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Abstract The goal of this paper is to outline the requirements for obtaining
accurate solutions and functionals from high-order tensor-product generalized
summation-by-parts discretizations of the steady two-dimensional linear con-
vection and Euler equations on general curved domains. Two procedures for
constructing high-order grids using either Lagrange or B-spline mappings are
outlined. For the linear convection equation, four discretizations are derived
and characterized—two based on the mortar-element approach and two based
on the global summation-by-parts-operator approach. It is shown numerically
that the schemes are dual consistent, and the requirements for achieving func-
tional superconvergence for each set of methods are outlined. For the Eu-
ler equations, a dual-consistent mortar-element discretization is proposed and
the practical requirements for obtaining accurate solutions and superconver-
gent functionals for problems of increasing practical relevance are delineated
through theory and numerical examples.
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1 Introduction

This work is concerned with obtaining accurate solutions and, particularly,
functionals in the context of high-order computational fluid dynamics simu-
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lations. Practically, in the context of aerodynamic shape optimization for ex-
ample, obtaining accurate functionals is especially important, as the objective
function and constraints driving the overall optimization procedure typically
depend primarily on functionals like lift and drag and only implicitly depend
on the accuracy of the numerical solution through these same functionals (see,
for example, [16]). Furthermore, the time it takes to reach a specified error
tolerance can be reduced by increasing functional accuracy for a given number
of degrees of freedom, which translates to faster flow solution times overall.
These factors taken together motivate the present focus on obtaining accurate
functionals.

Several authors have investigated sufficient conditions that result in func-
tional superconvergence for a range of numerical schemes. These include Pierce
and Giles [27], Lu [22], Hartmann [13], and, more recently, Hartmann and Le-
icht [14] and Cockburn and Wang [4]. Across many of these approaches, a
recurring theme, initially understood in the context of discontinuous Galerkin
schemes, is the concept of dual consistency as an enabling property that a
given discretization should satisfy to achieve functional superconvergence. Of
particular importance for the present work, Hicken and Zingg [17] showed
that dual-consistent discretizations of scalar linear hyperbolic and elliptic par-
tial differential equations (PDEs) constructed with classical diagonal-norm
summation-by-parts (SBP) operators and simultaneous approximation terms
(SATs) achieve functional superconvergence for sufficiently smooth problems.
Subsequently, Hicken and Zingg [18] outlined how to construct a dual-consistent
classical SBP-SAT discretization of the Euler equations and numerically showed
that the dual-consistent scheme outperforms a dual-inconsistent scheme with
respect to functional convergence. Around this time, Del Rey Fernández et al. [8]
introduced a generalization of classical tensor-product SBP operators that ex-
tended the SBP approach to a broader class of operators, hereafter referred
to as generalized SBP operators. Details of the development of the SBP-SAT
approach over the last several decades can be found in the review papers by
Del Rey Fernández et al. [9] and Svärd and Nordström [29].

Compared to discretizations based on classical SBP (CSBP) operators, suf-
ficient conditions for realizing functional superconvergence with generalized
SBP discretizations are not as well understood. In their initial generalization,
Del Rey Fernández et al. [8] considered a steady one-dimensional linear prob-
lem and showed, numerically, that the integral of the solution over the domain
superconverged at a rate of approximately τ + 1, where τ is the degree of the
quadrature rule associated with a given SBP operator. Subsequently, Boom
and Zingg [3] and Boom [2] extended some of the linear results of Hicken
and Zingg [17] to time-marching methods constructed with generalized SBP
operators. For discretizations based on multidimensional SBP operators, Del
Rey Fernández et al. [10] found that the energy error for a two-dimensional
discretization of the linear convection equation superconverged at rates of 2p
and 2p + 1 for the SBP-Γ and SBP-Ω schemes, respectively. Yan et al. [34]
investigated multidimensional SATs for linear diffusion-type PDEs and found
that the volume functional considered converged at a rate of 2p for both the
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SBP-Γ and SBP-Ω schemes. More recently, Worku and Zingg [33] extended
the framework of Yan et al. [34] to encompass additional types of SATs and
demonstrated that degree p dual consistent multidimensional SBP discretiza-
tions of linear diffusion-type PDEs exhibit 2p functional superconvergence.
For discretizations constructed using tensor-product generalized SBP oper-
ators, it was previously shown in Craig Penner and Zingg [5] that for some
linear hyperbolic PDEs, Legendre-Gauss-Lobatto (LGL) operators outperform
Legendre-Gauss (LG) operators with respect to functional accuracy when the
degree of the geometry is greater than the degree of the underlying discretiza-
tion, the volume metric terms are approximated using the same generalized
SBP operator used to discretize the flux terms, and the surface metric terms
are constructed by extrapolating the volume metric terms (hereafter referred
to as the baseline approach for the metrics).

In the present work, two procedures for constructing high-order grids using
Lagrange polynomials and B-splines are outlined. Next, the investigation of
functional accuracy in [5] is extended in the following two directions, focus-
ing on element-type tensor-product generalized SBP methods. First, building
upon the discretizations developed in Del Rey Fernández et al. [7], four tensor-
product generalized SBP discretizations of the two-dimensional linear convec-
tion equation are considered (two based on the mortar-element approach and
two based on the global SBP-operator approach). It is demonstrated numeri-
cally that the schemes are dual consistent, and the requirements for achieving
functional superconvergence are outlined for each set of schemes. Here, the
term functional superconvergence is used to refer to the phenomenon whereby
integral functionals based on a degree p discretization converge at a rate of at
least 2p under uniform refinement, despite the numerical solution only converg-
ing at a nominal rate of about p+ 1 for sufficiently smooth problems. Second,
using information gained from the analysis of the linear convection equation,
a representative mortar-element discretization approximating the divergence
form of the two-dimensional Euler equations is presented and sufficient con-
ditions for achieving accurate solutions and functional superconvergence are
delineated.

2 Notation

The notation in this paper is similar to that used in [6,7]. Upper-case let-
ters in sans-serif font (e.g., H) and lower-case bold font (e.g., u) are used to
denote matrices and vectors, respectively, while upper-case letters in script
font (e.g., U) and upper-case letters in bold script font (e.g., U) are used
to denote scalar- and vector-valued functions, respectively. Let Ω ⊂ R2 de-
note a two-dimensional domain in Cartesian coordinates [x1, x2] ∈ R2 hav-
ing the boundary ∂Ω. For each discretization, the physical domain is decom-
posed into several nonoverlapping elements, and element-local time-invariant
invertible transformations (satisfying, for example, Assumption 1 in [7,25]) are
used to express each physical element in terms of the computational domain
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Ω̂ = [αξ1 , βξ1 ] × [αξ2 , βξ2 ] in computational coordinates [ξ1, ξ2] ∈ R2 having

the boundary Γ̂ . The face numbering convention used in this work is identical
to that summarized in Table 1 in [7]. Furthermore, occasionally big O notation
is used where the term P(h), for example, is order p+1, i.e., P(h) = O(hp+1),
if and only if there exist constants C > 0 and h? > 0 such that

|P(h)| ≤ Chp+1 ∀h < h?,

where C and h? are constants with respect to h. The definition of a one-

dimensional generalized SBP operator in the ξl direction, D
(1D)
ξl

∈ RNl×Nl ,
can be found, for example, in Definition 5 in [9] and Definition 2 in [7]. To
extend the various one-dimensional SBP operators (and their constituent ma-
trices) to multiple dimensions, Kronecker tensor products are used (see, for
example, Definition 1 in [7] for the definition of a Kronecker tensor product).
Interpretations of the constituent matrices (e.g., H, Qξ1) that form the various
multidimensional SBP operators in terms of the different bilinear forms they
approximate can be found, for example, in [6,7,5].

The focus of this paper is on element-type SBP operators, specifically,
those based on LGL and LG quadratures. Table 1 in [5] lists the element-
type generalized SBP operators used throughout this paper, summarizing their
respective nodal distributions and accuracy properties. Finally, for the LGL
and LG schemes, the numerical results are presented with respect to “Element
size” by default, which is defined as follows:

Element size :=

{
Ntotal

(p+ 1)d

}− 1
d

= {Nelements}−
1
d ,

where Ntotal is the total number of grid nodes and d is the number of dimen-
sions. For the LGL and LG schemes, Ntotal = (p+1)dNelements, where Nelements

is the total number of elements. When comparing the LGL and LG schemes to
CSBP schemes refined by increasing the number of interior nodes for a fixed
number of elements, the numerical results are presented with respect to “Grid

size” to keep the comparison consistent, where Grid size := {Ntotal}−
1
d .

3 High-order grid generation

In the present work, high-order element-type grids are constructed via element
mappings. In general, on a given element, to map a point (ξ1, ξ2) ∈ Ω̂ in the
computational domain to a point (x1, x2) ∈ Ω in the physical domain, the
element-local mapping T : Ω̂ → Ω is employed, defined by

x(ξ) = T (ξ) :=

N∑
i,j=1

xijfi(ξ1)fj(ξ2), (1)

where

x(ξ) =

[
x1(ξ1, ξ2)
x2(ξ1, ξ2)

]
and xij =

[
x1(i, j)
x2(i, j)

]
, (2)
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i.e., xij holds the physical coordinates of the control point corresponding to the
index (i, j). Furthermore, fi(ξ1) and fj(ξ2) represent basis functions in the ξ1
and ξ2 directions, respectively. Note that it has been assumed that N control
points are being used in each direction. In general, the number of control
points used to define the mapping will be different than the number of nodes
associated with the generalized SBP operator. In this work, two approaches are
used for choosing the control point locations and basis functions: one based on
Lagrange polynomials and one based on B-splines. Each approach is derived
starting from an existing grid consisting of structured blocks that is, in general,
defined solely in terms of nonuniform nodal locations in physical space.

For the Lagrange approach, fi(ξ1) and fj(ξ2) are chosen to be Lagrange
polynomials, i.e., fi(ξ1) = `i(ξ1) and fj(ξ2) = `j(ξ2), where

`i(ξ1) :=

N∏
m=1
m6=i

ξ1 − ξ1,m
ξ1,i − ξ1,m

, i = 1, . . . , N (3)

and the basis function `j(ξ2) is defined similarly. The initial grid is used di-
rectly to define the control point locations xij , i, j = 1, . . . , N . Finally, for the
Lagrange approach the control point xij corresponds to the point (ξ1,i, ξ2,j)
in computational space.

For the B-spline approach, the approach of Del Rey Fernández et al. [7] is
followed by starting with the approach of Hicken and Zingg [16] and fitting
the grid in a least-squares sense on each element to identify suitable control
point locations. Formally, the control points xij , i, j = 1, . . . , N are called de

Boor control points, and fi(ξ1) = N (pg+1)
i (ξ1) and fj(ξ2) = N (pg+1)

j (ξ2) are
B-spline basis functions.

The result of using either of the Lagrange or B-spline approaches is an
element-local analytical representation of a grid that approximates the true
geometry. To use a specific generalized SBP operator to numerically solve a
given PDE on the resultant grid, the (ξ1, ξ2) nodes in computational space
that correspond to the nodes of the operator of interest are determined, the
(x1, x2) coordinates of the updated grid in physical space that corresponds to
the desired generalized SBP operator are computed, and the PDE is solved
numerically. With both the Lagrange and B-spline approaches, the mapping
is required to be only C0 continuous at element interfaces due to the use of
SATs. However, within elements, the mapping should be at least Cp contin-
uous, where p is the degree of generalized SBP operator being used, to avoid
unnecessarily degrading the accuracy of the overall discretization. With the
Lagrange approach, the mapping is C∞ continuous within elements, which
satisfies the Cp continuity requirement. With the B-spline approach, the con-
tinuity of the mapping within elements depends on the number of control
points used. When N > pg + 1, the continuity of the mapping is only Cpg−1

at interior knots. However, when N = pg + 1, there are no interior knots (as-
suming open knot vectors having a multiplicity of pg + 1 are used), which
means that the continuity of the mapping within elements is C∞. Therefore,
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due to the Cp continuity requirement, if one wants to use a degree pg B-spline
mapping, one must use N = pg + 1 control points in each element.

