencil generalized SBP operator is used for
the spatial discretization. Su�cient conditions for stability of adjoint consistent discretizations with
the narrow-stencil generalized SBP operators are presented. The stability analysis assumes nullspace
consistency of the second-derivative operator and the invertibility of the matrix approximating the
first derivative at the element boundaries. The theoretical results are verified by numerical experi-
ments with the one-dimensional Poisson problem.
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1 Introduction

It has been observed in many cases that compared to wide-stencil1 summation-by-parts (SBP) opera-
tors, explicitly formed narrow-stencil2 second-derivative SBP operators provide smaller solution error,
superior solution convergence rates, compact stencil width, and better damping of high frequency
modes [30,31,27,12,13]. As with the wide-stencil operators, narrow-stencil second-derivative oper-
ators are coupled by simultaneous approximation terms (SATs) [6]. However, the SAT coe�cients
derived for wide-stencil SBP operators must be modified for implementations with narrow-stencil
SBP operators to achieve stability and adjoint consistency simultaneously. Unfortunately, the analy-
sis required to find such SAT coe�cients for narrow-stencil SBP operators is more involved, e.g., see
[13].

Hicken and Zingg [22] showed that adjoint consistent SBP-SAT discretizations of linear elliptic
partial di↵erential equations (PDEs) lead to functional superconvergence (see also [5,24,20]). In
their study, they analyzed discretizations with wide-stencil second-derivative classical SBP (CSBP)
operators by posing second-order linear PDEs as a system of first-order equations and determined
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the conditions that the SATs must satisfy for adjoint consistency and functional superconvergence.
A similar analysis is conducted in [37] for multidimensional SBP operators, but without posing the
second-order linear PDEs as a system of first-order equations. The latter approach enables analysis
of functional accuracy of adjoint consistent discretizations of di↵usion problems with narrow-stencil
SBP operators. While the stability of discretizations arising from narrow-stencil second-derivative
operators is well-studied (e.g., see [7,31,27,16,29,28]), it is only recently (see, e.g., [13,14]) that
conditions for which such discretizations satisfy both stability and adjoint consistency requirements
are presented. Eriksson [13], used the eigendecomposition technique to find the conditions on the
SAT coe�cients that enable construction of stable and adjoint consistent discretizations of di↵usion
problems. In a subsequent paper [14], Eriksson and Nordström used a variant of the approach in
[13] to find a more general set of SAT coe�cients. Although these SAT coe�cients lead to adjoint
consistent and stable discretizations, the analysis in [14] assumes positive definiteness of a component
matrix of the discrete second derivative operator (i.e., M

k

in (2.4)). However, this condition is not
satisfied by many narrow-stencil second-derivative operators in the literature, including those in
[30,29,27,12,28]. Furthermore, it is not straightforward how the theory extends to narrow-stencil
generalized SBP operators which have one or more of the following characteristics: exclusion of one
or both boundary nodes, non-repeating interior point operators, and non-uniform nodal distribution
[12]. For a discussion on generalized SBP operators and a comparison of some of their properties with
corresponding properties of classical SBP operators, we refer the reader to [10,12].

The first objective of this paper is to establish the conditions required for the stability of adjoint
consistent SBP-SAT discretizations of di↵usion problems with the generalized narrow-stencil second-
derivative SBP operators. We use the “borrowing trick”[7] in the energy stability analysis which
directly applies to the diagonal- and block-norm3 narrow-stencil second-derivative SBP operators in
[30,29,27,28] and to the generalized SBP operators of Del Rey Fernández and Zingg [12] upon minor
modifications of the derivative operators at element boundaries. The second objective is to show that
primal and adjoint consistent discretizations lead to functional convergence rates of 2p when a degree
p + 1 narrow-stencil or a degree p wide-stencil diagonal-norm second-derivative generalized SBP
operator is used to discretize steady di↵usion problems for which the primal and adjoint solutions are
su�ciently smooth. We also show that the functional converges at a rate of 2p irrespective of whether
or not the scheme is adjoint consistent when a degree 2p � 1 dense-norm wide- or narrow-stencil
second-derivative SBP operator is used to discretize the spatial derivatives. Finally, we specialize
the generalized form of the SATs given in [38,37] for one-dimensional implementation and provide
penalty coe�cients corresponding to a few known types of SAT such that they lead to consistent,
adjoint consistent, conservative, and stable discretizations when coupled with the narrow-stencil
second-derivative generalized SBP operators.

The paper is organized as follows. Section 2 presents the notation and some important definitions.
In Section 3, we state the model problem and its SBP-SAT discretization. The main theoretical results
that establish the functional superconvergence and energy stability of the SBP-SAT discretizations
are presented in Section 4. The theoretical results are verified using the steady version of the model
problem, the Poisson equation, in Section 5 and concluding remarks are presented in Section 6.

2 Preliminaries

We closely follow the notation used in [12,10,38,37]. A one-dimensional compact domain is consid-
ered, and it is tessellated into n

e

non-overlapping elements, T
h

:= {{⌦
k

}ne
k=1 : ⌦ = [ne

k=1⌦k

}. The
boundaries of each element will be referred to as interfaces, and we denote their union by �

k

:= @⌦

k

.
The set of all interior interfaces is denoted by � I := {�

k

\ �
v

: k, v = 1, . . . , n
e

, k 6= v}, while the
element interfaces for which Dirichlet and Neumann boundary conditions are enforced are in the sets
�

D and �

N , respectively, and � := �

I [ �

D [ �

N . Operators associated with the left and right
interfaces of ⌦

k

bear the subscripts ` and r, respectively, and the left and right most elements are in-
dicated by the subscripts L and R, respectively, e.g., D

`L

is a derivative operator at the left interface
of the left most element. The set of n

p

volume nodes in element ⌦
k

is represented by x

k

= {x
i

}np

i=1.

Uppercase script type, e.g., U
k

2 C1(⌦
k

), is used for continuous functions, and Pp(⌦̂) denotes the
space of polynomials up to total degree p, which has a cardinality of n⇤

p

= p + 1. Bold letters, e.g.,
u

k

2 Rnp , delineate the restriction of U
k

to grid points x

k

, while solution vectors to the discrete
systems of equations have subscript h, e.g., u

h,k

2 Rnp . For the purpose of the functional convergence
analysis in Section 4.3, we define h := max

a,b2xk |a�b| as the size of an element. Matrices are denoted
by sans-serif uppercase letters, e.g., V 2 Rnp⇥np ; 1 denotes a vector consisting of all ones, 0 denotes
a vector or matrix consisting of all zeros. The sizes of 1 and 0 should be clear from context.

3 Also referred to as full-norm matrix.
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Definitions of the first- and second-derivative SBP operators presented in [12] are stated below.
For the construction of narrow-stencil second-derivative SBP operators, we refer the reader to [10,
12,27,28]. D

k

p = @

@P x D
k

p = @P
@x

Definition 2.1 (Generalized first-derivative SBP operator) The matrix D
k

2 Rnp⇥np is a
degree p SBP operator approximating the first derivative @

@x

on the set of nodes x

k

, which need
neither be uniform nor include nodes on the boundaries and may have nodes outside the domain of
element ⌦

k

, if [12]

1. D
k

p = @P
@x

for all P 2 Pp(⌦
k

)

2. D
k

= H�1
k

Q
k

, where H
k

is a symmetric positive definite (SPD) matrix, and
3. Q

k

= S
k

+ 1
2Ek

, where S
k

= �ST

k

, E
k

= ET

k

, and E
k

satisfies pTE
k

q =
P

�2�k
[P]

�

[Q]
�

n

�k

for all
P,Q 2 P⌧ (⌦

k

), where ⌧ � p, and n

�k

= 1 if � is the right interface of ⌦
k

, otherwise n

�k

= �1.

The norm matrix, H
k

, may be diagonal or dense. A dense-norm matrix refers to any norm matrix
that is not diagonal, which includes the block-norm matrix. The block-norm matrix has diagonal
entries at the interior points (containing h) and dense blocks at the top-left and bottom-right corners
corresponding to the boundary nodes. The L2 inner product of two functions P andQ is approximated
by [23,10,21,11]

p

TH
k

q =

Z

⌦k

PQ d⌦ +O
⇣

h

2p
⌘

,

and H
k

defines the norm

u

TH
k

u = kuk2H =

Z

⌦k

U2 d⌦ +O
⇣

h

2p
⌘

.

The E
k

matrix is constructed as [10,11]

E
k

=
X

�⇢�k

n

�k

RT

�k

R
�k

= RT

rk

R
rk

� RT

`k

R
`k

, (2.1)

where R
�k

is an extrapolation row vector of at least order h

⌧+1 accuracy, i.e., R
�k

u

k

= [U
k

]
�

+
O(h�⌧+1). Furthermore, we define an operator that extrapolates the product of the di↵usion coe�-
cient and the derivative of the solution from volume nodes to an interface as

D
�k

:= n

�k

R
�k

⇤

k

D
b,k

. (2.2)

Definition 2.2 (Order-matched narrow-stencil second-derivative generalized SBP op-

erator) The narrow-stencil second-derivative operator D
(2)
k

(⇤) of degree p + 1, approximating
@

@x

(�
k

@Uk
@x

), is order-matched with the first-derivative operator D
k

= H�1
k

Q
k

of degree p on the
nodal set x

k

if [12]

D
(2)
k

(⇤)p
k

=
@

@x

✓

�

k

@P
k

@x

◆

, 8 (�
k

P
k

) 2 Pp+1(⌦
k

), (2.3)

and D
(2)
k

(⇤) is of the form

D
(2)
k

(⇤) = H�1
k

[�M
k

+ E
k

⇤

k

D
b,k

], (2.4)

where M
k

=
P

np

i=1 ⇤k

(i, i)M̄
i

, M̄
i

are symmetric positive semidefinite matrices,

⇤

k

= diag(�
k

(x1),�
k

(x2), ...,�
k

(x
np)),

and D
b,k

is an approximation to the first derivative of degree and order � p+ 1.

