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Abstract Multidimensional diagonal-norm summation-by-parts (SBP) operators with collocated volume
and facet nodes, known as diagonal-E operators, are attractive for entropy-stable discretizations from
an efficiency standpoint. However, there is a limited number of such operators, and those currently in
existence often have a relatively high node count for a given polynomial order due to a scarcity of suitable
quadrature rules. We present several new symmetric positive-weight quadrature rules on triangles and
tetrahedra that are suitable for construction of diagonal-E SBP operators. For triangles, quadrature rules
of degree one through twenty with facet nodes that correspond to the Legendre-Gauss-Lobatto (LGL)
and Legendre-Gauss (LG) quadrature rules are derived. For tetrahedra, quadrature rules of degree one
through ten are presented along with the corresponding facet quadrature rules. All of the quadrature rules
are provided in a supplementary data repository. The quadrature rules are used to construct novel SBP
diagonal-E operators, whose accuracy and maximum time-step restrictions are studied numerically.
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1 Introduction

Summation-by-parts (SBP) operators enable the construction of entropy-stable high-order discretizations
of the Euler and Navier-Stokes equations [9,4,1,10,24,5,27]. Diagonal-norm SBP operators have collocated
solution and volume quadrature nodes, which enables straightforward inversion of the norm/mass matrix,
facilitating efficient implementation of high-order methods with explicit time-marching schemes. Due to
the collocation, the efficiency of the method is significantly affected by the number of quadrature nodes.
This is even more prominent for the Hadamard-form entropy-stable discretizations [9,4] of the Euler and
Navier-Stokes equations on simplices, as a volume flux computation coupling each node with all other
nodes must be calculated. Therefore, the development of quadrature rules with fewer nodes on simplices is
imperative to improve efficiency of entropy-stable discretizations with diagonal-norm SBP operators. While
existing positive interior (PI) quadrature rules offer the fewest nodes for a given quadrature accuracy, their
use for entropy-stable SBP discretizations requires expensive element coupling computations, although
there are ways to reduce this cost to some extent [1,28]. Alternatives to PI rules for SBP operators have
been proposed; notably, Hicken et al. [13] derived quadrature rules with a set of volume nodes on each
facet of the triangle and tetrahedron, and Chen and Shu [2] presented rules on the triangle that enable
construction of SBP operators with collocated volume and facet quadrature nodes, which are referred to
as diagonal-E or R0[20] SBP operators. Diagonal-E SBP operators eliminate the need to extrapolate the
solution from volume to facet nodes and are of particular interest for entropy-stable SBP discretizations as
they reduce the cost of element coupling operations and enable straightforward enforcement of boundary
conditions. However, the number of nodes required for the quadrature rules of existing diagonal-E operators
is significantly larger than that of the PI rules, especially for the tetrahedron. Furthermore, only a limited
number of rules of this type are available in the literature. In light of this, the goal of this paper is to
find efficient quadrature rules on the triangle and tetrahedron for the purpose of constructing efficient
diagonal-norm diagonal-E multidimensional SBP operators.

Quadrature rules with boundary nodes on simplices have been explored, although to a lesser extent
than PI rules. Sets of nodes on the triangle that are typically well-suited for interpolation or quadrature
accuracy have both been utilized to derive such rules, e.g., see [29,3,23,11,31,33,19] among others. Similar
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studies for the tetrahedron, however, are lacking. A shared property of several of the nodal sets in the
mentioned studies is that for a degree p operator there are p + 1 nodes on each facet of the triangle,
and vertices are included. This automatically excludes the rules from being applicable for construction of
diagonal-E SBP operators, as the facet quadrature accuracy is not sufficient. We recall that a sufficient
condition on the facet quadrature rule for the existence of a degree p SBP operator is that it be at
least of degree 2p accurate. Although this is only a sufficient condition, as is evident from the existence of
Legendre-Gauss-Lobatto (LGL) tensor-product operators on quadrilaterals and hexahedra, to the authors’
knowledge, no diagonal-E SBP operator on simplices with facet quadrature rule of degree less than 2p has
been constructed.