Remark 1 In the context of unstructured grids, the degree of the mapping
typically refers to the total degree of the mapping (e.g., [6]), while in the
present multidimensional tensor-product case the degree of the mapping refers
to the degree of the mapping in each coordinate direction. Therefore, a two-
dimensional degree p tensor-product mapping corresponds to a mapping of
total degree 2p in the unstructured case.

4 Accurate solutions and functionals for the linear convection
equation

In this section, four dual-consistent discretizations of the two-dimensional lin-
ear convection equation are presented and characterized with respect to trun-
cation error, solution accuracy, and functional accuracy.

4.1 Two-dimensional linear convection equation

Consider the two-dimensional linear convection equation posed as a boundary-
value problem

∇ ·F :=

2∑
m=1

∂(amU)

∂xm
= S in Ω,

U = U− on Γ−,

(4)

where U is the solution, S is the source term, and am are the constant
components of the convection speed. The inflow boundary Γ− is defined by
Γ− := {(x1, x2) ∈ Γ | a · n ≤ 0}, where a = [a1, a2]T and n is the outward
unit normal vector. The outflow boundary Γ+ is defined by Γ+ := Γ \ Γ−.

On a single element, the transformed divergence form, or strong conserva-
tion form, of (4) is given by

2∑
l=1

∂

∂ξl

(
2∑

m=1

J ∂ξl
∂xm

amU

)
= JS in Ω̂, (5)

where J is the Jacobian of the transformation from physical coordinates to
computational coordinates, T : Ω̂ → Ω. See, for example, [28] for the definition
of the Jacobian and the various metric terms in two dimensions. Furthermore,
for simplicity, it is assumed that a = [1, 1]T for the presentation of the different
discretizations, but am 6= 1 is introduced for the numerical examples. As noted
by several papers (e.g., [7]), (5) can also be expressed in skew-symmetric form
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using the canonical splitting

1

2
{∇ ·F + Λ · ∇U} :=

1

2

2∑
l=1

{
∂

∂ξl

(
2∑

m=1

J ∂ξl
∂xm

U

)
+

2∑
m=1

J ∂ξl
∂xm

∂U
∂ξl

}
= JS in Ω̂,

(6)

where

Λ :=

[
2∑

m=1

J ∂ξ1
∂xm

,

2∑
m=1

J ∂ξ2
∂xm

]T
.

While the skew-symmetric form has been shown to be important for con-
structing provably stable schemes (see, for example, [7]), in the present work
discretizations of both forms are examined with respect to dual consistency
and functional superconvergence, in part because discretizations approximat-
ing the divergence form of the governing equations are still used in many
production CFD codes.

4.2 Corresponding continuous dual equation

To derive the continuous dual equation for both the divergence and the skew-
symmetric forms of the linear convection equation, the following integral func-
tional is introduced that takes the given form when one assumes that the
domain consists of a single element:

I(U) :=

∫
Ω̂

JGU dΩ̂ +

∫
Γ̂+

ψΓ̂ n · (ΛU) dΓ̂ , (7)

which has a contribution from the volume of the domain and a contribution
from the outflow boundary of the domain, denoted by Γ̂+. Following a pro-
cedure similar to that in [13], the dual problem can be expressed in both
divergence and skew-symmetric forms analogous to the primal problem:

−Λ · ∇ψ = JG and − 1

2
{Λ · ∇ψ +∇ · (Λψ)} = JG.

Like the primal problem, the divergence and skew-symmetric forms of the dual
problem are analytically identical—only when discretized are the two forms
no longer identical.

4.3 Discretizations of the two-dimensional linear convection equation

In the following sections, two discretizations of the divergence form of the lin-
ear convection equation and two discretizations of the skew-symmetric form of
the linear convection equation are presented. Each discretization is based on
either the mortar-element approach or the global SBP-operator approach as
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described in Del Rey Fernández et al. [7]. For the mortar-element approach,
the surface quadrature nodes are defined on mortar faces that are introduced
at element interfaces and boundaries and the grid metrics are defined on the
mortar faces. In contrast, for the global SBP-operator approach, a global SBP
operator is constructed over the entire grid, no mortar faces are introduced,
and the grid metrics are approximated using the global SBP operators. For
each scheme, a discrete integral functional is defined that approximates the
continuous integral functional and a discretization is derived that approxi-
mates the corresponding dual problem. For simplicity, each discretization is
constructed for a domain consisting of only a single element, which eliminates
the need for an element index. Interface SATs for these types of schemes are
discussed in [7].

4.3.1 Mortar-element approach: divergence form

First, the divergence form of the linear convection equation, given by (5), is
discretized using the mortar-element approach. This gives, on a single element,

2∑
l,m=1

Dξl diag

(
J ∂ξl
∂xm

)
h

uh = diag (Jh) s+ SATuh(2l−1) + SATuh(2l), (8)

where the boundary SAT on the 2l − 1 face is defined as

SATuh(2l−1) := H−1
2∑
l=1

{
−RT

αξl
H⊥ξl

(
f (2l−1),h(uh)− f?(2l−1),h(uh)

)}
with

f (2l−1),h(uh) :=

2∑
m=1

Rαξl diag

(
J ∂ξl
∂xm

)
h

uh

and

f?(2l−1),h(uh) :=
1

2
Λ(2l−1),h

(
u[2l−1] + Rαξluh

)
− 1

2

∣∣Λ(2l−1),h
∣∣ (Rαξluh − u[2l−1]

)
.

The boundary SAT and fluxes on the 2l face are defined similarly. The volume
metric terms and metric Jacobians are stored in the diagonal matrices

diag

(
J ∂ξl
∂xm

)
h

and diag (Jh) ,

respectively, where the subscript h indicates that these terms are, in general,
approximate terms. Similarly, the metric terms appearing in the SAT on the
2l − 1 face, for example, are the mortar metric terms given by

Λ(2l−1),h :=

2∑
m=1

diag

(
J ∂ξl
∂xm

)[2l−1]

h

,
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where the quantity within the square brackets on a given mortar metric term
indicates the surface on which that specific metric term is constructed. Simi-
larly, the vectors u[2l−1] and u[2l] hold, in the single element case, boundary
data on the 2l − 1 face and the 2l face, respectively. The discrete integral
functional is given by

Ih(uh) := gTH diag (Jh)uh

− 1

2

2∑
l=1

ψT
[2l−1]H

⊥
ξl

(
Λ(2l−1),h −

∣∣Λ(2l−1),h
∣∣)Rαξluh

+
1

2

2∑
l=1

ψT
[2l]H

⊥
ξl

(
Λ(2l),h +

∣∣Λ(2l),h

∣∣)Rβξluh.

(9)

The discrete dual problem is constructed by linearizing the discrete resid-
ual and the discrete integral functional as follows (see, for example, Hart-
mann [13]): find ψh ∈ Rn such that

R′h[uh](wh,ψh) = I ′h[uh](wh) ∀wh ∈ Rn, (10)

where R′h[uh](wh,ψh) is the Fréchet derivative of Rh(·,ψh) at uh in the di-
rection wh, I ′h[uh](wh) is the Fréchet derivative of Ih(·) at uh in the direction
wh, and n is the number of nodes. As the linear convection equation is a lin-
ear PDE, the use of Fréchet derivatives in the definition of the discrete dual
problem might not be strictly necessary in all cases; however, in the present
case it facilitates the extension of the approach to nonlinear PDEs.

For the present discretization, the evaluation of (10) leads to the following
discrete dual problem

−
2∑

l,m=1

diag

(
J ∂ξl
∂xm

)
h

Dξlψh = diag (Jh) g + SAT
ψh
(2l−1) + SAT

ψh
(2l), (11)

where the boundary SAT on the 2l − 1 face, for example, is given by

SAT
ψh
(2l−1) := H−1

2∑
l=1

{
f?′(2l−1),h[uh]

}T

H⊥ξlRαξlψh

− 1

2
H−1

2∑
l=1

RT
αξl

H⊥ξl
(
Λ(2l−1),h −

∣∣Λ(2l−1),h
∣∣)ψ[2l−1].

Like u[2l−1] and u[2l], the vectors ψ[2l−1] and ψ[2l] hold, in the single element
case, boundary data on the 2l − 1 face and the 2l face, respectively.
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4.3.2 Mortar-element approach: skew-symmetric form

Next, the skew-symmetric form of the linear convection equation given by
(6) is discretized using the mortar-element approach. This gives, on a single
element,

1

2

2∑
l,m=1

{
Dξl diag

(
J ∂ξl
∂xm

)
h

uh + diag

(
J ∂ξl
∂xm

)
h

Dξluh

}
=

diag (Jh) s+ SATuh(2l−1) + SATuh(2l),

(12)

where the general structures of the boundary SATs are unchanged from the
mortar-element discretization of the divergence form in addition to the discrete
integral functional. Likewise, the fluxes in the boundary SATs are the same
as for the mortar-element discretization of the divergence form; however, the
numerical fluxes are not. For (12), the numerical flux in the boundary SAT on
the 2l − 1 face, for example, is defined by

f?(2l−1),h(uh) :=
1

2

(
Λ(2l−1),hu[2l−1] + Rαξl

2∑
m=1

diag

(
J ∂ξl
∂xm

)
h

uh

)

− 1

2

∣∣Λ(2l−1),h
∣∣ (Rαξluh − u[2l−1]

)
.

The corresponding discrete dual problem is given by

−1

2

2∑
l,m=1

{
Dξl diag

(
J ∂ξl
∂xm

)
h

+ diag

(
J ∂ξl
∂xm

)
h

Dξl

}
ψh =

diag (Jh) g + SAT
ψh
(2l−1) + SAT

ψh
(2l),

(13)

where the boundary SAT on the 2l − 1 face, for example, is given by

SAT
ψh
(2l−1) :=

1

2
H−1

2∑
l=1

RT
αξl

H⊥ξlRαξl

2∑
m=1

diag

(
J ∂ξl
∂xm

)
h

ψh

− 1

2
H−1

2∑
l=1

2∑
m=1

diag

(
J ∂ξl
∂xm

)
h

RT
αξl

H⊥ξlRαξlψh

+ H−1
2∑
l=1

{
f?′(2l−1),h[uh]

}T

H⊥ξlRαξlψh

− 1

2
H−1

2∑
l=1

RT
αξl

H⊥ξl
(
Λ(2l−1),h −

∣∣Λ(2l−1),h
∣∣)ψ[2l−1].



Accurate Generalized Summation-by-Parts Discretizations 11

4.3.3 Global SBP-operator approach: divergence form

Next, the divergence form of the linear convection equation, given by (5), is
discretized using the global SBP-operator approach. This gives, on a single
element,

2∑
l,m=1

Dξl diag

(
J ∂ξl
∂xm

)
h

uh = diag (Jh) s+ SATuh(2l−1) + SATuh(2l) (14)

where the boundary SAT on the 2l − 1 face, for example, is defined by

SATuh(2l−1) := −1

2
H−1

2∑
l=1

{
RT
αξl

H⊥ξlRαξl (Λh,l + |Λh,l|)
}(
uh − Ĩξlu[2l−1]

)
,

where

Λh,l :=

2∑
m=1

diag

(
J ∂ξl
∂xm

)
h

,

Ĩξ1 := 1ξ1 ⊗ Iξ2 , and Ĩξ2 := Iξ1 ⊗1ξ2 have been introduced. The discrete integral
functional is given by

Ih(uh) := gTH diag (Jh)uh

− 1

2

2∑
l=1

ψT
[2l−1]H

⊥
ξl

Rαξl (Λh,l − |Λh,l|)uh

+
1

2

2∑
l=1

ψT
[2l]H

⊥
ξl

Rβξl (Λh,l + |Λh,l|)uh.

(15)

This leads to the following discrete dual problem

−
2∑

l,m=1

diag

(
J ∂ξl
∂xm

)
h

Dξlψh = diag (Jh) g + SAT
ψh
(2l−1) + SAT

ψh
(2l), (16)

where the boundary SAT on the 2l − 1 face, for example, is given by

SAT
ψh
(2l−1) :=

1

2
H−1

2∑
l=1

{
(Λh,l − |Λh,l|) RT

αξl
H⊥ξlRαξl

}(
ψh − Ĩξlψ[2l−1]

)
.