The order-matched SBP operators in Definition 2.2 are assumed to have a diagonal-norm matrix.
Note that for the m

th derivative, the degree and order are related by order = degree � m + 1;

consequently, both the diagonal-norm narrow-stencil D(2)
k

(⇤) and D
k

operators are order p accurate,
while a diagonal-norm wide-stencil second-derivative operator, which has the decomposition

D
k

⇤

k

D
k

= H�1
k

[�DT

k

H
k

⇤

k

D
k

+ E
k

⇤

k

D
k

], (2.5)

is order p� 1 accurate [12]. Similar to the diagonal-norm SBP operators, block-norm SBP operators
have an order 2p centered-di↵erence interior operator. At the boundaries, however, the block-norm
wide- and narrow-stencil second-derivative operators are closed with order 2p� 2 one-sided stencils,
unlike the order p� 1 and p one-sided stencils used with the diagonal-norm wide- and narrow-stencil
SBP operators, respectively. Furthermore, the D

b,k

matrix of a block-norm operator contains order
2p� 1 approximations of the first derivative at rows corresponding to the boundary nodes (see, e.g.,
[28,30] for definition and discussion regarding the block-norm SBP operators).
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Remark 2.1 In this work, we do not assume that M
k

is necessarily symmetric positive semidefinite;
rather we assume that M

k

+ MT

k

is symmetric positive semidefinite, which allows the analysis to
be extended to a more general class of explicitly formed second-derivative operators, including the
block-norm SBP operators in [28,30], which do not have symmetric M

k

matrix.

Another decomposition of second-derivative SBP operators, which is instrumental for the adjoint
consistency and functional superconvergence analyses in Section 4, is presented below.

Proposition 2.1 A second-derivative operator of the form (2.4), for which M
k

is not necessarily
symmetric, can be written as

D
(2)
k

(⇤) = H�1
k

⇣

D
(2)
k

(⇤)
⌘

T

H
k

� H�1
k

DT

rk

R
rk

� H�1
k

DT

`k

R
`k

+ H�1
k

RT

rk

D
rk

+ H�1
k

RT

`k

D
`k

� H�1
k

⇣

M
k

�MT

k

⌘

.

(2.6)

Proof The proof is given in Appendix A.

3 Model Problem and SBP-SAT Discretization

We consider the one-dimensional di↵usion problem

@U
@t

� @

@x

✓

�

@U
@x

◆

= F 8x 2 ⌦, U = U0 at t = 0,

U|
�

D = U
D

,

n

�

✓

�

@U
@x

◆

�

�

�

�

�

N

= U
N

,

(3.1)

where F 2 L

2(⌦), � = �(x) is a positive di↵usivity coe�cient, and �D is not empty. For functional
error analysis and numerical experiment purposes, we consider the steady version of (3.1), the Poisson
problem. We also consider a compatible linear functional of the form

I(U) =
Z

⌦

GU d⌦ �  

D



�

@U
@x

n

�

�

�

D

+  

N

U|
�

N , (3.2)

where G 2 L

2(⌦),  
N

= n

�

(�@ 
@x

) 2 L

2(�N ), and  
D

2 L

2(�D). A linear functional is compatible
with the steady version of (3.1) if [18]

Z

⌦

 

@

@x

✓

�

@U
@x

◆

d⌦ + U
D



�

@ 

@x

n

�

�

�

D

� U
N

 |
�

N

=

Z

⌦

U @

@x

✓

�

@ 

@x

◆

d⌦ +  

D



�

@U
@x

n

�

�

�

D

�  

N

U|
�

N ,

(3.3)

i.e.,

I (U) = I ( ) =

Z

⌦

 Fd⌦ � U
D



�

@ 

@x

n

�

�

�

D

+ U
N

 |
�

N . (3.4)

Under the compatibility condition on the functional, the adjoint,  , satisfies the PDE (see, e.g., [22,
38,18])

� @

@x

✓

�

@ 

@x

◆

= G 8x 2 ⌦,  |
�

D =  

D

, n

�

✓

�

@ 

@x

◆

�

�

�

�

�

N

=  

N

. (3.5)

The SBP-SAT semi-discretization of the di↵usion problem, (3.1), is given by

du
h,k

dt
= D

(2)
k

(⇤)u
h,k

+ f

k

� H�1
k

s

I

k

(u
h,k

)� H�1
k

s

B

k

(u
h,k

, u

D

, u

N

) =: R
h,u

, (3.6)

where f

k

is the restriction of F to the volume nodes in ⌦
k

and the interface SATs, sI
k

, and boundary
SATs, sB

k

, given in [38,37] are specialized for one-dimensional implementation as

s

I

k

(u
h,k

) =
X

�⇢� I
k

⇥

RT

�k

DT

�k

⇤

"

T
(1)
�k

T
(3)
�k

T
(2)
�k

T
(4)
�k

#



R
�k

u

h,k

� R
�v

u

h,v

D
�k

u

h,k

+ D
�v

u

h,v

�

(3.7)
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and

s

B

k

(u
h,k

,u

D

,u

N

) =

(

⇥

RT

�k

DT

�k

⇤

"

T
(D)
�k

�1

#

(R
�k

u

h,k

� u

D

)

)

�⇢�D

+
n

RT

�k

(D
�k

u

h,k

� u

N

)
o

�⇢�N
.

(3.8)

The SAT coe�cients T
(1)
�k

,T
(2)
�k

,T
(3)
�k

,T
(4)
�k

,T
(D)
�k

2 R are determined such that the scheme satisfies
desired properties such as conservation, adjoint consistency, and energy stability. For implementations

with wide-stencil operators, we replace D
(2)
k

(⇤) by D
k

⇤

k

D
k

in (3.6) and D
b,k

by D
k

in (2.2).
Substituting the restriction of a su�ciently smooth solution to grid points, u

k

, into (3.6) to (3.8),
we see that the right-hand side (RHS) of (3.6) yields a discretization error of O(hp) when an order-
matched narrow-stencil second-derivative SBP operator is used; hence, the discretization of the primal
problem is consistent. In contrast, for diagonal-norm wide-stencil SBP operators, the discretization
error is O(hp�1) while for block-norm second-derivative SBP operators, it is O(h2p�2).

4 Theoretical Results

In this section, we present the two main results of this paper. After establishing the conditions re-
quired for adjoint consistency and conservation, we show that primal and adjoint consistent SBP-SAT
discretizations of the Poisson problem with the diagonal-norm narrow-stencil second-derivative oper-
ators lead to functional superconvergence. To achieve this goal, we closely follow the technique used
to show functional superconvergence in [37]. Then, we use the energy method to find su�cient con-
ditions that the SATs must satisfy for the stability of discretizations with narrow-stencil generalized
SBP operators before stating a few concrete examples of such SATs.

4.1 Adjoint Consistency

Adjoint consistency requires that the discrete adjoint problem,

X

⌦k2Th

�

L

⇤
h,k

( 
h

)� g

k

�

= 0, (4.1)

where L⇤
h,k

is the discrete adjoint operator, corresponding to the steady version of the primal problem
(3.6) satisfies

lim
h!0

X

⌦k2Th

�

�

L

⇤
h,k

( 
k

)� g

k

�

�

Hk
= 0. (4.2)

To find the discrete adjoint operator, we begin by discretizing the two forms of the functional,
(3.2) and (3.4), as

I

h

(u
h

) =
X

⌦k2Th

g

T

k

H
k

u

h,k

�  

D

D
`L

u

h,L

+  

N

R
rR

u

h,R

+  

D

T
(D)
`L

(R
`L

u

h,L

� u

D

) , (4.3)

I

h

( 
h

) =
X

⌦k2Th

f

T

k

H
k

 

h,k

� u

D

D
`L

 

h,L

+ u

N

R
rR

 

h,R

+ u

D

T
(D)
`L

(R
`L

 

h,L

�  

D

) , (4.4)

where we have assumed that the Dirichlet and Neumann boundary conditions are enforced on the left
and right boundaries, respectively. The last terms in (4.3) and (4.4) arise from consistent modifications
of the functional, see [18,22,20,38,37]. Note that in cases where a Dirichlet boundary condition
is enforced on both boundaries, we apply the Dirichlet SATs given in (3.8) on both boundaries
and modify the discrete functionals, (4.3) and (4.4), by replacing the Neumann boundary terms by
Dirichlet right boundary terms similar to those given for the left boundary. The theory developed
holds for such cases without significant modification.

To derive the conditions required for adjoint consistency, we set I
h

(u
h

)� I

h

( 
h

) = 0, which is a
discrete analogue of the relation I(U)�I( ) = 0. Adding

P

⌦k⇢Th
 

T

h,k

H
k

R

h,k

+I

h

( 
h

)�I

h

( 
h

) = 0
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to the RHS of (4.3) and rearranging we find

I

h

(u
h

) =
X

⌦k⇢Th

g

T

k

H
k

u

h,k

�  

D

D
`L

u

h,L

+  

N

R
rR

u

h,R

+  

D

T
(D)
`L

(R
`L

u

h,L

� u

D

) + u

D

D
`L

 

h,L

� u

N

R
rR

 

h,R

+
X

⌦k⇢Th

h

 

T

h,k

H
k

D
(2)
k

(⇤)u
h,k

�  T

h,k

s

I

k

(u
h,k

)�  T

h,k

s

B

k

(u
h,k

,u

D

,u

N

)
i

� u

D

T
(D)
`L

(R
`L

 

h,L

�  

D

) + I

h

( 
h

) .