4.3.4 Global SBP-operator approach: skew-symmetric form

Here, the skew-symmetric form of the linear convection equation given by (6)
is discretized using the global SBP-operator approach. This gives, on a single
element,

1

2

2∑
l,m=1

{
Dξl diag

(
J ∂ξl
∂xm

)
h

uh + diag

(
J ∂ξl
∂xm

)
h

Dξluh

}
=

diag (Jh) s+ SATuh(2l−1) + SATuh(2l),

(17)
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where the boundary SAT on the 2l − 1 face, for example, is defined by

SATuh(2l−1) :=

− 1

2
H−1

2∑
l=1

{
1

2
RT
αξl

H⊥ξlRαξl (Λh,l + |Λh,l|) +
1

2
(Λh,l + |Λh,l|) RT

αξl
H⊥ξlRαξl

}
×
(
uh − Ĩξlu[2l−1]

)
.

The discrete integral functional is given by

Ih(uh) := gTH diag (Jh)uh

− 1

2

2∑
l=1

{
1

2

(̃
Iξlψ[2l−1]

)T
RT
αξl

H⊥ξlRαξl (Λh,l − |Λh,l|)uh

+
1

2

(
(Λh,l − |Λh,l|) Ĩξlψ[2l−1]

)T
RT
αξl

H⊥ξlRαξluh

}
+

1

2

2∑
l=1

{
1

2

(̃
Iξlψ[2l]

)T
RT
βξl

H⊥ξlRβξl (Λh,l + |Λh,l|)uh

+
1

2

(
(Λh,l + |Λh,l|) Ĩξlψ[2l]

)T
RT
βξl

H⊥ξlRβξluh

}
.

(18)

This leads to the following discrete dual problem

−1

2

2∑
l,m=1

{
Dξl diag

(
J ∂ξl
∂xm

)
h

+ diag

(
J ∂ξl
∂xm

)
h

Dξl

}
ψh =

diag (Jh) g + SAT
ψh
(2l−1) + SAT

ψh
(2l)

(19)

where the boundary SAT on the 2l − 1 face, for example, is defined by

SAT
ψh
(2l−1) :=

1

2
H−1

2∑
l=1

{
1

2
RT
αξl

H⊥ξlRαξl (Λh,l − |Λh,l|) +
1

2
(Λh,l − |Λh,l|) RT

αξl
H⊥ξlRαξl

}
×
(
ψh − Ĩξlψ[2l−1]

)
.

4.4 Approximations of the metrics

To derive the transformed version of the linear convection equation in compu-
tational coordinates, the volume metric invariants are used, given by

2∑
l=1

∂

∂ξl

(
J ∂ξl
∂xm

)
= 0, m = 1, 2. (20)
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Also, note that by integrating the volume metric invariants over the domain
the surface metric invariants are obtained, given by∫

Ω̂

2∑
l=1

∂

∂ξl

(
J ∂ξl
∂xm

)
dΩ̂ =

∮
Γ̂

2∑
l=1

(
J ∂ξl
∂xm

)
nξl dΓ̂ = 0, m = 1, 2. (21)

Discretely satisfying the metric invariants is important for freestream preserva-
tion [7]. Therefore, approximations of the metric terms are sought that satisfy
discrete versions of the metric invariants.

4.4.1 Mortar-element metrics

Substituting the constant solution uh,κ = 1κ into the mortar-element dis-
cretizations of the skew-symmetric and divergence forms of the linear convec-
tion equation, the following discretization of the volume metric invariants on
element κ is obtained:

2∑
l=1

Dξl diag

(
J ∂ξl
∂xm

)
h,κ

1κ =

H−1
2∑
l=1

{
Eξl diag

(
J ∂ξl
∂xm

)
h,κ

1κ + RT
αξl

H⊥ξl diag

(
J ∂ξl
∂xm

)[2l−1]

h,κ

1[2l−1]

− RT
βξl

H⊥ξl diag

(
J ∂ξl
∂xm

)[2l]

h,κ

1[2l]

}
, m = 1, 2.

(22)

Furthermore, discretely integrating the discrete volume metric invariants over
the domain by premultiplying by 1T

κH and using the SBP property results in
a discrete approximation of the surface metric invariants.

As the baseline approach, the volume metric terms are approximated using
the same SBP operator used to discretize the flux terms and the surface metric
terms are constructed by extrapolating the volume metric terms to the sur-
face of each element. For operators with boundary nodes in two-dimensions,
the standard approach for the metrics leads to the satisfaction of the discrete
volume and surface metric invariants. However, as noted in [7], for opera-
tors without boundary nodes, the metric values extrapolated from adjacent
elements to a shared surface will not coincide in general (this occurs in two
dimensions when pg ≥ p+ 1).

Alternatively, a modified approach for the mortar-element metrics can be
used, which is the same as that used by Crean et al. [6] in a multidimensional
setting and Del Rey Fernández et al. [7] in a tensor-product setting. With
this approach, the volume metrics on element κ are determined by solving a
strictly convex quadratic optimization problem, namely

min
aκm

1

2

(
aκm − aκm,target

)T (
aκm − aκm,target

)
,

subject to Maκm = cκm, m = 1, 2,

(23)
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where

(aκm)
T := 1T

κ

[
diag

(
J ∂ξ1
∂xm

)
h,κ

,diag
(
J ∂ξ2
∂xm

)
h,κ

,diag
(
J ∂ξ3
∂xm

)
h,κ

]
. (24)

The entries in aκm,target are taken from the analytical mapping, while the con-
straint Maκm = cκm arises from the discretization of the volume metric invari-
ants on element κ. The solution to the optimization problem is given by (see
Proposition 1 in Crean et al. [6])

aκm = aκm,target + M†
(
Maκm,target − cκm

)
, (25)

where M† is the Moore-Penrose pseudoinverse of M. As articulated in [7], to
solve the optimization problem for the metrics given by (23), the condition
1T
κc

κ
m = 0 is required, which is the discrete analogue of the continuous surface

metric invariant condition on element κ. The condition 1T
κc

κ
m = 0 is satisfied if

the surface metric terms appearing in cκm are taken directly from a polynomial
curvilinear coordinate transformation and the degree of the transformation
leads to surface metric terms whose degree is less than or equal to the degree
of the quadrature associated with the SBP operator being used.

Remark 2 In general, one does not need to restrict oneself to a certain degree
of polynomial curvilinear coordinate transformation to use the modified ap-
proach for the metrics. Indeed, there is no need to assume that the curvilinear
coordinate transformation has any polynomial properties at all. As alluded to
by Crean et al. [6], in the general case, one can first solve a global optimization
problem for the surface metrics appearing in cκm for each element such that
the condition 1T

κc
κ
m = 0 is satisfied on each element. Following this global

optimization, the modified approach for the metrics can be used to solve for
the volume metrics on each element.

4.4.2 Global SBP-operator metrics

For the global SBP-operator approaches, the metrics are approximated using
the global operators with one of the standard approaches. In two dimensions,
this process is straightforward. In three dimensions, there are more possibili-
ties. In Del Rey Fernández et al. [7], an example using the approach of Thomas
and Lombard [30] is given. Other standard approaches include those given by
Deng et al. [11] and Vinokur and Yee [32].

4.5 Numerical results

In this section the results of numerical experiments exploring the properties of
the various schemes are presented, with a particular focus on dual consistency
and functional superconvergence.
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4.5.1 Two-dimensional scalar linear boundary-value problem

The steady two-dimensional linear convection equation is considered over a
unit square, and the primal and dual source terms, denoted by S = S(x, y)
and G = G(x, y), respectively, are chosen such that the exact primal and dual
solutions are defined by

Uexact(x, y) := sin(2πx) + sin(2πy) and

ψexact(x, y) := sin(2πx) +
exp(y)− 1

exp(1)− 1
,

respectively. These particular primal and dual solutions ensure that both the
volume and boundary contributions to the integral functional (7) are nonzero.
The initial grid is constructed via the following analytical transformation,

x(ξ, η) = ξ +
1

40
sin(2πξ) sin(2πη),

y(ξ, η) = η +
1

40

exp(ξ)− 1

exp(1)− 1
sin(2πη),

where (ξ, η) ∈ Ω. The Lagrange approach for constructing high-order grids
outlined in Section 3 is used together with the exact analytical transformation
above to generate the grids for the numerical experiments summarized in this
section. Each of the four primal and dual discretizations from Section 4 can
be written in the following compact forms,

Aguh,g = fg,

AT
g ψh,g = fdual

g ,

where uh,g and ψh,g are the global primal and dual solution vectors, respec-

tively, Ag and AT
g are the primal and dual system matrices, respectively, and

fg and fdual
g are the primal and dual load vectors, respectively. The discrete

primal functional Ih(uh,g) for each scheme is computed from either (9), (15),
or (18), depending on the discretization, and the discrete dual functional for
each scheme is computed from

Ih(ψh,g) := ψT
h,gfg,

where Ih(uh,g) = Ih(ψh,g) by construction. To evaluate the accuracy of each
scheme, the six accuracy measures summarized in Table 1 are used. The trun-
cation error should be O(hp) to confirm that the primal and dual discretiza-
tions are consistent and dual consistent, respectively. The solution error should
be at least O(hp) with O(hp+1) often being observed in the literature. Finally,
the functional error is considered to be superconvergent if it is at least O(h2p)
and anything less is considered suboptimal.

Table 2 summarizes the test case parameters considered for the boundary
value problem governed by the linear convection equation. For each case listed
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Table 1: Accuracy measures for the linear convection equation.

Accuracy measure Definition

Primal truncation error
∥∥∥J−1
g H−1

g (Agug −Fg)
∥∥∥
∞

= max
∣∣∣J−1
g H−1

g (Agug −Fg)
∣∣∣

Primal solution error
∥∥uh,g − ug∥∥Hg =

√
(uh,g − ug)THg(uh,g − ug)

Primal functional error
∣∣Ih(uh,g)− I(U)

∣∣
Dual truncation error

∥∥∥J−1
g H−1

g (AT
g ψg −Fdual

g )
∥∥∥
∞

= max
∣∣∣J−1
g H−1

g (AT
g ψg −Fdual

g )
∣∣∣

Dual solution error
∥∥ψh,g − ψg∥∥Hg =

√
(ψh,g − ψg)THg(ψh,g − ψg)

Dual functional error
∣∣Ih(ψh,g)− I(ψ)

∣∣

Table 2: Test case matrix for the boundary-value problem governed by the
linear convection equation.

Type of discretization Form of equation Metrics Mapping pg

Mortar-element Divergence Baseline Lagrange p
Mortar-element Divergence Baseline Lagrange p+ 1
Mortar-element Divergence Modified Lagrange p+ 1
Mortar-element Skew-symmetric Baseline Lagrange p
Mortar-element Skew-symmetric Baseline Lagrange p+ 1
Mortar-element Skew-symmetric Modified Lagrange p+ 1
Global SBP-operator Divergence Global Lagrange p
Global SBP-operator Divergence Global Lagrange p+ 1
Global SBP-operator Skew-symmetric Global Lagrange p
Global SBP-operator Skew-symmetric Global Lagrange p+ 1

in Table 2, the six accuracy measures outlined in Table 1 were evaluated for de-
gree one through four LGL and LG operators. With respect to accuracy, it was
found that the the mortar-element divergence and skew-symmetric discretiza-
tions give similar results, likewise for the global SBP-operator divergence and
skew-symmetric discretizations. Therefore, the presentation of the results is
restricted to the divergence forms of the schemes with the understanding that
the same conclusions apply to the skew-symmetric forms. Furthermore, in the
tables that follow the data are only shown for the degree two and three oper-
ators (one even degree operator and one odd degree operator) for conciseness.

Table 3 gives the accuracy results when using the mortar-element dis-
cretization of the divergence form of the linear convection equation using the
baseline approach for the metrics with a degree p Lagrange mapping in each
element. All operator types and degrees converge at either optimal or near
optimal rates with respect to both primal and dual truncation, solution, and
functional error. Relative to the LGL operators, the discretizations based on
LG operators generally have similar convergence rates with lower error values.
Note that in this case, the baseline and modified approaches for the metrics
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Table 3: Numerical results for the mortar-element discretization of the diver-
gence form of the linear convection equation using the baseline approach for
the metrics with a degree p Lagrange mapping in each element. Convergence
rates based on the three finest grids.

Primal error Dual error

Operator p Element size Truncation Solution Functional Truncation Solution Functional

LGL 2 5.00e−01 1.39e+01 2.80e−01 2.81e−01 3.68e+00 2.03e−01 2.81e−01
2.50e−01 6.34e+00 8.37e−02 2.05e−02 1.11e+00 5.09e−02 2.05e−02
1.25e−01 1.46e+00 1.08e−02 8.74e−04 3.78e−01 7.15e−03 8.74e−04
6.25e−02 3.65e−01 1.36e−03 2.82e−05 1.06e−01 8.87e−04 2.82e−05

Convergence rate 2.06 2.97 4.75 1.70 2.92 4.75

LGL 3 5.00e−01 8.76e+00 1.37e−01 7.88e−02 1.51e+00 8.43e−02 7.88e−02
2.50e−01 9.65e−01 8.90e−03 4.62e−04 4.14e−01 7.21e−03 4.62e−04
1.25e−01 1.56e−01 7.15e−04 2.10e−06 4.40e−02 3.76e−04 2.10e−06
6.25e−02 1.87e−02 4.39e−05 7.90e−09 6.26e−03 2.31e−05 7.90e−09

Convergence rate 2.84 3.83 7.92 3.02 4.14 7.92

LG 2 5.00e−01 5.25e+00 7.16e−02 1.01e−02 2.21e+00 4.85e−02 1.01e−02
2.50e−01 1.89e+00 1.41e−02 3.49e−03 6.86e−01 9.98e−03 3.49e−03
1.25e−01 5.51e−01 1.95e−03 1.42e−04 2.05e−01 1.42e−03 1.42e−04
6.25e−02 1.49e−01 2.41e−04 4.61e−06 5.54e−02 1.75e−04 4.61e−06

Convergence rate 1.83 2.93 4.78 1.82 2.92 4.78

LG 3 5.00e−01 2.80e+00 2.75e−02 1.02e−02 1.04e+00 1.93e−02 1.02e−02
2.50e−01 6.64e−01 2.10e−03 1.10e−04 2.61e−01 1.67e−03 1.10e−04
1.25e−01 7.49e−02 1.10e−04 6.69e−07 2.96e−02 8.38e−05 6.69e−07
6.25e−02 1.08e−02 6.86e−06 5.44e−09 4.34e−03 5.17e−06 5.44e−09

Convergence rate 2.97 4.13 7.16 2.95 4.17 7.16

return identical results when using degree p mappings and this is why only
the results using the baseline approach for the metrics are given.

Table 4 gives the accuracy results when using the mortar-element dis-
cretization of the divergence form of the linear convection equation using the
baseline approach for the metrics with a degree p + 1 Lagrange mapping in
each element. Although this specific problem does not require the use of a
degree p+ 1 mapping, when solving more complex nonlinear problems the use
of higher degree mappings can be beneficial (see, for example, [1,35]), which
motivates the study of the use of higher degree mappings in the present lin-
ear context. From Table 4, the results with the LGL operators are virtually
indistinguishable from the degree p mapping results summarized in Table 3.
Likewise, the primal and dual truncation and solution error values and con-
vergence rates with the LG operators with the degree p + 1 mappings are
very similar to those with the degree p mappings. In contrast, the functional
convergence rates with the LG operators are significantly reduced with the
baseline approach for the metrics relative to the LGL operators and relative
to the LG operators with the degree p mappings, due to the degree p accuracy
of the LG extrapolation operators. Note that because the dual truncation er-
ror still converges at a rate close to p, this indicates that this loss of functional
superconvergence is not due to a lack of dual consistency.

Table 5 gives the accuracy results when using the mortar-element dis-
cretization of the divergence form of the linear convection equation using the
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Table 4: Numerical results for the mortar-element discretization of the diver-
gence form of the linear convection equation using the baseline approach for
the metrics with a degree p + 1 Lagrange mapping in each element. Conver-
gence rates based on the three finest grids.

Primal error Dual error

Operator p Element size Truncation Solution Functional Truncation Solution Functional

LGL 2 5.00e−01 1.35e+01 2.78e−01 2.78e−01 3.57e+00 2.00e−01 2.78e−01
2.50e−01 6.32e+00 8.36e−02 2.05e−02 1.11e+00 5.09e−02 2.05e−02
1.25e−01 1.46e+00 1.08e−02 8.74e−04 3.78e−01 7.15e−03 8.74e−04
6.25e−02 3.65e−01 1.36e−03 2.82e−05 1.06e−01 8.87e−04 2.82e−05

Convergence rate 2.06 2.97 4.75 1.69 2.92 4.75

LGL 3 5.00e−01 8.56e+00 1.36e−01 7.92e−02 1.51e+00 8.43e−02 7.92e−02
2.50e−01 9.65e−01 8.89e−03 4.60e−04 4.13e−01 7.19e−03 4.60e−04
1.25e−01 1.55e−01 7.15e−04 2.10e−06 4.40e−02 3.76e−04 2.10e−06
6.25e−02 1.87e−02 4.38e−05 7.89e−09 6.26e−03 2.31e−05 7.89e−09

Convergence rate 2.84 3.83 7.92 3.02 4.14 7.92

LG 2 5.00e−01 5.18e+00 7.06e−02 1.12e−02 2.15e+00 4.76e−02 1.12e−02
2.50e−01 1.88e+00 1.48e−02 1.15e−02 8.62e−01 1.06e−02 1.15e−02
1.25e−01 5.49e−01 2.38e−03 2.93e−03 3.02e−01 1.59e−03 2.93e−03
6.25e−02 1.47e−01 4.43e−04 7.56e−04 7.81e−02 2.44e−04 7.56e−04

Convergence rate 1.84 2.53 1.97 1.73 2.72 1.97

LG 3 5.00e−01 2.86e+00 2.94e−02 2.93e−02 1.43e+00 2.04e−02 2.93e−02
2.50e−01 6.64e−01 2.14e−03 1.02e−03 2.61e−01 1.75e−03 1.02e−03
1.25e−01 7.56e−02 1.15e−04 6.57e−05 2.99e−02 8.58e−05 6.57e−05
6.25e−02 1.09e−02 7.16e−06 4.20e−06 4.25e−03 5.26e−06 4.20e−06

Convergence rate 2.97 4.11 3.96 2.97 4.19 3.96

modified approach for the metrics with a degree p + 1 Lagrange mapping in
each element. With respect to the present accuracy measures being studied,
the main benefit of the modified approach for the metrics is the retention of
functional superconvergence with LG operators when using degree p+ 1 map-
pings. In [7], the lack of conservation with the LG discretizations with the
baseline approach for the metrics in three dimensions was highlighted as one
of the motivating factors for using the modified approach for the metrics. From
the present numerical results, it is observed that considerations of functional
accuracy also provide strong motivation for using the modified approach for
the metrics for LG discretizations.

Tables 6 and 7 give the accuracy results when using the global SBP-
operator discretization of the divergence form of the linear convection equation
using the global approach for the metrics with degree p and p + 1 Lagrange
mappings in each element, respectively. With degree p mappings, approxi-
mately optimal truncation and solution error convergences rates are observed,
along with functional superconvergence for both the LGL and LG families
of operators. With degree p+ 1 mappings, functional superconvergence is ob-
served for the LGL schemes and suboptimal functional convergence is observed
for the LG schemes (a similar trend is observed when using exact mappings),
despite the dual truncation error converging close to order p. Therefore, func-
tional accuracy could be considered as a criterion for potentially preferring the
mortar-element approach over the global SBP-operator approach.
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Table 5: Numerical results for the mortar-element discretization of the diver-
gence form of the linear convection equation using the modified approach for
the metrics with a degree p + 1 Lagrange mapping in each element. Conver-
gence rates based on the three finest grids.

Primal error Dual error

Operator p Element size Truncation Solution Functional Truncation Solution Functional

LGL 2 5.00e−01 1.35e+01 2.78e−01 2.78e−01 3.57e+00 2.00e−01 2.78e−01
2.50e−01 5.90e+00 8.43e−02 2.97e−02 1.20e+00 5.19e−02 2.97e−02
1.25e−01 1.53e+00 1.09e−02 1.60e−03 4.21e−01 7.27e−03 1.60e−03
6.25e−02 3.77e−01 1.37e−03 7.42e−05 1.17e−01 9.06e−04 7.42e−05

Convergence rate 1.98 2.97 4.32 1.68 2.92 4.32

LGL 3 5.00e−01 8.27e+00 1.39e−01 6.91e−02 1.89e+00 8.56e−02 6.91e−02
2.50e−01 9.69e−01 9.06e−03 5.11e−04 4.04e−01 7.37e−03 5.11e−04
1.25e−01 1.58e−01 7.21e−04 2.56e−06 4.52e−02 3.85e−04 2.56e−06
6.25e−02 1.90e−02 4.43e−05 1.41e−08 6.49e−03 2.37e−05 1.41e−08

Convergence rate 2.84 3.84 7.57 2.98 4.14 7.57

LG 2 5.00e−01 5.17e+00 7.06e−02 1.12e−02 2.15e+00 4.76e−02 1.12e−02
2.50e−01 1.89e+00 1.43e−02 3.60e−03 7.13e−01 1.03e−02 3.60e−03
1.25e−01 5.90e−01 1.99e−03 1.51e−04 2.25e−01 1.46e−03 1.51e−04
6.25e−02 1.61e−01 2.46e−04 4.88e−06 6.03e−02 1.79e−04 4.88e−06

Convergence rate 1.78 2.93 4.76 1.78 2.92 4.76

LG 3 5.00e−01 3.04e+00 2.88e−02 1.07e−02 1.21e+00 2.06e−02 1.07e−02
2.50e−01 6.69e−01 2.16e−03 1.20e−04 2.60e−01 1.72e−03 1.20e−04
1.25e−01 7.39e−02 1.13e−04 7.13e−07 2.99e−02 8.59e−05 7.13e−07
6.25e−02 1.09e−02 6.99e−06 5.78e−09 4.34e−03 5.29e−06 5.78e−09

Convergence rate 2.97 4.13 7.17 2.95 4.17 7.17

Table 6: Numerical results for the global SBP-operator discretization of the
divergence form of the linear convection equation using the global approach for
the metrics with a degree p Lagrange mapping in each element. Convergence
rates based on the three finest grids.

Primal error Dual error

Operator p Element size Truncation Solution Functional Truncation Solution Functional

LGL 2 5.00e−01 1.39e+01 2.80e−01 2.81e−01 3.68e+00 2.03e−01 2.81e−01
2.50e−01 6.34e+00 8.37e−02 2.05e−02 1.11e+00 5.09e−02 2.05e−02
1.25e−01 1.46e+00 1.08e−02 8.74e−04 3.78e−01 7.15e−03 8.74e−04
6.25e−02 3.65e−01 1.36e−03 2.82e−05 1.06e−01 8.87e−04 2.82e−05

Convergence rate 2.06 2.97 4.75 1.70 2.92 4.75

LGL 3 5.00e−01 8.76e+00 1.37e−01 7.88e−02 1.51e+00 8.43e−02 7.88e−02
2.50e−01 9.65e−01 8.90e−03 4.62e−04 4.14e−01 7.21e−03 4.62e−04
1.25e−01 1.56e−01 7.15e−04 2.10e−06 4.40e−02 3.76e−04 2.10e−06
6.25e−02 1.87e−02 4.39e−05 7.90e−09 6.26e−03 2.31e−05 7.90e−09

Convergence rate 2.84 3.83 7.92 3.02 4.14 7.92

LG 2 5.00e−01 5.86e+00 7.12e−02 1.74e−02 2.21e+00 4.83e−02 1.74e−02
2.50e−01 2.21e+00 1.73e−02 3.43e−03 6.85e−01 1.01e−02 3.43e−03
1.25e−01 7.06e−01 2.15e−03 1.42e−04 2.08e−01 1.40e−03 1.42e−04
6.25e−02 1.83e−01 2.66e−04 4.61e−06 5.52e−02 1.74e−04 4.61e−06

Convergence rate 1.80 3.01 4.77 1.82 2.93 4.77

LG 3 5.00e−01 3.74e+00 3.48e−02 9.73e−03 1.04e+00 2.03e−02 9.73e−03
2.50e−01 7.25e−01 2.25e−03 1.06e−04 2.61e−01 1.59e−03 1.06e−04
1.25e−01 9.58e−02 1.59e−04 6.55e−07 2.96e−02 8.28e−05 6.55e−07
6.25e−02 1.27e−02 9.84e−06 5.40e−09 4.34e−03 5.16e−06 5.40e−09

Convergence rate 2.92 3.92 7.13 2.96 4.14 7.13
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Table 7: Numerical results for the global SBP-operator discretization of the
divergence form of the linear convection equation using the global approach for
the metrics with a degree p+1 Lagrange mapping in each element. Convergence
rates based on the three finest grids.