(4.5)

Transposing (4.5), enforcing I

h

(u
h

)� I

h

( 
h

) = 0, applying identity (2.6), and simplifying, we obtain

X

⌦k⇢Th

⇢

u

T

h,k

H
k

⇣

D
(2)
k

(⇤) 
h,k

+ g

k

⌘

+ u

T

h,k

⇣

M
k

�MT

k

⌘

 

h,k

�

�
X

�⇢� I

2

6

6

4

R
�k

u

h,k

R
�v

u

h,v

D
�k

u

h,k

D
�v

u

h,v

3

7

7

5

T

2

6

6

6

6

4

T
(1)
�k

�T
(1)
�v

T
(2)
�k

+ 1 �T
(2)
�v

�T
(1)
�k

T
(1)
�v

�T
(2)
�k

T
(2)
�v

+ 1

T
(3)
�k

� 1 T
(3)
�v

T
(4)
�k

T
(4)
�v

T
(3)
�k

T
(3)
�v

� 1 T
(4)
�k

T
(4)
�v

3

7

7

7

7

5

2

6

6

4

R
�k

 

h,k

R
�v

 

h,v

D
�k

 

h,k

D
�v

 

h,v

3

7

7

5

� u

T

h,L

RT

`L

T
(D)
`L

(R
`L

 

h,L

�  

D

) + u

T

h,L

DT

`L

(R
`L

 

h,L

�  

D

)

� u

T

h,R

RT

rR

(D
rR

 

h,k

�  

N

) = 0,

(4.6)

from which we extract the discrete adjoint operator on element ⌦
k

as

L

⇤
h,k

( 
h

) = �D
(2)
k

(⇤) 
h,k

� H�1
k

(M
k

�MT

k

) 
h,k

+ H�1
k

(sI
k

)⇤( 
h,k

) + H�1
k

(sB
k

)⇤( 
h,k

, 

D

, 

N

),
(4.7)

where the interface and boundary SATs for the adjoint problem are given, respectively, by

⇣

s

I

k

⌘⇤
=

X

�⇢� I
k

⇥

RT

�k

DT

�k

⇤

"

T
(1)
�k

�T
(1)
�v

T
(2)
�k

+ 1 �T
(2)
�v

T
(3)
�k

� 1 T
(3)
�v

T
(4)
�k

T
(4)
�v

#

2

6

6

4

R
�k

 

h,k

R
�v

 

h,v

D
�k

 

h,k

D
�v

 

h,v

3

7

7

5

, (4.8)

⇣

s

B

k

⌘⇤
=

(

⇥

RT

�k

DT

�k

⇤

"

T
(D)
�k

�1

#

⇥

R
�k

 

h,k

�  

D

⇤

)

�⇢�D

+
n

RT

�k

(D
�k

 

h,k

�  

N

)
o

�⇢�N
.

(4.9)

Furthermore, we define the residual of the SBP-SAT discretization of the adjoint problem as

R

h, 

:= D
(2)
k

 

h,k

+ g

k

+ H�1
k

(M
k

�MT

k

) 
h,k

� H�1
k

(sI
k

)⇤( 
h,k

)� H�1
k

(sB
k

)⇤( 
h,k

, 

D

, 

N

) = 0,
(4.10)

Substituting the exact adjoint solution,  , into (4.10) and provided that  is su�ciently smooth,
we observe that R

h, 

is O(h�p�1), i.e., the discretization of the adjoint problem is consistent, if and
only if

T
(1)
�k

= T(1)
�v

, T
(2)
�k

+ 1 = �T(2)
�v

, T
(3)
�k

� 1 = �T(3)
�v

, T
(4)
�k

= T(4)
�v

, M
k

= MT

k

. (4.11)

For discretizations with wide-stencil second-derivative operators, the last condition, M
k

= MT

k

, is
satisfied by default.
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4.2 Conservation

For conservation, the homogeneous di↵usion problem (3.1), i.e., F = 0, should satisfy Gauss’s theorem
discretely, i.e.,

P

⌦k⇢Th
1TH

k

du
k

/dt must depend only on the boundary terms. Premultiplying R

h,u

defined in (3.6) by 1TH
k

, setting f

k

= 0, summing over all elements, and applying the decomposition

of D(2)
k

(⇤) given in (2.4) yields

X

⌦k⇢Th

1TH
k

R

h,u

= �
X

�⇢� I

2

6

6

4

1
1
0
0

3

7

7

5

T

2

6

6

6

4

T
(1)
�k

�T
(1)
�k

T
(3)
�k

� 1 T
(3)
�k

�T
(1)
�v

T
(1)
�v

T
(3)
�v

T
(3)
�v

� 1

T
(2)
�k

�T
(2)
�k

T
(4)
�k

T
(4)
�k

�T
(2)
�v

T
(2)
�v

T
(4)
�v

T
(4)
�v

3

7

7

7

5

2

6

6

4

R
�k

u

h,k

R
�v

u

h,v

D
�k

u

h,k

D
�v

u

h,v

3

7

7

5

�
X

⌦k⇢Th

1TM
k

u

h,k

�
(



1
0

�

T



TD

�

�1
�1 0

� 

R
�k

u

k

� u

D

D
�k

u

k

�

)

�⇢�D

+ u

N

,

(4.12)

which reduces to a sum of boundary terms only,

X

⌦k⇢Th

1TH
k

R

h,u

=
n

D
�k

u

k

� TD

�

(R
�k

u

k

� u

D

)
o

�⇢�D
+ u

N

, (4.13)

as required for conservation of the discretization if

T
(1)
�k

= T(1)
�v

, T
(3)
�k

� 1 = �T(3)
�v

, 1TM
k

= 0. (4.14)

Comparing (4.14) and (4.11) and noting that M
k

1 = 0, we see that adjoint consistency implies
conservation, as noted in [2,19,37].

4.3 Functional Superconvergence

Without loss of generality, we assume that the domain is tessellated using two elements, ⌦
L

and ⌦
R

.
In the subsequent analysis, we will use the vectors u, u

h

,  ,  
h

, f , g, E(u
h

), F( 
h

) 2 R2np given
by

u

h

=



u

h,L

u

h,R

�

,  

h

=



 

h,L

 

h,R

�

, u =



u

L

u

R

�

,

 =



 

L

 

R

�

, f =



f

L

f

R

�

, g =



g

L

g

R

�

,

(4.15)

E (u
h

) =

"

⇣

RT

`L

T
(D)
`L

� DT

`L

⌘

(R
`L

u

h,L

� u

D

)

RT

rR

(D
rR

u

h,R

� u

N

)

#

,

F ( 
h

) =

"

⇣

RT

`L

T
(D)
`L

� DT

`L

⌘

(R
`L

 

h,L

�  

D

)

RT

rR

(D
rR

 

h,R

�  

N

)

#

,

(4.16)

and the matrices A,B,H,D(2)
,M 2 R2np⇥2np with block entries

A11 =



R
rL

D
rL

�

T

"

T
(1)
rL

T
(3)
rL

T
(2)
rL

T
(4)
rL

#



R
rL

D
rL

�

, B11 =



R
rL

D
rL

�

T

"

T
(1)
rL

T
(2)
rL

+ 1

T
(3)
rL

� 1 T
(4)
rL

#



R
rL

D
rL

�

,

A12 =



R
rL

D
rL

�

T

"

T
(1)
rL

T
(3)
rL

T
(2)
rL

T
(4)
rL

#

�R
`R

D
`R

�

, B12 =



R
rL

D
rL

�

T

"

T
(1)
rL

T
(2)
rL

+ 1

T
(3)
rL

� 1 T
(4)
rL

#

�R
`R

D
`R

�

,

A21 =



R
`R

D
`R

�

T

"

T
(1)
`R

T
(3)
`R

T
(2)
`R

T
(4)
`R

#

�R
rL

D
rL

�

, B21 =



R
`R

D
`R

�

T

"

T
(1)
`R

T
(2)
`R

+ 1

T
(3)
`R

� 1 T
(4)
`R

#

�R
rL

D
rL

�

,

A22 =



R
`R

D
`R

�

T

"

T
(1)
`R

T
(3)
`R

T
(2)
`R

T
(4)
`R

#



R
`R

D
`R

�

, B22 =



R
`R

D
`R

�

T

"

T
(1)
`R

T
(2)
`R

+ 1

T
(3)
`R

� 1 T
(4)
`R

#



R
`R

D
`R

�

,

H =



H
L

H
R

�

, D(2) =

"

D
(2)
L

(⇤)

D
(2)
R

(⇤)

#

,

M =



M
L

�MT

L

M
R

�MT

R

�

.

(4.17)
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Note that for adjoint consistent schemes, it can be shown, using (4.11), that

AT

12 = B21, and AT

21 = B12. (4.18)

The discrete residuals corresponding to the steady version of (3.1) and the adjoint problem (3.5) can
now be written, respectively, as

R

h,u

(u
h

) = �D(2)
u

h

� f +H�1Au
h

+H�1E (u
h

) = 0, (4.19)

R

h, 

( 
h

) = �D(2)
 

h

� g +H�1B 
h

+H�1F ( 
h

)�H�1M 
h

= 0. (4.20)

Before stating the main result, we present an assumption regarding the primal and adjoint solution
accuracy.

Assumption 1 We assume that unique numerical solutions for the steady version of the discrete pri-
mal equation (3.6) and the discrete adjoint problem (4.10) exist, and these solutions are at least order
h

p+1 accurate in the maximum norm, i.e., ku� u

h

k1 = O(h�p+1) and k �  
h

k1 = O(h�p+1).

Assumption 1 is not necessary if pointwise stability of the SBP-SAT discretization for the di↵usion
problem can be demonstrated, see [17,35,36,20,22,9]. Numerical experiments with adjoint consistent
discretizations show primal and adjoint solution convergence rates of p+1 when a degree p diagonal-
norm wide-stencil second-derivative SBP operator is used. In contrast, primal and adjoint solution
convergence rates of p + 2 are observed when a degree p + 1 order-matched narrow-stencil second-
derivative SBP operator is used with adjoint consistent SATs. The block-norm wide- and narrow-
stencil second-derivative operators, on the other hand, exhibit primal solution convergence rates of
2p.

We present the order of accuracy of the discrete functional approximating I(U) = I( ) in the
following theorem.