Primal error Dual error

Operator p Element size Truncation Solution Functional Truncation Solution Functional

LGL 2 5.00e−01 1.35e+01 2.78e−01 2.78e−01 3.57e+00 2.00e−01 2.78e−01
2.50e−01 6.32e+00 8.36e−02 2.05e−02 1.11e+00 5.09e−02 2.05e−02
1.25e−01 1.46e+00 1.08e−02 8.74e−04 3.78e−01 7.15e−03 8.74e−04
6.25e−02 3.65e−01 1.36e−03 2.82e−05 1.06e−01 8.87e−04 2.82e−05

Convergence rate 2.06 2.97 4.75 1.69 2.92 4.75

LGL 3 5.00e−01 8.56e+00 1.36e−01 7.92e−02 1.51e+00 8.43e−02 7.92e−02
2.50e−01 9.65e−01 8.89e−03 4.60e−04 4.13e−01 7.19e−03 4.60e−04
1.25e−01 1.55e−01 7.15e−04 2.10e−06 4.40e−02 3.76e−04 2.10e−06
6.25e−02 1.87e−02 4.38e−05 7.89e−09 6.26e−03 2.31e−05 7.89e−09

Convergence rate 2.84 3.83 7.92 3.02 4.14 7.92

LG 2 5.00e−01 5.65e+00 7.01e−02 1.77e−02 2.15e+00 4.74e−02 1.77e−02
2.50e−01 2.21e+00 1.80e−02 7.36e−03 7.14e−01 1.04e−02 7.36e−03
1.25e−01 7.39e−01 2.28e−03 8.25e−04 2.27e−01 1.45e−03 8.25e−04
6.25e−02 1.95e−01 2.83e−04 9.61e−05 5.92e−02 1.81e−04 9.61e−05

Convergence rate 1.75 3.00 3.13 1.80 2.92 3.13

LG 3 5.00e−01 3.88e+00 3.79e−02 1.91e−02 1.17e+00 2.16e−02 1.91e−02
2.50e−01 7.27e−01 2.28e−03 5.72e−04 2.62e−01 1.63e−03 5.72e−04
1.25e−01 9.89e−02 1.61e−04 1.66e−05 2.97e−02 8.32e−05 1.66e−05
6.25e−02 1.27e−02 9.87e−06 5.15e−07 4.32e−03 5.16e−06 5.15e−07

Convergence rate 2.92 3.93 5.06 2.96 4.15 5.06

5 Accurate solutions and functionals for the Euler equations

In this section a dual-consistent mortar-element discretization of the Euler
equations is presented that is based on the divergence form of the governing
equations. In the context of the Euler equations, it will be seen that the use of
degree p+ 1 mappings facilitates the accuracy of the flow tangency boundary
condition. Hence, the mortar-element approach is preferred over the global
SBP-operator approach due to the ability of the mortar-element approach to
retain functional superconvergence in the presence of degree p + 1 mappings
when using LG operators. Furthermore, in the context of the linear convection
equation the divergence and skew-symmetric discretizations gave very similar
results in terms of accuracy. Therefore, in this section only the discretization
of the divergence form is presented for simplicity, and also because the diver-
gence form of the governing equations is used for simulating many practical
problems [15,26].
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Table 8: Components of the outward unit normal, n = nξ1 ξ̂1 + nξ2 ξ̂2 =

nx1
x̂1 +nx2

x̂2, on each side of Ω̂. The face numbering convention is the same
as that outlined in Table 1 in [7].

Face number nξ1 nξ2 nx1 nx2

1 −1 0 − ∂ξ1
∂x1

/ ‖∇ξ1‖ − ∂ξ1
∂x2

/ ‖∇ξ1‖
2 1 0 ∂ξ1

∂x1
/ ‖∇ξ1‖ ∂ξ1

∂x2
/ ‖∇ξ1‖

3 0 −1 − ∂ξ2
∂x1

/ ‖∇ξ2‖ − ∂ξ2
∂x2

/ ‖∇ξ2‖
4 0 1 ∂ξ2

∂x1
/ ‖∇ξ2‖ ∂ξ2

∂x2
/ ‖∇ξ2‖

5.1 Two-dimensional Euler equations

On a single element, the transformed steady two-dimensional compressible
Euler equations are given by

∇ ·F :=

2∑
l=1

∂

∂ξl

(
2∑

m=1

J ∂ξl
∂xm
Fxm(U)

)
= 0 in Ω̂, (26)

where definitions of the vector of conservative variables U and the flux vectors
Fxm can be found in [28], for example. To complete the description of the
continuous primal problem, (26) is supplemented with appropriate boundary
conditions. For example, suppose the reference domain includes a wall bound-
ary, Γ̂W, and a farfield boundary, Γ̂ \ Γ̂W. On the wall boundary, the normal
flux is constrained as follows

n ·F =

2∑
l=1

nξlFξl(PU) on Γ̂W, (27)

which enforces flow tangency by using the matrix P to remove the normal
component of momentum from U , where

Fξl :=

2∑
m=1

J ∂ξl
∂xm
Fxm and P :=


1 0 0 0
0 1− n2x1

−nx1
nx2

0
0 −nx2

nx1
1− n2x2

0
0 0 0 1

 . (28)

Here, nx1 and nx2 are components of n = nx1 x̂1 + nx2 x̂2, where n is the
outward unit normal vector and x̂1 and x̂2 are unit coordinate vectors. For
reference, the different components of the outward unit normal on each side
of Ω̂ are given in Table 8.

On the farfield boundary, the following condition is specified

n ·F = A+U + A−U∞ on Γ̂ \ Γ̂W, (29)

where U∞ is the farfield state and A± = A±(U ,n) with

A± :=
1

2
(A± |A|) and A :=

2∑
l=1

Aξlnξl , (30)
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where

Aξl :=

2∑
m=1

J ∂ξl
∂xm

Axm and Axm :=
∂Fxm
∂U . (31)

The matrix A can be diagonalized as follows

A = XΛX−1,

where X and X−1 are matrices holding the right and left eigenvectors of A,
respectively, and Λ is a diagonal matrix holding the eigenvalues of A (see [14]
for more details). To obtain |A|, the eigenvalues of A contained along the
diagonal of the matrix Λ are replaced with their absolute values.

5.2 Corresponding continuous dual equations

To derive the continuous dual problem corresponding to (26), it is helpful to
introduce the following boundary force functional

I(U) :=

∫
Γ̂

i(U) dΓ̂ =

∫
Γ̂W

φ̆
T
{n ·F(PU)} dΓ̂ , (32)

where i(U) := φ̆
T
{n ·F(PU)} on Γ̂W and i(U) := 0 on Γ̂ \ Γ̂W, and, following

Hartmann and Leicht [14], for example, the vector φ̆ is defined by

φ̆ :=
[
0 φT 0

]T
(33)

with

φ =

{
(cos(α), sin(α))

T
for drag

(− sin(α), cos(α))
T

for lift,
(34)

where α is the angle of attack. The corresponding strong form of the dual
problem is given by

−
(
F ′[U ]

)T∇ψ = 0 in Ω̂,
(
n ·F ′[U ]

)T
ψ = (i′[U ])

T
on Γ̂ . (35)

On the wall boundary the following term is obtained:

n ·F =

2∑
l=1

nξlFξl(PU) =

2∑
l=1

nξl

[
0 J ∂ξl

∂x1
p J ∂ξl

∂x2
p 0
]T
× ‖∇ξl‖
‖∇ξl‖

=

2∑
l=1

J ‖∇ξl‖ n̆p, where n̆ =
[
0 nT 0

]T
.

Also, expanding i(U) along Γ̂W gives

i(U) = φ̆
T

{
2∑
l=1

nξlFξl(PU)

}
=

2∑
l=1

J ‖∇ξl‖ φ̆
T
n̆p.
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Then, expanding
(
n ·F ′[U ]

)T
ψ = (i′[U ])

T
from (35), along Γ̂W, gives

2∑
l=1

J ‖∇ξl‖ (p′[U ])
T
n̆Tψ =

2∑
l=1

J ‖∇ξl‖ (p′[U ])
T
n̆Tφ̆, (36)

where p′[U ] ∈ R1×4. This implies that the dual boundary condition along Γ̂W

is given by
n̆Tψ = n̆Tφ̆ on Γ̂W. (37)

On the farfield boundary the following term is obtained:(
n ·F ′[U ]

)T
ψ = 0 on Γ̂ \ Γ̂W. (38)

Similar results may be found in [13,18,14].

5.3 Discretization of the two-dimensional Euler equations

The divergence form of the Euler equations given by (26) is discretized using
the mortar-element approach. This gives on a single element

2∑
l,m=1

Dξl diag
˜(
J ∂ξl
∂xm

)
h

fxm(uh) = SATuh(2l−1) + SATuh(2l), (39)

where the boundary SAT on the 2l − 1 face, for example, is defined by

SATuh(2l−1) := H−1
2∑
l=1

{
−RT

αξl
H⊥ξl

(
f (2l−1),h(uh)− f?(2l−1),h(uh)

)}
,

where

f (2l−1),h(uh) :=

2∑
m=1

Rαξl diag
˜(
J ∂ξl
∂xm

)
h

fxm(uh).

The following notation has been introduced for the volume metric terms

diag
˜(
J ∂ξl
∂xm

)
h

:= diag

(
J ∂ξl
∂xm

)
h

⊗ I4,

with analogous notation being adopted for the surface metric terms. The nu-
merical fluxes in the SATs depend on the boundary conditions being applied.
As in [18], suppose that farfield boundary conditions are specified on faces 1,
2, and 4, and a wall boundary condition is specified on face 3. In this case, the
numerical boundary flux functions on faces 3 and 4, for example, are given by

f?(3),h(uh) :=

2∑
m=1

diag
˜(
J ∂ξ2
∂xm

)[3]

h

fxm(P̃hRαξ2uh) and

f?(4),h(uh) := A+
(4),h(uh) Rβξ2uh + A−(4),h(uh)× (1ξ1 ⊗ U∞),
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where P̃h = Iξ1 ⊗ I4 − ñhñT
h ∈ R4Nξ1×4Nξ1 with

ñh =


n̆h(ξ1,1, ξ2,αξ2 )

n̆h(ξ1,2, ξ2,αξ2 )
. . .

n̆h(ξ1,Nξ1 , ξ2,αξ2 )

 ∈ R4Nξ1×Nξ1

and
n̆h(ξ1, ξ2) =

[
0 nx1,h(ξ1, ξ2) nx2,h(ξ1, ξ2) 0

]T
.

The boundary flux Jacobian terms in f?(4),h, for example, are computed from

A(4),h(uh) =

2∑
m=1

diag
˜(
J ∂ξ2
∂xm

)[4]

h

Axm(Rβξ2uh),

where Axm(u) = ∂fxm(u)/∂u, m = 1, 2, are block diagonal matrices.
The discrete integral functional is given by

Ih(uh) := −(1ξ1 ⊗ 1ξ2 ⊗ φ̆)TRT
αξ2

H⊥ξ2f
?
(3),h(uh). (40)

This leads to the following discrete dual problem

−
2∑

l,m=1

{
diag

(
J ∂ξl
∂xm

)
h

f ′xm [uh]

}T

Dξlψh =

diag (Jh) g + SAT
ψh
(2l−1) + SAT

ψh
(2l),

(41)

where the boundary SAT on the 2l − 1 face, for example, is given by

SAT
ψh
(2l−1) := H−1

2∑
l=1

{
f?′(2l−1),h[uh]

}T

H⊥ξlRαξlψh

− H−1
{
f?′(3),h[uh]

}T

H⊥ξ2Rαξ2 (1ξ1 ⊗ 1ξ2 ⊗ φ̆).

5.4 Accuracy of the flow tangency boundary condition

Bassi and Rebay [1] were the first to recognize the importance of having high-
order representations of curved boundaries in the presence of flow tangency
boundary conditions. Subsequently, van der Vegt and van der Ven [31] showed
that for the linear (i.e., p = 1) case the use of local mesh refinement pro-
vides another means of reducing the error associated with the boundary rep-
resentation in conjunction with the flow tangency boundary condition in the
context of the Euler equations. Furthermore, they showed that it is neces-
sary to take the curved boundary into account for a consistent discontinuous
Galerkin discretization [31]. Krivodonova and Berger [20] also proposed an
alternative approach to recover accuracy in the presence of wall boundary
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conditions without resorting to high order geometry representations. More re-
cently, Zwanenburg and Nadarajah [35] compared the use of isoparametric and
superparametric geometry representations. For the Euler equations, they ob-
served suboptimal solution error convergence rates when using isoparametric
geometry representations and optimal solution error convergence rates when
using superparametric geometry representations [35]. Note that Bassi and Re-
bay [1] did not notice a similar benefit when using superparametric geometry
representations with their degree p = 2 and degree p = 3 discretizations; how-
ever, Zwanenburg and Nadarajah [35] numerically demonstrated that this was
likely because Bassi and Rebay only examined entropy error and used elements
with aspect ratio close to one near wall boundaries [35]. Finally, Navah and
Nadarajah [24] and Navah [23] found that using isoparametric geometry rep-
resentations in combination with exact normals was sufficient to achieve good
solution error convergence rates for a manufactured solution governed by the
Euler equations.

The aim in this section is to provide a mathematical analysis of the ac-
curacy of the flow tangency boundary condition to elucidate the reasons why
superparametric geometry representations are beneficial when solving prob-
lems governed by the Euler equations (as observed by [1,31,35], for exam-
ple). Furthermore, while this specific analysis is performed within the SBP
framework, the conclusions could be extended to other types of discretization
methodologies due to the generality of the SBP approach. To begin, consider
the wall boundary SAT from the discretization of the Euler equations on a
single element, given by

SATuWall := −H−1RT
αξ2

H⊥ξ2×

2∑
m=1

Rαξ2 diag
˜(
J ∂ξ2
∂xm

)
h

fxm(u)− diag
˜(
J ∂ξ2
∂xm

)[3]

h

fxm(P̃hRαξ2u)

 ,

(42)

where u has been substituted for uh because the objective is to show consis-
tency. The wall boundary SAT, given by (42), is design order consistent for
the Euler equations if∥∥∥diag (Jh)

−1
SATuWall

∥∥∥
∞

= O(hp), (43)

since the Euler equations are a first-order system of PDEs. Note that the wall
boundary SAT has been multiplied by diag (Jh)

−1
because the discretization

is constructed in the computational domain and it is of interest to evaluate the
consistency of the wall boundary SAT in the physical domain. The following
theorem is now proven.

Theorem 1 Assume that a degree pg polynomial geometry representation is
used in each element and assume that the wall normals are constructed di-
rectly from the degree pg geometry representation. Then, assuming that the
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wall boundary SAT given by (42) is not trivially zero, the wall boundary SAT
satisfies the consistency condition (43) if and only if pg ≥ p + 1 (i.e., if and
only if the geometry representation is superparametric, as opposed to being
isoparametric or subparametric), where pg and p are integers.

Proof Using the Cauchy-Schwarz inequality and noting that∥∥∥diag (Jh)
−1
∥∥∥
∞

= O(h−2),
∥∥H−1

∥∥
∞ = O(1),∥∥∥RT

αξ2

∥∥∥
∞

= O(1),
∥∥H⊥ξ2

∥∥
∞ = O(1),

gives∥∥∥diag (Jh)
−1

SATuWall

∥∥∥
∞

= O(h−2)×∥∥∥∥∥∥
2∑

m=1

Rαξ2 diag
˜(
J ∂ξ2
∂xm

)
h

fxm(u)− diag
˜(
J ∂ξ2
∂xm

)[3]

h

fxm(P̃hRαξ2u)


∥∥∥∥∥∥
∞

.

Using the triangle inequality the summation can be brought outside the infinity
norm to obtain∥∥∥diag (Jh)

−1
SATuWall

∥∥∥
∞

= O(h−2)×

2∑
m=1

∥∥∥∥∥∥Rαξ2 diag
˜(
J ∂ξ2
∂xm

)
h

fxm(u)− diag
˜(
J ∂ξ2
∂xm

)[3]

h

fxm(P̃hRαξ2u)

∥∥∥∥∥∥
∞

.

(44)

Due to the accuracy of Rαξ2 and because diag
˜(
J ∂ξ2
∂xm

)
h

= O(h), the accuracy

of the extrapolation of the flux multiplied by the volume metrics is given by

Rαξ2 diag
˜(
J ∂ξ2
∂xm

)
h

fxm(u) = diag
˜(
J ∂ξ2
∂xm

)[3]

h

fxm(u[3]) +O(hr+2), (45)

where r ≥ p is the degree of the extrapolation operator Rαξ2 . Substituting (45)
into (44), using the Cauchy-Schwarz inequality, and noting that∥∥∥∥∥∥diag

˜(
J ∂ξ2
∂xm

)[3]

h

∥∥∥∥∥∥
∞

= O(h),

gives ∥∥∥diag (Jh)
−1

SATuWall

∥∥∥
∞

= O(h−1)×
2∑

m=1

∥∥∥fxm(u[3])− fxm(P̃hRαξ2u) +O(hr+1)
∥∥∥
∞
.

(46)
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Now it is determined how well fxm(P̃hRαξ2u) approximates fxm(P̃u[3]), where

P̃u[3] = u[3], since u[3] is the exact solution on the wall boundary and therefore

satisfies the wall boundary condition. As P̃h = Iξ1 ⊗ I4 − ñhñT
h depends on

the wall normals, the accuracy of the wall normals is determined first. Recall
from Table 8 that the components of the outward normals along side 3, which
is the side corresponding to the wall boundary in this case, are given by

nx1
= −

∂ξ2
∂x1√(

∂ξ2
∂x1

)2
+
(
∂ξ2
∂x2

)2 and nx2
= −

∂ξ2
∂x2√(

∂ξ2
∂x1

)2
+
(
∂ξ2
∂x2

)2 .
Assuming the wall normals are constructed directly from a degree pg geome-
try representation, at a given point along the wall boundary the following is
obtained for nx1,h, for example,

nx1,h = −

(
∂ξ2
∂x1

)
h√((

∂ξ2
∂x1

)
h

)2
+
((

∂ξ2
∂x2

)
h

)2 ,
where(

∂ξ2
∂x1

)
h

=
∂ξ2
∂x1

+O(hpg−1) and

(
∂ξ2
∂x2

)
h

=
∂ξ2
∂x2

+O(hpg−1).

To determine the order of nx1
− nx1,h, the following term is evaluated

nx1
− nx1,h

= −
∂ξ2
∂x1√(

∂ξ2
∂x1

)2
+
(
∂ξ2
∂x2

)2 +

∂ξ2
∂x1

+O(hpg−1)√(
∂ξ2
∂x1

+O(hpg−1)
)2

+
(
∂ξ2
∂x2

+O(hpg−1)
)2 ,

or, replacing O(hpg−1) with ε in the second term on the right-hand side and
performing a series expansion gives

∂ξ2
∂x1

+ ε√(
∂ξ2
∂x1

+ ε
)2

+
(
∂ξ2
∂x2

+ ε
)2 =

∂ξ2
∂x1√(

∂ξ2
∂x1

)2
+
(
∂ξ2
∂x2

)2 +O(hpg ),

where ∂ξ2
∂x1

= O(h−1) and ∂ξ2
∂x2

= O(h−1) have been used. Therefore, the accu-
racies of the x1 and x2 components of the wall normals are given by

nx1
− nx1,h = O(hpg ) and, similarly, nx2

− nx2,h = O(hpg ), (47)

respectively. Furthermore, since P̃h = Iξ1 ⊗ I4− ñhñT
h depends directly on the

wall normals, the accuracy of P̃h is given by P̃h = P̃ +O(hpg ). The following
term can now be evaluated

P̃hRαξ2u =
{

P̃ +O(hpg )
}{
u[3] +O(hr+1)

}
= P̃u[3] +O(hr+1) +O(hpg ),
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since P̃ = O(1), u[3] = O(1), and O(hpg )O(hr+1) = O(hpg+r+1) is a higher
order term that can be neglected. Substituting

P̃hRαξ2u = P̃u[3] +O(hr+1) +O(hpg )

into fxm(P̃hRαξ2u) and performing a series expansion gives

fxm(P̃hRαξ2u) = fxm(P̃u[3]) +O(hr+1) +O(hpg ). (48)

Finally, substituting (48) into (46) and using the triangle inequality results in
the following expression

∥∥∥diag (Jh)
−1

SATuWall

∥∥∥
∞

= O(hr) +O(hpg−1). (49)

Since r ≥ p by construction, the first term on the right-hand side always
satisfies the consistency condition (43). However, the second term on the right-
hand side only satisfies the consistency condition (43) when pg ≥ p+ 1, which
gives the desired result. ut

Theorem 1 explains why superparametric geometry representations are
beneficial when solving problems governed by the Euler equations that involve
flow tangency boundary conditions. Finally, for the preceding analysis, the
normal boundary flux function presented in [22,13] was used. However, simi-
lar techniques can be used to show that the numerical boundary flux based on
the interior flux function as used by Hartmann and Leicht [14] also satisfies
Theorem 1 when used in place of the normal boundary flux function.

5.5 Numerical results

In this section the results of several numerical experiments are presented ex-
ploring the properties of the different operators and discretization choices with
a particular focus on dual consistency and functional superconvergence. The
global H-norm ‖ · ‖Hg is used to evaluate the different types of solution error
measures considered in this section. For example, pressure error is evaluated
as follows: ∥∥ph,g − pg∥∥Hg =

√
(ph,g − pg)THg(ph,g − pg),

where ph,g and pg are global vectors holding the numerical and exact pressures,
respectively, and Hg is the global H-norm matrix. A similar expression is used
to evaluate entropy error.
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5.5.1 Two-dimensional steady isentropic vortex

The test problem considered in this section is a steady isentropic vortex gov-
erned by the Euler equations on a quarter annulus domain. The aims of the
studies in this section are as follows: 1) to examine the impact of superpara-
metric geometry representations; 2) to characterize and compare the baseline
and modified approaches for approximating the metrics; and 3) to compare
the B-spline and Lagrange approaches for constructing high-order grids. The
exact density for the steady isentropic vortex is given by

ρ(r) = ρin

{
1 +

γ − 1

2
M2

in

(
1− r2in

r2

)}1/(γ−1)

with the remaining flow quantities being derived via isentropic relations [17].
The solution is characterized by the flow quantities used at the inner radius,
which in this case are chosen as ρin = 2 and Min = 0.95. A perturbation is
applied to the grid to prevent grid-dependent error cancellations, by applying
the following transformation to a square linear grid prior to applying the polar
transformation. The transformation applied to the square linear grid is given
by

xn = ξ +
1

10
sin(πξ) sin(πη),

yn = η +
1

10
exp(1− η) sin

(
πξ − 3

4

)
sin(πη),

where [xn, yn] ∈ [0, 1]2 are normalized coordinates and [ξ, η] ∈ [0, 1]2. Flow
tangency is specified at the inner boundary rin = 1, θ ∈ [0, π/2] with Dirichlet
conditions being weakly imposed via SATs at the remaining boundaries. The
outer boundary is given by rout = 3, θ ∈ [0, π/2]. The functional considered
is the drag force in the horizontal direction on the inner boundary and in this
case can be evaluated exactly as −1/γ.