Theorem 4.1 Let the primal solution of the steady version of (3.1) and the adjoint solution of (3.5)
be U , 2 C2p+2(⌦), respectively, the variable coe�cient in (3.1) and (3.5) be � 2 C2p+1(⌦), and
the source terms in (3.1) and (3.5) be F ,G 2 C2p(⌦), respectively. If u

h

, 

h

2 Rnenp are solutions
to consistent discretizations of the steady version of (3.1) and (3.5), respectively, and Assumption 1
holds, then the discrete functionals (4.3) and (4.4) are order h

2p accurate approximations to the
compatible linear functional I(U) = I( ) given by (3.2) and (3.4), i.e.,

I(U)� I

h

(u
h

) = O
⇣

h

2p
⌘

, (4.21)

I( )� I

h

( 
h

) = O
⇣

h

2p
⌘

. (4.22)

Proof The proof can be found in Appendix B.

Remark 4.1 For implementations with the block-norm wide- or narrow-stencil second-derivative SBP
operators of the type presented in [28], the estimate in (4.21) is attained even for adjoint inconsistent
schemes. Note that for these types of operator, we have ku

h,k

� u

k

k1 = O(h2p) in (B.6). The block-

norm narrow-stencil operators have M
k

6= MT

k

; hence, they lead to adjoint inconsistent schemes even
when coupled with adjoint consistent SATs.

4.4 Stability Analysis

We use the energy method to analyze the stability of the SBP-SAT discretization of (3.1). The
residual of the discretization for the homogeneous version of the problem, i.e., F = 0, U

D

= 0, and
U
N

= 0, summed over all elements can be written as

R

h

(u
h

, v) = �
X

⌦k2Th

v

T

k

M
k

u

h,k

�
X

�⇢�D



R
�k

v

k

D
�k

v

k

�

T

"

T
(D)
�k

�1
�1 0

#



R
�k

u

h,k

D
�k

u

h,k

�

�
X

�⇢� I

2

6

6

4

R
�k

v

k

R
�v

v

v

D
�k

v

k

D
�v

v

v

3

7

7

5

T

2

6

6

6

4

T
(1)
�k

�T
(1)
�k

T
(3)
�k

� 1 T
(3)
�k

�T
(1)
�v

T
(1)
�v

T
(3)
�v

T
(3)
�v

� 1

T
(2)
�k

�T
(2)
�k

T
(4)
�k

T
(4)
�k

�T
(2)
�v

T
(2)
�v

T
(4)
�v

T
(4)
�v

3

7

7

7

5

2

6

6

4

R
�k

u

h,k

R
�v

u

h,v

D
�k

u

h,k

D
�v

u

h,v

3

7

7

5

(4.23)

for v 2 Rnenp . In [38,37], a factorization of M
k

for wide-stencil operators allowed the use of the
borrowing trick and enabled R

h

(u
h

, v) to be written in terms of interface contributions only. However,
the same factorization cannot be applied for narrow-stencil operators because D

�k

is constructed using
a modified derivative operator at the element boundaries, D

b,k

, instead of D
k

. To circumvent this,
we make the following assumption.
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Assumption 2 The D
b,k

matrix is invertible or can be modified such that it is invertible.

The invertibility requirement on D
b,k

is not too restrictive. In fact, all the narrow-stencil second-
derivative operators in [30,29,27,28] either have invertible D

b,k

matrix or their D
b,k

matrix can be
modified such that it is invertible. For operators that include nodes at element boundaries, the only
requirement for D

b,k

to be invertible is that its interior diagonal entries are nonzero, e.g., D
b,k

can
be constructed from the identity matrix by modifying the first and last rows such that these rows
approximate the first derivative to degree � p + 1. The invertibility of D

b,k

matrix constructed in
this manner can be verified using Gershgorin’s theorem. Note that all the eigenvalues of D

b,k

are
nonzero as all other entries of either the row or column corresponding to each diagonal element is
zero. For generalized narrow-stencil second-derivative operators with nodes at element boundaries,
e.g., the hybrid Gauss-trapezoidal-Lobatto (HGTL) operators in [12], a similar modification can be
applied to obtain an invertible D

b,k

matrix. In contrast, all except the degree two hybrid Gauss-
trapezoidal (HGT) operators in [12], which do not include boundary nodes, do not yield an invertible
D

b,k

matrix even after applying the modification discussed. However, it is likely possible to construct
HGT operators such that D

b,k

is invertible by enforcing a condition on the free variables during the
construction of the operators. The structures of the invertible D

b,k

matrices of the degree two CSBP
and HGT operators are,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

⇥ ⇥ ⇥ ⇥
1

1

. . .

1
1

⇥ ⇥ ⇥ ⇥

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥

1
. . .

1
⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

respectively, where each row containing ⇥ in its entries approximate the first derivative.
Another important assumption that is required in the subsequent energy stability analysis for

adjoint consistent discretizations with narrow-stencil second-derivative operators is presented below.

Assumption 3 The first and second-derivative SBP operators, D
k

and D
(2)
k

, are nullspace consistent,

i.e., the nonzero vectors in the nullspace of D
k

and D
(2)
k

are N (D
k

) = span{1} =: v
c

and N (D(2)
k

) =
span{1,x

k

}, respectively.
It should be noted that consistency of an SBP operator does not necessarily imply nullspace consis-
tency and vice versa. The operators defined in Definitions 2.1 and 2.2 are consistent because they
satisfy the accuracy conditions, i.e., they di↵erentiate polynomials up to a required degree exactly

[36]. In contrast, nullspace consistency requires that the nullspaces of D
k

and D
(2)
k

(⇤) exclusively
contain vectors in span{1} and span{1,x

k

}, respectively. SBP derivative operators are consistent by
construction, and most of them are nullspace consistent as well [36].

Using Assumption 2 and enforcing the conditions necessary for conservation, (4.14), we can now
write the sum of the residual and its transpose as

2R
h

(u
h

,u

h

) = R

h

(u
h

,u

h

) +R

T

h

(u
h

,u

h

) =

�
X

�⇢� I

2

6

6

4

R
�k

u

h,k

R
�v

u

h,v

D
b,k

u

h,k

D
b,v

u

h,v

3

7

7

5

T

2

6

6

6

4

2T(1)
�k

�2T(1)
�k

�

k

C
�k

��
v

C
�v

�2T(1)
�k

2T(1)
�v

��
k

C
�k

�

v

C
�v

�

k

CT

�k

��
k

CT

�k

↵

�k

V
k

0

��
v

CT

�v

�

v

CT

�v

0 ↵

�v

V
v

3

7

7

7

5

2

6

6

4

R
�k

u

h,k

R
�v

u

h,v

D
b,k

u

h,k

D
b,v

u

h,v

3

7

7

5

�
X

�⇢� I



D
�k

u

h,k

D
�v

u

h,v

�

T

"

2T(4)
�k

2T(4)
�k

2T(4)
�k

2T(4)
�

#



D
�k

u

h,k

D
�v

u

h,v

�

�
X

�⇢�D



R
�k

u

h,k

D
b,k

u

h,k

�

T

"

2T(D)
�k

�2C
�k

�2CT

�k

↵

�k

V
k

#



R
�k

u

h,k

D
b,k

u

h,k

�

,

(4.24)

where C
�k

= n

�k

R
�k

⇤

k

, C
�v

= n

�v

R
�v

⇤

v

, �
k

= T
(2)
�k

+ T
(3)
�k

� 1, �
v

= T
(2)
�v

+ T
(3)
�v

� 1, ↵
�k

is a
positive interface weight factor satisfying the relation

P

�2�k
↵

�k

= 1, and

V
k

= D�T

b,k

(M
k

+MT

k

)D�1
b,k

, V
v

= D�T

b,v

(M
v

+MT

v

)D�1
b,v

. (4.25)



10 Z. Worku, D.W. Zingg

We note that V
k

is positive semidefinite since v

T (M
k

+MT

k

)v � 0 for all v 2 Rnp implies

(D�1
b,k

v)T (M
k

+MT

k

)(D�1
b,k

v) � 0. (4.26)

Moreover, we have
D

b,k

v

c

= v0, or D�1
b,k

v0 = v

c

, (4.27)

where v0 represents vectors containing zero at the entries corresponding to the rows for which D
b,k

contains consistent approximations of the first derivative and the values of v
c

at all other entries.
For diagonal-norm narrow-stencil SBP operators that are constructed as in [30,29,27,12,28], we

can determine the vectors in the nullspace of V
k

using Assumptions 2 and 3.

Lemma 4.1 Consider a consistent diagonal-norm narrow-stencil second-derivative SBP operator of
the form (2.4) for which M

k

= MT

k

, the E
k

matrix is constructed such that it has nonzero rows only
at row indices where the D

b,k

matrix contains consistent approximations of the first derivative, the

D
(2)
k

(⇤) matrix has larger dense blocks at the top left and bottom right corners than the E
k

matrix,
and Assumptions 2 and 3 hold. Then, we have N (M

k

) = v

c

and N (V
k

) = N (V
v

) = v0.

Proof The proof is given in Appendix C.

In [14], the stability conditions that the SATs must satisfy were derived for diagonal-norm narrow-
stencil SBP operators assuming that M

k

is SPD; however, most operators in the literature, e.g., [30,
29,27,12,28], do not satisfy this requirement. For dense-norm narrow-stencil second-derivative SBP
operators, we make the following assumption regarding the nullspaces of M

k

and MT

k

:

Assumption 4 For dense-norm narrow-stencil SBP operators, v

c

is the only nontrivial vector in
the nullspaces of M

k

and MT

k

, i.e., N (M
k

) = N (MT

k

) = v

c

.

Under Assumption 4, (C.5) gives N (V
k

) = N (V
v

) = v0 for dense-norm narrow-stencil SBP operators.
Before proceeding with the energy analysis of the SBP-SAT discretization, we state an essential
theorem, which is proved in [1,15].