Table 9 summarizes the test case parameters considered for this problem
and provides an index for the numerical results using Lagrange mappings.
Analogous results using B-spline mappings were also produced, and some of
those results are shown in Figure 2. For both the Lagrange and B-spline ap-
proaches for constructing high-order grids the wall normals are computed di-
rectly from either the Lagrange or B-spline mappings at the boundary mortar
nodes. For conciseness, in the following tables the data are only provided for
the degree two and three operators; however, the figures include results for
operators of degree one through four.

Figure 1 gives the convergence of the drag error for the steady vortex
problem with the LGL and LG families of operators when using the Lagrange
approach for generating the high-order grids as outlined in Section 3. In ad-
dition to tabulating the convergence of the drag error, Tables 10, 11, and 12
give the convergence of the entropy and pressure error when using degree p
Lagrange mappings with the baseline approach for the metrics, degree p + 1
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Table 9: Test case matrix and index of numerical results for the steady isen-
tropic vortex problem governed by the Euler equations.

Type of discretization Form of equation Metrics Mapping pg Table

Mortar-element Divergence Baseline Lagrange p 10
Mortar-element Divergence Baseline Lagrange p+ 1 11
Mortar-element Divergence Modified Lagrange p+ 1 12

Lagrange mappings with the baseline approach for the metrics, and degree
p+ 1 Lagrange mappings with the modified approach for the metrics, respec-
tively. For the LGL operators, there is an improvement in the accuracy of the
drag with the degree p+ 1 mappings relative to the degree p mappings due to
the accuracy with which the boundary normal in the flow tangency boundary
condition can be computed. This agrees with Theorem 1. For the LGL opera-
tors, the baseline and modified approaches for the metrics give similar results,
with respect to both solution and functional accuracy. With respect to solu-
tion accuracy with the LGL operators, only the degree p = 1 LGL operators
demonstrate a reduction in the error in entropy when going from a degree p
geometry representation to a degree p + 1 geometry representation, regard-
less of whether the baseline or modified approach for the metrics is used. In
contrast, similar to the observations of Zwanenburg and Nadarajah [35], there
is a noticeable reduction in pressure error when going from a degree p to a
degree p + 1 geometry representation with degree p = 1 through p = 4 LGL
operators, when using either the baseline or modified metrics.

From Figure 1 and Table 10, for the LG operators with degree p mappings,
suboptimal functional convergence is obtained due to the accuracy with which
the boundary normal can be represented, which is qualitatively similar to
the behaviour of the drag error when using the LGL operators with degree
p mappings. Referring to Figure 1 and Table 11, increasing the degree of the
mappings to p + 1 can rectify this issue with the boundary normal; however,
using the baseline approach for the metrics with degree p+1 mappings leads to
significantly reduced functional convergence rates for LG operators since their
corresponding extrapolation operators are only degree p accurate. However,
from Figure 1 and Table 12, functional superconvergence is recovered for the
LG operators with the modified approach for the metrics with degree p + 1
mappings. Furthermore, the best case functional convergence rate approaches
2p + 1 with the LG operators, which is better than the best case functional
convergence rate of about 2p with the LGL operators.

Referring to Tables 10 and 11, with respect to solution accuracy, the degree
p = 1 through p = 4 LG operators all exhibit reduced entropy error when going
from degree p to degree p+ 1 mappings when using the baseline approach for
the metrics. Furthermore, note that the entropy error converges at a rate of
at least p + 1 when using degree p mappings for the degree p = 2 through
p = 4 LG operators, and that these rates do not increase when using the p+ 1
mappings. Despite this, the absolute value of the entropy error is reduced when
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(c) LGL, p+ 1, modified.
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(f) LG, p+ 1, modified.

Fig. 1: Convergence of drag error for the steady isentropic vortex problem
governed by the Euler equations. The caption of each sub plot indicates the
operator, degree of mapping, and approach for the metrics, respectively. La-
grange mappings are used.

using degree p+1 mappings with the baseline approach for the metrics. Finally,
comparing Tables 11 and 12, there is not a notable difference between both
the convergence rates and absolute values of the entropy error when using
degree p + 1 mappings with either the baseline or modified metrics for the
LG operators. For pressure error with the LG operators, comparing Tables
10 and 11, there is a reduction in pressure error when going from degree p
to p + 1 mappings with baseline metrics; however, in the former case none
of the LG operators exhibit p + 1 convergence rates and in the latter case
only the odd-degree LG operators obtain p + 1 convergence while the even-
degree LG operators exhibit p convergence. Finally, comparing Tables 11 and
12, an even greater improvement in pressure error is observed when using the
modified metrics with degree p+1 mappings with all LG operators considered
achieving optimal p+ 1 convergence rates.

The discussion thus far has focused on the results in Figure 1 and Tables
10, 11, and 12, which involve schemes that use the Lagrange approach for con-
structing high-order grids. Analogous results using the B-spline approach for
constructing high-order grids were generated, and a portion of those results are
highlighted in Figure 2. Relative to the results with Lagrange mappings, the
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Table 10: Numerical results for the mortar-element discretization of the diver-
gence form of the Euler equations when solving the steady isentropic vortex
problem using the baseline approach for the metrics with a degree p Lagrange
mapping in each element. Table 9 gives the index of numerical results. Con-
vergence rates based on the three finest grids.

LGL operator error LG operator error

p Element size Entropy Pressure Drag Entropy Pressure Drag

2 1.00e−01 6.91e−04 5.66e−03 1.28e−03 2.06e−04 3.97e−03 3.95e−04
5.00e−02 7.46e−05 1.29e−03 1.10e−04 2.14e−05 8.32e−04 3.32e−05
3.33e−02 2.16e−05 5.39e−04 2.45e−05 5.69e−06 3.26e−04 7.31e−06
2.50e−02 9.31e−06 2.85e−04 8.32e−06 2.22e−06 1.66e−04 2.46e−06
2.00e−02 4.93e−06 1.73e−04 3.57e−06 1.07e−06 9.82e−05 1.05e−06

Convergence rate 2.90 2.22 3.77 3.26 2.35 3.80

3 1.00e−01 4.70e−05 5.92e−04 7.04e−06 2.01e−05 4.11e−04 7.22e−06
5.00e−02 2.55e−06 7.12e−05 5.88e−07 9.65e−07 4.18e−05 5.40e−07
3.33e−02 5.26e−07 1.98e−05 1.14e−07 1.62e−07 1.08e−05 1.09e−07
2.50e−02 1.82e−07 7.84e−06 3.56e−08 4.60e−08 4.14e−06 3.43e−08
2.00e−02 8.14e−08 3.80e−06 1.44e−08 1.73e−08 1.95e−06 1.40e−08

Convergence rate 3.65 3.23 4.06 4.38 3.36 4.02

Table 11: Numerical results for the mortar-element discretization of the diver-
gence form of the Euler equations when solving the steady isentropic vortex
problem using the baseline approach for the metrics with a degree p + 1 La-
grange mapping in each element. Table 9 gives the index of numerical results.
Convergence rates based on the three finest grids.

LGL operator error LG operator error

p Element size Entropy Pressure Drag Entropy Pressure Drag

2 1.00e−01 3.80e−04 5.67e−03 5.66e−04 9.53e−05 2.23e−03 1.95e−02
5.00e−02 5.47e−05 7.69e−04 3.95e−05 1.12e−05 5.92e−04 4.97e−03
3.33e−02 1.80e−05 2.40e−04 7.93e−06 3.24e−06 2.66e−04 2.21e−03
2.50e−02 8.26e−06 1.05e−04 2.52e−06 1.35e−06 1.50e−04 1.25e−03
2.00e−02 4.53e−06 5.51e−05 1.04e−06 6.88e−07 9.63e−05 7.98e−04

Convergence rate 2.70 2.88 3.98 3.03 1.99 2.00

3 1.00e−01 3.99e−05 4.36e−04 7.01e−06 5.75e−06 7.23e−05 2.29e−04
5.00e−02 2.73e−06 2.88e−05 5.20e−08 3.56e−07 4.68e−06 1.47e−05
3.33e−02 5.90e−07 5.82e−06 3.14e−09 7.02e−08 9.30e−07 2.91e−06
2.50e−02 2.03e−07 1.87e−06 4.80e−10 2.22e−08 2.95e−07 9.24e−07
2.00e−02 8.94e−08 7.71e−07 1.22e−10 9.06e−09 1.21e−07 3.79e−07

Convergence rate 3.69 3.96 6.36 4.01 3.99 4.00

results with B-spline mappings are qualitatively similar. The main difference
between the two approaches as currently implemented is that the Lagrange
approach naturally mimics the stretching of the initial grid within elements
while the B-spline approach does not. However, by not mimicking the stretch-
ing of the initial grid within elements, the B-spline approach benefits from
some error cancellations—potentially associated with the annular geometry
and symmetry—that improve its performance relative to the Lagrange ap-
proach with respect to solution and functional accuracy. Figure 2 provides
an example result comparing the convergence of pressure and drag error with
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Table 12: Numerical results for the mortar-element discretization of the diver-
gence form of the Euler equations when solving the steady isentropic vortex
problem using the modified approach for the metrics with a degree p+ 1 La-
grange mapping in each element. Table 9 gives the index of numerical results.
Convergence rates based on the three finest grids.

LGL operator error LG operator error

p Element size Entropy Pressure Drag Entropy Pressure Drag

2 1.00e−01 4.55e−04 7.01e−03 5.48e−04 8.95e−05 4.50e−04 1.96e−07
5.00e−02 5.76e−05 9.28e−04 3.96e−05 1.07e−05 5.31e−05 3.93e−07
3.33e−02 1.85e−05 2.86e−04 7.74e−06 3.12e−06 1.52e−05 9.19e−08
2.50e−02 8.37e−06 1.23e−04 2.41e−06 1.31e−06 6.28e−06 3.06e−08
2.00e−02 4.57e−06 6.41e−05 9.77e−07 6.68e−07 3.17e−06 1.29e−08

Convergence rate 2.73 2.92 4.05 3.01 3.07 3.85

3 1.00e−01 4.31e−05 4.55e−04 7.13e−06 5.63e−06 2.19e−05 3.26e−07
5.00e−02 2.83e−06 2.98e−05 5.64e−08 3.55e−07 1.35e−06 3.76e−09
3.33e−02 6.03e−07 6.04e−06 3.74e−09 7.01e−08 2.64e−07 2.72e−10
2.50e−02 2.06e−07 1.94e−06 6.08e−10 2.21e−08 8.24e−08 3.99e−11
2.00e−02 9.04e−08 8.00e−07 1.59e−10 9.06e−09 3.34e−08 8.06e−12

Convergence rate 3.71 3.96 6.19 4.01 4.04 6.89

LGL operators when using degree p+ 1 Lagrange and B-spline mappings with
the modified approach for the metrics. The difference is subtle; however, in
general the B-spline approach results in slightly reduced drag and pressure
errors compared to the Lagrange approach.

5.5.2 Two-dimensional subsonic channel flow over a Gaussian bump

In this section, subsonic channel flow over a Gaussian bump is considered,
governed by the Euler equations. The purpose of this section is to investigate
the impact of superparametric geometry representations and to compare the
different approaches for the metrics in the context of a somewhat more chal-
lenging test case. An efficiency study is also performed, with respect to both
total degrees of freedom and core hours. The physical domain for this problem
is given by

Ω :=

{
(x1, x2) ∈ [−1.5, 1.5]× (0, 0.8]

∣∣∣ x2 > 3

32
e−25x

2
1

}
.