Theorem 4.2 A symmetric matrix of the form Y =
⇥ Y11 Y12

YT
12 Y22

⇤

is positive semidefinite if and only if

Y22 ⌫ 0, (I� Y22Y
+
22)Y

T

12 = 0, and Y11 � Y12Y
+
22Y

T

12 ⌫ 0, (4.28)

where Y+ denotes the Moore-Penrose pseudoinverse of Y and Y ⌫ 0 indicates that Y is positive
semidefinite.

An SBP-SAT discretization is energy stable if

d
dt

⇣

ku
h

k2H
⌘

= u

T

h

H
du

h

dt
+

duT

h

dt
Hu

h

= 2R
h

(u
h

,u

h

)  0. (4.29)

The sum of the residual and its transpose for conservative schemes, 2R
h

(u
h

,u

h

), given in (4.24)
satisfies the energy stability condition if

A :=



A11 A12

A21 A22

�

=

2

6

6

6

4

2T(1)
�k

�2T(1)
�k

�

k

C
�k

��
v

C
�v

�2T(1)
�k

2T(1)
�v

��
k

C
�k

�

v

C
�v

�

k

CT

�k

��
k

CT

�k

↵

�k

V
k

0

��
v

CT

�v

�

v

CT

�v

0 ↵

�v

V
v

3

7

7

7

5

,

"

2T(4)
�k

2T(4)
�k

2T(4)
�k

2T(4)
�

#

, and

"

2T(D)
�k

�2C
�k

�2CT

�k

↵

�k

V
k

#

(4.30)

are positive semidefinite. We partition the matrix A 2 R(2+2np)⇥(2+2np) using four blocks, namely
A11 2 R2⇥2, A12 2 R2⇥2np , A21 2 R2np⇥2, and A22 2 R2np⇥2np .

For adjoint consistent SATs, we enforce all the conditions in (4.11). Furthermore, we require that

T
(3)
�k

� T
(2)
�k

= 1, as in [38], which is a condition satisfied by the SATs corresponding to some of
the popular discontinuous Galerkin fluxes for elliptic PDEs [37], e.g., the modified method of Bassi
and Rebay (BR2) [3], local discontinuous Galerkin (LDG) [34], and compact discontinuous Galerkin
(CDG) [32] methods. With this condition in place, the components of the A matrix for adjoint
consistent schemes become

A11 =

"

2T(1)
�k

�2T(1)
�k

�2T(1)
�k

2T(1)
�v

#

, A12 =

"

2T(2)
�k

C
�k

�2T(2)
�v

C
�v

�2T(2)
�k

C
�k

2T(2)
�v

C
�v

#

,

A21 =

"

2T(2)
�k

CT

�k

�2T(2)
�k

CT

�k

�2T(2)
�v

CT

�v

2T(2)
�v

CT

�v

#

, A22 =



↵

�k

V
k

0
0 ↵

�v

V
v

�

.

(4.31)
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Theorem 4.3 Let Assumptions 2 to 4 hold, then an adjoint consistent SBP-SAT discretization of

the di↵usion problem with coe�cients satisfying T
(3)
�k

� T
(2)
�k

= 1, and uses a narrow-stencil second-
derivative operator of the form (2.4) for the spatial discretization is energy stable if

T
(1)
�k

� 2
↵

�k

T
(2)
�k

R
�k

⇤

k

V+
k

⇤

k

RT

�k

T
(2)
�k

+
2
↵

�v

T(2)
�v

R
�v

⇤

v

V+
v

⇤

v

RT

�v

T(2)
�v

, (4.32)

T
(D)
�k

� 2
↵

�k

R
�k

⇤

k

V+
k

⇤

k

RT

�k

, (4.33)

T
(4)
�k

� 0. (4.34)

Proof The proof is given in Appendix D.

Remark 4.2 In practice, the pseudoinverse V+
k

for a given SBP operator is computed once and for all
on the reference element. It is then scaled by the inverse of the metric Jacobian when the operator is
mapped to the physical elements. In Table 1 of [13], equivalent values of 2R

�k

V+
k

RT

�k

, denoted by q and
scaled by the mesh spacing, are tabulated for the constant-coe�cient diagonal-norm narrow-stencil
SBP operators presented in [30]. The scaling used can be written as h = 1/[(n

e

n

p

� 1) � (n
e

� 1)],

and 2V+
k

= (D�T

b,k

M
k

D�1
b,k

)+ for operators with M
k

= MT

k

is computed as D
b,k

( eM
k

)�1DT

b,k

, where eM
k

is obtained by perturbing M
k

such that the corner values of D
b,k

( eM
k

)�1DT

b,k

are independent of the

perturbation. The di↵erence in the values of qh and 2hR
�k

V+
k

RT

�k

lies in the approaches pursued to

evaluate 2V+
k

.

Remark 4.3 For stability of discretizations with wide-stencil second-derivative operators, the terms
V+
k

and V+
v

in Theorem 4.3 are replaced by (H
k

⇤

k

+ ⇤

k

H
k

)�1 and (H
v

⇤

v

+ ⇤

v

H
v

)�1, respectively.

4.5 Interface SATs

In this section, we present a few concrete examples of SATs for di↵usion problems. The type of SAT
used in the discretization a↵ects several numerical properties such as accuracy, stability, conditioning,
symmetry, and sparsity. However, we do not analyze many of these properties; rather we limit our
focus to aspects of solution and functional convergence. With this in mind, we introduce four SATs,
of which two are stable and adjoint consistent while the other two are stable but adjoint inconsistent
when implemented with narrow-stencil SBP operators. A more comprehensive analysis of SATs for
di↵usion problems is presented in [37], and additional types of SAT that are not studied in this work
can be found therein.

4.5.1 BR2 SAT: The modified method of Bassi and Rebay

A stabilized version of the BR2 method [3] for implementation with the narrow-stencil second-
derivative SBP operators can be obtained by choosing

T
(1)
�k

= T(1)
�v

=
1

2↵
�k

R
�k

⇤

k

V+
k

⇤

k

RT

�k

+
1

2↵
�v

R
�v

⇤

v

V+
v

⇤

v

RT

�v

,

�T
(2)
�k

= �T(2)
�v

= T
(3)
�k

= T
(3)
�k

=
1
2
,

T
(D)
�k

=
2
↵

�k

R
�k

⇤

k

V+
k

⇤

k

RT

�k

,

T
(4)
�k

= T(4)
�v

= 0.

(4.35)

The general form of the BR2 SAT was first proposed in [38] by discretizing the primal formulation
of the DG method using SBP operators. It is straightforward to show that the BR2 SAT coe�cients
satisfy the adjoint consistency conditions in (4.11) and the stability requirements in Theorem 4.3.

4.5.2 LDG SAT: The local discontinuous Galerkin method

We determine the SAT coe�cients corresponding to the LDG method [34] by discretizing the primal
LDG formulation of the di↵usion problem (see, e.g., [2,32] for the primal LDG formulation). Similar
analysis with the wide-stencil second-derivative SBP operators can be found in [8,16,5,37]. Stable
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LDG SAT coe�cients (with no mesh dependent parameter for stabilization) for discretizations with
the narrow-stencil second-derivative SBP operators are given by

T
(1)
�k

= T(1)
�v

= T
(D)
�k

=
2
↵

�k

R
�k

⇤

k

V+
k

⇤

k

RT

�k

, � T
(2)
�k

= T(3)
�v

= 1,

T
(3)
�k

= T(2)
�v

= T
(4)
�k

= T(4)
�v

= 0.

(4.36)

Clearly, the LDG SAT coe�cients in (4.36) satisfy both the adjoint consistency conditions in (4.11)
and the stability demands in Theorem 4.3.

Remark 4.4 The LDG SAT coe�cients presented in (4.36) are obtained by using a switch function
value of 1/2 and a global vector pointing to the positive x-axis. We refer the reader to [2,32,37] for
details regarding the switch function and to [33] for a discussion on the need to use a global vector.

Remark 4.5 In one space dimension the LDG and CDG fluxes are identical [32]; therefore, the SAT
coe�cients presented in (4.36) define the CDG SAT as well.

4.5.3 BO SAT: The Baumann-Oden method

The SAT coe�cients corresponding to the BO method [4] do not satisfy the adjoint consistency
conditions in (4.11); hence, the energy stability requirements in Theorem 4.3 do not apply. The BO
SAT coe�cients for implementation with narrow-stencil second-derivative operators are given by

T
(2)
�k

= T(2)
�v

= T
(3)
�k

= T(3)
�v

=
1
2
, T

(D)
�k

=
2
↵

�k

R
�k

⇤

k

V+
k

⇤

k

RT

�k

,

T
(1)
�k

= T(1)
�v

= T
(4)
�k

= T(4)
�v

= 0.

(4.37)

Except for the conditions on T
(D)
�k

, the stability conditions for the narrow- and wide-stencil SBP op-
erators are the same when the BO SAT is used. Stability analysis for discretizations with wide-stencil
SBP operators and the BO SAT can be found in [8,16,37]. Note that for the BO SAT coe�cients in

(4.37), we have T
(1)
�k

= T
(1)
�v

= �

k

= �

v

= 0 in the matrix A given in (4.30), and thus A is positive
semidefinite. The stability analyses for the second and third matrices in (4.30) remain the same as
those presented in the proof of Theorem 4.3. The BO SAT satisfies the conditions for conservation
(4.14); hence, it leads to a conservative and stable but not adjoint consistent scheme.

4.5.4 CNG SAT: The Carpenter-Nordström-Gottlieb method

A version of the CNG SAT [7] that leads to a stable discretization when implemented with narrow-
stencil second-derivative SBP operators has the SAT coe�cients

T
(1)
�k

= T(1)
�v

=
1

8↵
�k

R
�k

⇤

k

V+
k

⇤

k

RT

�k

+
1

8↵
�v

R
�v

⇤

v

V+
v

⇤

v

RT

�v

,

T
(2)
�k

= T(2)
�v

= T
(4)
�k

= T(4)
�v

= 0,

T
(3)
�k

= T(3)
�v

=
1
2
,

T
(D)
�k

=
2
↵

�k

R
�k

⇤

k

V+
k

⇤

k

RT

�k

.

(4.38)

Clearly, the coe�cients in (4.38) satisfy all the conditions in (4.11) except the second one. Therefore,
the CNG SAT leads to conservative but adjoint inconsistent schemes. The stability analyses of the
second and third matrices in (4.30) are the same as those presented in the proof of Theorem 4.3.
The positive semidefiniteness of the matrix A in (4.30) requires all the conditions in (4.28) to be
satisfied. Substituting the CNG SAT coe�cients in A, we see that A22 ⌫ 0, and it can be shown
that

�

I� A22A
+
22

�

A21 = 0. Hence, it only remains to find conditions such that A11 �A12A
+
22A21 ⌫ 0,

which, after simplification, yields



1 �1
�1 1

�

⌦


2T(1)
�k

�
✓

1
4↵

�k

C
�k

V+
k

CT

�k

+
1

4↵
�k

C
�v

V+
v

CT

�v

◆�

⌫ 0. (4.39)

The inequality in (4.39) is satisfied by the T
(1)
�k

= T
(1)
�v

coe�cient given in (4.38).
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5 Numerical Results

We consider the one-dimensional Poisson problem with Dirichlet and Neumann boundary conditions,

�@
2U
@x

2
= F in ⌦ = [0, 1] , U ��

x=0
= U

D

,

@U
@x

�

�

�

�

x=1

= U
N

. (5.1)

We use the method of manufactured solution and let U = cos(30x) as in [13]; thus, F = 302 cos(30x).
We also consider a compatible linear functional given by

I (U) =
Z 1

0
cos2 (30x) d⌦ +

1
302

(1� 30 sin(30)� cos(30)) cos(30). (5.2)

Some of the operators mentioned in this paper are not designed to discretize variable-coe�cient
problems. The choice of constant-coe�cient problem (with � = 1) in (5.1) allows to compare
such operators with those designed to handle variable coe�cients. We note that the construction
of variable-coe�cient narrow-stencil SBP operators is more challenging than the construction of
constant-coe�cient narrow-stencil operators (e.g., see [27,12]). Their implementation after construc-
tion, however, is not significantly more complicated. A discussion on e�cient implementation of
variable-coe�cient, narrow-stencil SBP operators can be found in [12].

We are interested in the convergence of the solution and functional errors under mesh refinement.
Figure 5.1 presents the solution convergence for discretizations with the diagonal-norm narrow-stencil
CSBP operators in [30] and the generalized SBP operators in [12] that have an invertible D

b,k

matrix
and satisfy the accuracy conditions, i.e., the p = {2, 3} HGTL and p = 2 HGT operators. Note that the
degree four HGTL operator in [12] meets the accuracy requirements given in Definitions 2.1 and 2.2
to order h5 only, while the degree three and four HGT operators have D

b,k

matrices that cannot be
modified as described in Section 4 to ensure their invertibility. The interface weight parameters in
the SAT coe�cients are set as ↵

�k

= ↵

�v

= 1/2 in all cases.
The solution error is computed as

s

X

⌦k2Th

(u
h,k

� u

k

)TH
k

(u
h,k

� u

k

).

The convergence rates in Fig. 5.1 through Fig. 5.8 are calculated by fitting a line through the error
values on the mesh resolutions indicated by the short, thin lines, and “dof” stands for the number of
degrees of freedom in the spatial discretization. Figure 5.1 shows that a solution convergence rate of
p+2 is attained when order-matched narrow-stencil operators are coupled with the adjoint consistent
SATs, except with the degree one SBP operators. The adjoint inconsistent SATs, BO and CNG,
exhibit solution convergence rates of p+2 with all the order-matched narrow-stencil SBP operators,
except the degree one and three CSBP operators which yield convergence rates of p + 1. This is
consistent with the results4 presented in [12] but somewhat surprising since the well-known even-
odd convergence phenomenon (see e.g., [8,34,26]) that the BO method displays is not observed with
the narrow-stencil SBP operators. Numerical experiments in [37] show that the BO and CNG SATs
converge at rates of p+1 and p when implemented with odd and even degree multidimensional SBP
operators, respectively. Indeed, this even-odd convergence phenomenon is also observed when the BO
and CNG SATs are implemented with the Legendre-Gauss-Lobatto (LGL) and Legendre-Gauss (LG)
wide-stencil SBP operators, as shown in Fig. 5.2. However, this trend does not hold consistently with
the wide-stencil CSBP and HGT operators, as convergence rates of p+1 are achieved with the p = 4
operators, as depicted in Fig. 5.2d. Therefore, it appears that the even-odd convergence property of
the BO and CNG SATs is dependent on the type of SBP operator used, and it is not observed with
the diagonal-norm narrow-stencil SBP operators consistently. Implementations of the diagonal-norm
wide-stencil SBP operators with the BR2 and LDG SATs lead to solution convergence rates of p+1,
as depicted in Fig. 5.3. Finally, Fig. 5.4 shows that the block-norm wide- and narrow-stencil SBP
operators presented in [28], denoted by CSBP2, achieve a solution convergence rate of 2p regardless
of the type of SAT used.

The functional error is calculated as |I
h

(u
h

) � I(U)|. Figure 5.5 shows the functional conver-
gence rates resulting from discretizations with the order-matched narrow-stencil SBP operators. As
established in Theorem 4.1, the figure shows that the functional superconverges at a rate of 2p when
adjoint consistent SATs are used. The adjoint inconsistent SATs yield larger functional error values
and lower functional convergence rates when coupled with the degree three and four diagonal-norm

4 Although not presented here, we observe a solution convergence rate of p+2 with all the diagonal-norm narrow-
stencil CSBP operators presented in [12].
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Fig. 5.1 Solution convergence under mesh refinement. The values in parentheses are the convergence rates, and “N”
stands for narrow-stencil SBP operator. The short, thin lines indicate the mesh refinement levels used to compute
the convergence rates.

narrow-stencil SBP operators, but they attain lower error values and a convergence rate of 2p for
degree one and two operators. As can be seen from Fig. 5.6, when the adjoint inconsistent SATs are
used with the diagonal-norm wide-stencil SBP operators, convergence rates of 2p are not attained,
except for the p = 1 case, which, however, does not necessarily indicate superconvergence, as p + 1
and 2p are indistinguishable for this case. It is also evident from Figs. 5.5 and 5.6 that in most cases
the diagonal-norm narrow-stencil operators result in lower functional error and larger functional con-
vergence rates than the diagonal-norm wide-stencil operators when used with the adjoint inconsistent
SATs. Figure 5.7 shows that the adjoint consistent SATs lead to functional convergence rates of 2p
when used with the diagonal-norm wide-stencil SBP operators. Comparing the results depicted in
Figs. 5.5 and 5.7, we can conclude that diagonal-norm narrow-stencil SBP operators do not o↵er bet-
ter functional convergence rates than diagonal-norm wide-stencil SBP operators when coupled with
the adjoint consistent SATs, which agrees with the theory. Similarly, the functional convergence rates
attained with the block-norm wide- and narrow-stencil SBP operators are comparable, as depicted
in Fig. 5.8. Furthermore, the functional convergence rate with the block-norm SBP operators is 2p
for adjoint consistent as well as adjoint inconsistent schemes, except for the degree three block-norm
wide-stencil SBP operator, which exhibits a 2p� 1 convergence rate when implemented with the BO
and CNG SATs. In most cases, the BO and CNG SATs yield lower functional error values than the
BR2 and LDG SATs when implemented with the block-norm narrow-stencil SBP operators. For the
p = 1 case, in particular, the BO and CNG SATs converge at a rate of ⇡ 2.5. The superior func-
tional convergence rates observed with the BO and CNG SATs are unexpected, especially given the
fact that the solution errors for all the SATs implemented with the block-norm narrow-stencil SBP
operators coincide, as depicted in Fig. 5.4. The lower functional error values of the BO and CNG
SATs seem to be caused by error cancellation due to the oscillation around zero of the error in the
integrand of the volume integral term of the functional, although it remains unclear to the authors
as to why the BO and CNG SATs exhibit such a behavior when implemented with the block-norm
narrow-stencil SBP operators.
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Fig. 5.2 Solution convergence under mesh refinement with adjoint inconsistent SATs. The values in parentheses
are the convergence rates, and “W” stands for wide-stencil SBP operator. The short, thin lines indicate the mesh
refinement levels used to compute the convergence rates.

6 Conclusion

In this paper, we have shown that primal and adjoint consistent SBP-SAT discretizations of di↵u-
sion problems with diagonal-norm second-derivative generalized SBP operators lead to functional
superconvergence if the primal and adjoint solutions are su�ciently smooth. For block-norm second-
derivative operators, however, the analysis and the numerical experiments show that adjoint incon-
sistency does not degrade the functional convergence rate provided that the boundary closure for
the second derivative operator and the matrix approximating the first derivative at the element
boundaries are at least order 2p � 2 and 2p � 1 accurate, respectively. We have also derived the
conditions required for the stability of adjoint consistent SBP-SAT discretizations with the narrow-
stencil second-derivative generalized SBP operators under the assumptions that the operators are
consistent and nullspace consistent. The stability analysis also requires that the derivative operator
at the element boundaries, D

b,k

, be invertible. For most operators, D
b,k

is invertible or can easily be
modified to be invertible. For some operators, however, this is not the case, and it might be necessary
to enforce the invertibility of this matrix during the construction of the SBP operators to ensure that
SBP-SAT discretizations with these operators are stable and adjoint consistent in addition to the
other attractive numerical properties that narrow-stencil operators o↵er.