A small perturbation is applied to the grid using the following transformation

xn = ξ +
7

200
exp(1− η) sin(πξ) sin

(
πη − 7

4

)
,

yn = η − 7

200
sin(πξ) sin(πη),

where [xn, yn] ∈ [0, 1]2 are normalized coordinates. The boundary conditions
are as follows: left boundary—subsonic inflow, right boundary—subsonic out-
flow, top boundary—symmetry, bottom boundary—flow tangency. The flow
tangency and symmetry boundary conditions are enforced by projecting out
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(c) LGL, Lagrange mappings.
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(d) LGL, B-spline mappings.

Fig. 2: Convergence of pressure and drag error for the steady isentropic vortex
problem governed by the Euler equations. The caption of each sub plot indi-
cates the operator and type of mapping, respectively. Degree p+ 1 mappings
with the modified approach for the metrics are used.

the normal component of momentum at the wall as described in Sections 5.1
and 5.3. The subsonic inflow and outflow conditions used are outlined in Ap-
pendix B of Fidkowski’s Master’s thesis [12]. The functional of interest is a
weighted lift:

I(u) =

∫
x1∈[−1.5,1.5], x2=

3
32 e

−25x21

nx2
p(u)e−8x

2
1 ds,

where the Gaussian weight e−8x
2
1 is used to localize the output around the

bump portion of the channel [22]. The flow in the channel is initialized with
freestream conditions and driven to a steady state via a parallel Newton-
Krylov-Schur algorithm [15,26].

Table 13 lists the test cases considered for this problem. The grids, metrics,
and wall normals are handled in a similar manner to the steady isentropic test
case. Figure 3 gives the convergence of the lift error for the steady bump
problem with LGL and LG operators when using the Lagrange approach for
constructing the high-order grids used in the refinement studies. Tables 14,
15, and 16 give the convergence of the entropy, lift, and drag error when
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Table 13: Test case matrix and index of numerical results for the subsonic
channel flow over a Gaussian bump problem governed by the Euler equations.

Type of discretization Form of equation Metrics Mapping pg Table

Mortar-element Divergence Baseline Lagrange p 14
Mortar-element Divergence Baseline Lagrange p+ 1 15
Mortar-element Divergence Modified Lagrange p+ 1 16

using degree p Lagrange mappings with the baseline approach for the metrics,
degree p+1 Lagrange mappings with the baseline approach for the metrics, and
degree p + 1 Lagrange mappings with the modified approach for the metrics,
respectively. The reference values of lift and drag for this problem are based on
a fine grid solution using degree p = 4 LG operators with degree p+1 Lagrange
mappings in each element and using the modified approach for the metrics. The
fine grid has 108 elements in the streamwise direction and 36 elements in the
normal direction, whereas the finest grid used in the convergence studies has 90
elements in the streamwise direction and 30 elements in the normal direction.
For the LGL operators, there is a noticeable benefit in terms of lift error when
using degree p+ 1 mappings compared to using degree p mappings due to the
increased accuracy with which the boundary normals can be computed in the
flow tangency boundary condition. The drag error is already quite accurate
with the degree p mapping, potentially due to the symmetry of the problem,
and therefore does not benefit nearly as much as the lift error when going from
the degree p to the degree p+ 1 mapping. With respect to entropy error, the
benefit of using a degree p + 1 mapping is primarily observed in the context
of the degree p = 1 operator, consistent with Bassi and Rebay [1]. For the LG
operators in Figure 3, the convergence rates of the lift error with the degree
p mapping are suboptimal due to the insufficient accuracy of the normals.
Likewise, the convergence rates of the lift error with the degree p+ 1 mapping
are suboptimal due to the baseline approach for the metrics that involves
extrapolating the volume metrics to obtain the surface metrics, which can only
be done with degree p accuracy due to the accuracy of the LG extrapolation
operators. The results with the degree p + 1 mappings and modified metrics
show that functional superconvergence with respect to lift can be recovered
with LG operators and that they can outperform LGL operators in some cases.

Finally, Figure 4 gives the efficiency of the various best-case schemes with
respect to total degrees of freedom and core hours, respectively, where

core hours = (number of cores)× (wall-clock time in hours) .

Results with degree one through three CSBP operators under traditional re-
finement are included for comparison. The results with the LGL/LG and CSBP
schemes were obtained using 12 Intel cores each. Furthermore, for all cases the
system is solved to relative and absolute residual norm tolerances of 10−12.
For the CSBP schemes, the wall normals are approximated by constructing
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(c) LGL, p+ 1, modified.
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(f) LG, p+ 1, modified.

Fig. 3: Convergence of lift error for the subsonic channel flow over a Gaussian
bump problem governed by the Euler equations. The caption of each sub
plot indicates the operator, degree of mapping, and approach for the metrics,
respectively. Lagrange mappings are used.

degree p + 1 one-sided stencils at the boundaries. High-order grids for the
CSBP schemes considered are constructed directly using the exact analytical
mapping and the alternative approach for computing the wall normals summa-
rized above is used along with the baseline approach for the metrics. Referring
to Figure 4, in terms of total degrees of freedom, the purely element-type
schemes are generally more accurate. In contrast, the CSBP schemes with tra-
ditional refinement can be more efficient with respect to core hours due to
the decreased number of SATs and increased sparsity relative to the purely
element-type schemes. Finally, the competitiveness of the CSBP schemes in
the current context is partially due to the smoothness of the grids considered.
For more distorted or highly-stretched grids, it is expected that the efficiency
of the LGL/LG schemes would improve relative to the CSBP schemes.

6 Conclusions

High-order tensor-product generalized SBP discretizations have been investi-
gated and conditions for obtaining accurate solutions and functionals for CFD
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Table 14: Numerical results for the mortar-element discretization of the di-
vergence form of the Euler equations when solving the subsonic channel flow
over a Gaussian bump problem using the baseline approach for the metrics
with a degree p Lagrange mapping in each element. Table 13 gives the index
of numerical results. Convergence rates based on the three finest grids.

LGL operator error LG operator error

p Element size Entropy Lift Drag Entropy Lift Drag

2 9.62e−02 6.52e−04 6.96e−04 2.48e−04 3.00e−04 8.23e−04 3.74e−04
4.81e−02 9.25e−05 1.12e−04 4.12e−05 3.69e−05 5.18e−05 2.09e−05
3.21e−02 2.53e−05 2.09e−05 6.37e−06 9.59e−06 1.01e−05 3.90e−06
2.41e−02 1.19e−05 6.89e−06 2.01e−06 3.62e−06 3.19e−06 1.21e−06
1.92e−02 7.31e−06 2.91e−06 8.18e−07 1.70e−06 1.31e−06 4.90e−07

Convergence rate 2.43 3.86 4.02 3.39 4.00 4.06

3 9.62e−02 1.60e−04 1.03e−04 6.02e−05 6.04e−05 5.30e−06 1.30e−05
4.81e−02 9.15e−06 2.88e−06 7.33e−07 2.52e−06 1.95e−06 2.86e−07
3.21e−02 2.55e−06 4.36e−07 4.63e−09 3.55e−07 4.52e−07 2.79e−08
2.41e−02 1.10e−06 1.46e−07 4.24e−10 1.01e−07 1.52e−07 4.65e−09
1.92e−02 5.50e−07 6.25e−08 3.42e−10 3.63e−08 6.37e−08 1.11e−09

Convergence rate 3.00 3.80 5.10 4.46 3.84 6.31

Table 15: Numerical results for the mortar-element discretization of the diver-
gence form of the Euler equations when solving the subsonic channel flow over
a Gaussian bump problem using the baseline approach for the metrics with a
degree p + 1 Lagrange mapping in each element. Table 13 gives the index of
numerical results. Convergence rates based on the three finest grids.

LGL operator error LG operator error

p Element size Entropy Lift Drag Entropy Lift Drag

2 9.62e−02 7.18e−04 5.78e−04 4.98e−04 1.93e−04 6.53e−04 1.38e−03
4.81e−02 8.95e−05 7.54e−06 6.44e−06 2.78e−05 2.97e−04 1.66e−04
3.21e−02 2.56e−05 3.23e−06 2.04e−06 7.47e−06 1.48e−04 5.00e−05
2.41e−02 1.22e−05 1.40e−06 9.04e−07 2.85e−06 8.66e−05 2.21e−05
1.92e−02 7.50e−06 6.59e−07 4.42e−07 1.34e−06 5.67e−05 1.20e−05

Convergence rate 2.41 3.11 2.99 3.36 1.87 2.80

3 9.62e−02 1.68e−04 1.08e−04 5.85e−05 5.64e−05 2.33e−05 1.37e−05
4.81e−02 9.93e−06 1.28e−06 1.18e−06 2.42e−06 1.86e−06 6.60e−07
3.21e−02 2.62e−06 2.94e−08 4.01e−08 3.45e−07 5.26e−07 8.75e−08
2.41e−02 1.12e−06 3.99e−09 8.39e−09 9.81e−08 1.89e−07 1.92e−08
1.92e−02 5.55e−07 1.38e−09 2.44e−09 3.55e−08 8.28e−08 5.80e−09

Convergence rate 3.04 5.99 5.48 4.45 3.62 5.31

problems of increasing practical complexity have been delineated. In Section 3,
two procedures for constructing high-order grids were presented based on La-
grange polynomials and B-splines. The requirements for achieving functional
superconvergence with generalized SBP discretizations of the linear convection
(Section 4) and Euler (Section 5) equations were outlined. The main features
of a discretization affecting functional superconvergence include the represen-
tation of the geometry, the approximation of the metrics, and the approxi-
mation of the normals appearing in the flow tangency boundary condition.
Work remains to determine the analogous requirements for obtaining accurate
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Table 16: Numerical results for the mortar-element discretization of the diver-
gence form of the Euler equations when solving the subsonic channel flow over
a Gaussian bump problem using the modified approach for the metrics with a
degree p + 1 Lagrange mapping in each element. Table 13 gives the index of
numerical results. Lift and drag convergence rates for the degree p = 2 opera-
tors are based on the three middle grids. Convergence rates for entropy error
and the degree p = 3 operators are based on the three finest grids.

LGL operator error LG operator error

p Element size Entropy Lift Drag Entropy Lift Drag

2 9.62e−02 8.46e−04 2.27e−06 2.22e−05 2.06e−04 3.53e−04 2.14e−04
4.81e−02 1.04e−04 2.70e−05 2.06e−05 2.94e−05 1.29e−05 1.07e−05
3.21e−02 2.89e−05 7.71e−08 1.31e−07 7.97e−06 1.68e−06 1.52e−06
2.41e−02 1.31e−05 5.48e−07 3.56e−07 3.06e−06 3.62e−07 3.72e−07
1.92e−02 7.83e−06 3.49e−07 2.55e−07 1.45e−06 1.07e−07 1.25e−07

Convergence rate 2.98 5.62 5.85 3.27 5.16 4.85

3 9.62e−02 1.61e−04 1.24e−04 7.36e−05 5.36e−05 1.73e−05 1.34e−05
4.81e−02 1.00e−05 1.12e−06 1.08e−06 2.44e−06 1.65e−07 1.12e−07
3.21e−02 2.62e−06 1.86e−08 3.38e−08 3.58e−07 7.83e−09 7.71e−09
2.41e−02 1.11e−06 2.35e−09 7.59e−09 1.02e−07 1.26e−09 1.24e−09
1.92e−02 5.51e−07 9.91e−10 2.28e−09 3.69e−08 2.30e−10 2.59e−10

Convergence rate 3.05 5.74 5.28 4.45 6.90 6.64

solutions and functionals for more complex problems based on large eddy sim-
ulations and those involving the Reynolds-averaged Navier-Stokes equations.

Acknowledgements A portion of the plots appearing in this paper were created using
Matplotlib [19].
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Fig. 4: Convergence of lift error as a function of grid size based on the total
number of grid nodes and core hours for the subsonic channel flow over a
Gaussian bump problem governed by the Euler equations. The caption of
each sub plot indicates the operator, degree of mapping, and approach for
the metrics, respectively. Lagrange mappings are used for the LGL and LG
schemes.
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