Four di↵erent types of stable SATs for narrow-stencil SBP operators, among which two are adjoint
consistent, are proposed and implemented in the numerical experiments. As predicted by the theory,
the numerical experiments show that functionals superconverge at a rate of 2p when a diagonal-norm
degree p + 1 narrow-stencil or degree p wide-stencil generalized SBP operator is used along with
adjoint consistent SATs. It is also observed that the adjoint consistent BR2 and LDG SATs yield
solution convergence rates of p+1 and p+2 when implemented with diagonal-norm wide- and narrow-
stencil SBP operators, respectively. Implementations with the block-norm wide- and narrow-stencil
SBP operators show a solution and functional convergence rates of 2p regardless of the type of SAT
used. The even-odd convergence properties of the adjoint inconsistent BO and CNG SATs are not
observed when these SATs are implemented with the diagonal- and block-norm narrow-stencil SBP
operators.
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Fig. 5.3 Solution convergence under mesh refinement with adjoint consistent SATs. The values in parentheses
are the convergence rates, and “W” stands for wide-stencil SBP operator. The short, thin lines indicate the mesh
refinement levels used to compute the convergence rates.

While the SATs presented in this work ensure the consistency, conservation, adjoint consistency,
energy stability, and functional superconvergence of SBP-SAT discretizations with narrow-stencil
generalized SBP operators, optimization of the SAT coe�cients to achieve improved numerical prop-
erties, e.g., better conditioning and spectral radius, may be pursued in the future. Extension of the
theoretical results to the Navier-Stokes equations is also left for future work.

A Proof of Proposition 2.1

The form of the second derivative we wish to prove, (2.6), corresponds to application of integration by parts twice.
Substituting (2.1) and (2.2) into (2.4), we have
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which is the desired result.
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Fig. 5.4 Solution convergence under mesh refinement with block-norm wide-stencil (“W”) and narrow-stencil
(“N”) CSBP operators. The values in parentheses are the convergence rates. The short, thin lines indicate the mesh
refinement levels used to compute the convergence rates.

B Proof of Theorem 4.1

It is su�cient to show that the result holds for a domain tessellated by two elements, ⌦
L

and ⌦
R

, as the interface
SATs considered couple immediate neighboring elements only. We let the Dirichlet and Neumann boundary condi-
tions be implemented at the left and right boundaries of the domain. The boundary terms in both forms of the func-
tional, (3.2) and (3.4), involve the products  �@U/@x and U�@ /@x. Using the continuity of  , U , and �, we can ap-
proximate ( �@U/@x) 2 C2p+1(⌦) and (U�@ /@x) 2 C2p+1(⌦) at the boundary nodes by degree  2p polynomials.
The integrands in the volume integrals of (3.2) and (3.4) are 2p times di↵erentiable, i.e., (GU), ( F) 2 C2p(⌦). Since

integrals are approximated by quadratures of order h

2p, replacing (GU), ( F) 2 C2p(⌦) by (fGU), (g F) 2 P2p�1(⌦)

in the functionals introduces an error of order h

2p. Therefore, we consider eU , ( ^
�@U/@x) 2 Pp(⌦) to be at least

order h

p+1 approximations of U and (�@U/@x), respectively, and thus eF 2 Pp�1(⌦) due to the steady version of

the primal PDE, (3.1). Similarly, considering e
 , ( ^

�@ /@x) 2 Pp(⌦) to be at least order h

p+1 approximations of  

and (�@ /@x), respectively, gives eG 2 Pp�1(⌦) due to the adjoint PDE, (3.5). For primal and adjoint consistent
discretizations, the numerical primal and adjoint solutions are order h�p+1 accurate despite the polynomial approx-
imations; hence, it is su�cient to show that either (4.21) or (4.22) hold for the polynomial integrands instead of the
general continuous functions. Note that compatible functionals satisfy I(U) = I( ), and we enforced the condition
I

h

(u
h

) = I

h

( 
h

) to find the discrete adjoint problem; hence, I(U) � I

h

(u
h

) = I( ) � I

h

( 
h

). For the rest of the
proof, we drop the tilde sign used to distinguish polynomials from the general continuous functions.

If U 2 Pp(⌦) and (�@U/@x) 2 Pp(⌦), then we discretize (3.2) to find

I(U) = u

T

L

H
L

g

L

+ g

T

R

H
R

u

R

�  

D

w

`L

+  

N

u

rR

+O �
h

2p�
, (B.1)

where w

`L

= [� @U
@x

n

`

]
�

D and u

rR

= U|
�

N . Subtracting (4.3) from (B.1) and rearranging, we have

I (U) = I

h

u

h

� g

T

L

H
L

�
u

h,L

� u

L

�
+  

D

�
D
`L

u

h,L

� w

`L

�

�  

D

T
(D)
`L

�
R
`L

u

h,L

� u

`L

�� g

T

R

H
R

�
u

h,R

� u

R

�

�  

N

�
R
rR

u

h,R

� u

rR

�
+O �

h

2p�
.

(B.2)

Since U 2 Pp(⌦), the R
�k

and D
�k

matrices are exact when applied to the restriction of U to the grid points, e.g.,
R
rR

u

R

= u

rR

and D
`L

u

L

= w

`L

. Applying this property in (B.2) and simplifying we obtain

I (U) = I

h

(u
h

)� g

TH (u
h

� u)�

 

D

T
(D)
`L

R
`L

�  

D

D
`L

 

N

R
rR

�
(u

h

� u) +O �
h

2p�
. (B.3)



18 Z. Worku, D.W. Zingg

(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Fig. 5.5 Functional convergence under mesh refinement. The values in parentheses are the convergence rates,
and “N” stands for narrow-stencil SBP operator. The short, thin lines indicate the mesh refinement levels used to
compute the convergence rates.

Adding  THR

h,u

(u
h

) = 0 to the RHS of (B.3) and rearranging terms, we have

I (U) = I

h

(u
h

)�  THD(2)
u�  THf +

⇢
� g

T �  THD(2)H�1

+  TAH�1 �

 

D

T
(D)
`L

R
`L

�  

D

D
`L

 

N

R
rR

�
H�1

+  T


RT

`L

T
(D)
`L

R
`L

� DT

`L

R
`L

RT

rR

D
rR

�
H�1

�
H (u

h

� u) +O �
h

2p�
.

(B.4)

Using the identity in (2.6) we can write

�HD(2)H�1 = �
⇣
D(2)

⌘
T

+


DT

`L

R
`L

� RT

`L

D
`L

0
0 DT

rR

R
rR

� RT

rR

D
rR

�
H�1

+


DT

rL

R
rL

� RT

rL

D
rL

0
0 DT

`R

R
`R

� RT

`R

D
`R

�
H�1 +MH�1

,

(B.5)

which, after substituting into (B.4) and simplifying, gives

I (U) = I

h

(u
h

)�  TH
h
D(2)

u+ f

i
+

⇢
� g

T �  T

⇣
D(2)

⌘
T

+  TBTH�1 + [F ( )]T H�1 �  TMTH�1
�
H (u

h

� u) +O �
h

2p�
.

(B.6)

Since U 2 Pp(⌦), the second term on the RHS vanishes due to the primal PDE. The third term is O(h�2p+1)
due to the consistency of the adjoint discretization, the fact that H is O(h), and Assumption 1. Therefore, I (U) =
I

h

(u
h

) +O �
h

2p
�
.

Alternatively, if we consider  2 Pp(⌦) and (�@ /@x) 2 Pp(⌦), we start by discretizing the second form of the
functional, (3.4),

I( ) =  

T

L

H
L

f

L

+  T

R

H
R

f

R

� u

D

z

`L

+ u

N

 

rR

+O �
h

2p�
, (B.7)

where z

`L

=
h
�

@ 

@x

n

`

i

�

D
and  

rR

=  |
�

N . Subtracting (4.4) from (B.7) and rearranging, we obtain

I ( ) = I

h

( 
h

)� f

T

L

H
L

�
 

h,L

�  
L

�
+ u

D

�
D
`L

 

h,L

� z

`L

�

� u

D

T
(D)
`L

�
R
`L

 

h,L

�  

`L

�� f

T

R

H
R

�
 

h,R

�  
R

�

� u

N

�
R
rR

 

h,R

�  

rR

�
+O �

h

2p�
.

(B.8)
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Fig. 5.6 Functional convergence under mesh refinement with adjoint inconsistent SATs. The values in parentheses
are the convergence rates, and “W” stands for wide-stencil SBP operator. The short, thin lines indicate the mesh
refinement levels used to compute the convergence rates. The convergence rates for the p = 3 HGTL and p = 4
HGT operators are calculated using the error values at the mesh levels indicated by the short, thin lines with a star
marker.

Using the accuracies of R
�k

and D
�k

to approximate the boundary terms, adding u

THR

h, 

( 
h

) = 0, and simplifying
leads to

I ( ) = I

h

( 
h

)�
h
u

THD(2)
 + u

THg

i
+

⇢
� f

T � u

THD(2)H�1

+ u

TBH�1 �

u

D

T
(D)
`L

R
`L

� u

D

D
`L

u

N

R
rR

�
H�1

+ u

T


RT

`L

T
(D)
`L

R
`L

� DT

`L

R
`L

RT

rR

D
rR

�
H�1

�
H ( 

h

�  )� u

TM 
h

+O �
h

2p�
.

(B.9)

Using the identity (B.5) and simplifying, we find

I ( ) = I

h

( 
h

)� u

TH
h
D(2)

 + g

i
+

⇢
� f

T � u

T

⇣
D(2)

⌘
T

+ u

TATH�1

+ [E (u)]T H�1 � u

TMTH�1
�
H ( 

h

�  )� u

TM 
h

+O �
h

2p�
.

(B.10)

Noting that M+MT = 0, we have

I ( ) = I

h

( 
h

)� u

TH
h
D(2)

 + g

i
+

⇢
� f

T � u

T

⇣
D(2)

⌘
T

+ u

TATH�1

+ [E (u)]T H�1
�
H ( 

h

�  )� u

TM +O �
h

2p�
.

(B.11)

The second and fourth terms on the RHS of (B.11) vanish due to the adjoint PDE and the adjoint consistency re-
quirement that M = 0, respectively. The third term is O(h�2p+1) due to the consistency of the primal discretization,
the scaling of the norm matrix, and Assumption 1. Therefore, the estimates in (4.21) and (4.22) hold.
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Fig. 5.7 Functional convergence under mesh refinement with adjoint consistent SATs. The values in parentheses
are the convergence rates, and “W” stands for wide-stencil SBP operator. The short, thin lines indicate the mesh
refinement levels used to compute the convergence rates.

C Proof of Lemma 4.1

The nullspace consistency of the D
(2)
k

(⇤) in Assumption 3 implies the following:

H
k

D
(2)
k

(⇤)v
c

=
��M

k

+ E
k

⇤

k

D
b,k

�
v

c

= �M
k

v

c

+ E
k

⇤

k

D
b,k

v

c

= 0, (C.1)

H
k

D
(2)
k

(⇤)x
k

=
��M

k

+ E
k

⇤

k

D
b,k

�
x

k

= �M
k

x

k

+ E
k

⇤

k

D
b,k

x

k

= 0. (C.2)

The second term in the last equality in (C.1) is zero due to the structure of the E
k

matrix, i.e., E
k

⇤

k

D
b,k

v

c

= 0;
thus, M

k

v

c

= 0. Furthermore, M
k

x

k

6= 0 in (C.2) since otherwise we would obtain

H
k

D
(2)
k

(⇤)x
k

= E
k

⇤

k

D
b,k

x

k

= RT

rk

D
rk

x

k

+ RT

`k

D
`k

x

k

= RT

rk

�

r

� RT

`k

�

`

= 0, (C.3)

which is not possible as R
rk

and R
`k

do not have nonzero values at the same entries, and � > 0. We have used the
accuracy of D

rk

and D
`k

in the penultimate equality in (C.3), i.e., D
rk

x

k

= �

r

and D
`k

x

k

= ��
`

, where �
`

and
�

r

are at least order h

p+1 approximations of � at the left and right boundaries of ⌦
k

, respectively. Hence, there is
no vector spanned by {1,x

k

} other than v

c

that is in the nullspace of M
k

. If there exists a nontrivial vector v such
that v /2 span{1,x

k

} and M
k

v = 0, then

H
k

D
(2)
k

(⇤)v = E
k

⇤

k

D
b,k

v 6= 0, (C.4)

because D
(2)
k

(⇤) is nullspace consistent and H
k

is SPD. The vector E
k

⇤

k

D
b,k

v has zero entries at rows corresponding

to the zero rows of the E
k

matrix. By construction, D
(2)
k

(⇤) has larger dense blocks at the top left and bottom right
corners (consisting of more rows and columns) than the E

k

matrix; therefore, it follows from the nullspace consistency

of the D
(2)
k

(⇤) matrix that [H
k

D
(2)
k

(⇤)v]
i

6= 0 and [E
k

⇤

k

D
b,k

v]
i

= 0, at least for one entry, the i-th entry, near
the boundaries. This implies that the equality in (C.4) cannot hold for any vector v /2 span{1,x

k

}; hence, we
have N (M

k

) = v

c

. Since M
k

= MT

k

, it follows that N (MT

k

) = v

c

. Using the result in (4.27) with the fact that

N (M
k

) = N (MT

k

) = v

c

, we obtain

V
k

v0 = D�T

b,k

(M
k

+MT

k

)D�1
b,k

v0 = D�1
b,k

(M
k

+MT

k

)v
c

= 0. (C.5)

Thus, v0 is the only nontrivial vector in the nullspace of V
k

. Analogous results hold for V
v

.
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Fig. 5.8 Functional convergence under mesh refinement with block-norm wide-stencil (“W”) and narrow-stencil
(“N”) CSBP operators. The values in parentheses are the convergence rates. The short, thin lines indicate the mesh
refinement levels used to compute the convergence rates.

D Proof of Theorem 4.3

We wish to show that the matrices in (4.30) are positive semidefinite. The matrix A, whose components are given
in (4.31), is symmetric; thus, we can use Theorem 4.2 to determine the conditions required for it to be positive
semidefinite. We have A22 ⌫ 0 because V

k

and V
v

are positive semidefinite, ↵
�k

> 0, and ↵
�v

> 0. Therefore, the
first condition in Theorem 4.2 is satisfied. The second condition in Theorem 4.2 requires that

⇣
I2np � A22A

+
22

⌘
A21 = 2


I
np � V

k

V+
k

0
0 I

np � V
v

V+
v

� "
CT

�k

T
(2)
�k

�CT

�k

T
(2)
�k

�CT

�v

T
(2)
�v

CT

�v

T
(2)
�v

#
= 0, (D.1)

where I2np and I
np are identity matrices of size 2n

p

⇥ 2n
p

and n

p

⇥ n

p

, respectively. To show that (D.1) holds, we
consider the singular value decomposition of V

k

,

V
k

= X⌃YT

, (D.2)

where the columns of X and Y contain orthonormal basis vectors of the column and row spaces, respectively, and ⌃
is a diagonal matrix containing the singular values of V

k

along its diagonal. Lemma 4.1 and Assumption 4 ensure
that the matrix V

k

2 Rnp⇥np has only one nontrivial vector in its nullspace; hence, the first n

p

� 1 columns of X
contain orthonormal basis vectors that span the column space of V

k

and the last column contains the vector in the
nullspace of V

k

, which is v0. We also note that

V
k

V+
k

= X⌃YTY⌃+XT = X⌃⌃+XT = XI
m

XT

, (D.3)

where we have used the orthonormality of Y in the second equality, i.e., YTY = I
np , and I

m

denotes an identity
matrix of size n

p

⇥ n

p

with the last diagonal entry set to zero (since ⌃
ii

= 0 for i > m, where m = n

p

� 1 is the
rank of V

k

). Therefore, for operators that include the boundary nodes, we have I
np �V

k

V+
k

= I
np �XI

m

XT , which
gives

I
np � XI

m

XT = I
np �

2

666664

⇥ . . . ⇥ 0
⇥ . . . ⇥ ⇥
...

...
...

⇥ . . . ⇥ ⇥
⇥ . . . ⇥ 0

3

777775

2

666664

1
1

. . .
1
0

3

777775

2

666664

⇥ ⇥ . . . ⇥ ⇥
...

...
...

...

⇥ ⇥ . . . ⇥ ⇥
0 ⇥ . . . ⇥ 0

3

777775
=

2

666664

0 0 . . . 0 0
0 ⇥ . . . ⇥ 0
...

...
...

...
0 ⇥ . . . ⇥ 0
0 0 . . . 0 0

3

777775
, (D.4)
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where ⇥ denotes an entry that we do not need to specify for this analysis. Similarly, for operators that do not
include boundary nodes, we obtain

I
np � V

k

V+
k

= I
np � XI

m

XT =

2

66666666666666664

0

. . .
0
⇥ . . . ⇥
...

...
⇥ . . . ⇥

0

. . .
0

3

77777777777777775

, (D.5)

i.e., the first and last s rows are zero, where s is half of the number of zero entries in v0. For operators that have
nodes at the boundaries, the LHS of (D.1) can be evaluated using (D.4) as

⇣
I2np � A22A

+
22

⌘
A21 =

2

66666666666666664

0 0 . . . 0 0
0 ⇥ . . . ⇥ 0
...

...
...

...
0 ⇥ . . . ⇥ 0
0 0 . . . 0 0

0 0 . . . 0 0
0 ⇥ . . . ⇥ 0
...

...
...

...
0 ⇥ . . . ⇥ 0
0 0 . . . 0 0

3

77777777777777775

2

666666666666666664
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...

0
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�

�v

0
...
0
0

T
(2)
�v

�

�v

0
...
0
0

3

777777777777777775

= 0. (D.6)

Similarly, substituting (D.5) into (D.1), it is straightforward to show that the condition
⇣
I2np � A22A

+
22

⌘
A21 = 0

also holds for operators that do not include boundary nodes. For A to be positive semidefinite, it remains to find
su�cient conditions to satisfy the last requirement in Theorem 4.3, i.e., A11 � A12A

+
22A21 ⌫ 0, which, after some

algebra, gives the condition

1 �1
�1 1

�
⌦
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�k
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(2)
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�v

T
(2)
�v

C
�v

V+
v
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�v

T
(2)
�v

◆�
⌫ 0, (D.7)

where ⌦ denotes the Kronecker product. Since
⇥ 1 �1
�1 1

⇤ ⌫ 0, the inequality in (D.7) is satisfied if

T
(1)
�

� 2

↵

�k

T
(2)
�k

C
�k

V+
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↵

�v

T
(2)
�v

C
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CT

�v

T
(2)
�v

, (D.8)

which is the same as the condition given by (4.32). Note that C
�k

V+
k

CT

�k

= R
�k

⇤

k

V+
k

⇤

k

RT

�k

since n

2
�k

= 1.

The second matrix in (4.30) can be written as

"
2T

(4)
�k

2T
(4)
�k

2T
(4)
�k

2T
(4)
�k

#
= 2T

(4)
�k


1 1
1 1

�
, (D.9)

which is positive semidefinite provided T
(4)
�k

= T
(4)
�v

� 0, since
⇥
1 1
1 1

⇤ ⌫ 0 . Finally, we note that the last matrix in

(4.30) is symmetric, and ↵
�k

V
k

⌫ 0. Furthermore, using the same approach used to obtain (D.6) it can be shown
that

(I
np � V

k

V+
k

)(�2CT

�k

) = 0 (D.10)

irrespective of whether or not the operator includes boundary nodes. The last condition required for positive semidef-
initeness of the last matrix in (4.30) is

2T
(D)
�k

� 4C
�k

�
↵

�k

V
k

�+
CT

�k

� 0, (D.11)

which is satisfied if (4.33) holds. Therefore, the conditions in Theorem 4.3 are indeed su�cient for energy stability.
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