Odd-degree quadrature rules on the triangle for diagonal-E SBP operators with Legendre-Gauss (LG)
facet nodes were first introduced in [2], followed by even degree rules with LGL and LG facet nodes in [5,
12] and odd-degree rules with LGL facet nodes in [36]. Together, these studies provide quadrature rules up
to degree eight1 on the triangle. For the tetrahedron, Hicken [12] derived even degree quadrature rules up
to degree eight with PI rule facet nodes. Marchildon and Zingg [20] studied optimization of these operators
and developed novel rules up to degree four on the tetrahedron, managing to lower the number of nodes
for the degree two and four quadrature rules. This was achieved by allowing the facet nodes to be placed
at the vertices and edges of the tetrahedron. Other efforts to improve the efficiency of entropy-stable
discretizations with multidimensional SBP operators include, for instance, the use of staggered grids in
[5], entropy-split formulations in [35], and collapsed coordinate tensor-product elements in [22].

In this paper, we derive symmetric quadrature rules for construction of diagonal-norm diagonal-E SBP
operators on triangles and tetrahedra using the open-source Julia code SummationByParts.jl (v0.2.0)
[12], which employs the Levenberg-Marquardt algorithm (LMA) [18,21] to solve the nonlinear systems
of equations that arise from the quadrature accuracy conditions. The code’s capability is enhanced by
enforcing a constraint to find positive weights and by combining it with a particle swarm optimization
(PSO) [16] subroutine to mitigate issues related to initial guesses and convergence to suboptimal local
minima. We extend the available set of quadrature rules for diagonal-E operators up to degree twenty
on triangles with both the LGL and LG facet node configurations, and up to degree ten for tetrahedra,
achieving a significant reduction in the number of nodes relative to many of the existing rules. The new
rules are used to construct novel diagonal-E SBP operators, whose accuracy and time-step restrictions are
studied numerically.

The rest of the paper is organized as follows: Section 2 describes the problem statement and symmetry
groups on the reference triangle and tetrahedron, Section 3 details the methodology employed, Section 4
presents the derived quadrature rules along with a description of multidimensional SBP operators and
their construction, and numerical results are presented in Section 5 followed by conclusions in Section 6.

2 Preliminaries

Constructing quadrature rules over a domain of interest requires solving highly nonlinear systems of
equations to find the nodal locations and weights. Usually, quadrature rules are designed to be exact
for a desired degree of polynomial functions. The problem can be stated as: find x and w such that∫

Ω

Pj (x̂) dΩ =

np∑
i=1

wiPj (xi) , j ∈ {1, . . . , nb}, (2.1)

where x̂ = [x1, . . . , xd]T , d is the spatial dimension, x is the vector of the coordinate tuples of the nodes, w
is the vector of quadrature weights, and np and nb denote the number of quadrature points and polynomial
basis functions, respectively. For a degree qv accurate quadrature rule on a simplex, there are nb =

(
p+d
d

)
polynomial basis functions. Rewriting the problem statement in matrix form, we have

g := VTw − f = 0, (2.2)

where V is the Vandermonde matrix containing evaluations of the basis functions at each node along its

columns and f =
[∫
Ω
P1 (x̂) dΩ , . . . ,

∫
Ω
Pnb (x̂) dΩ

]T
. The basis functions used to construct the Vander-

monde matrix affect its condition number. It is well-known that, for high-order polynomials, monomial
basis functions result in an ill-conditioned V. In contrast, the orthonormal Proriol-Koornwinder-Dubiner
(PKD) [26,17,7] basis functions offer better conditioning and a convenient f vector; all except the first
entry of f are zero due to the orthogonality of the basis functions.

For the purpose of constructing a degree p diagonal-norm diagonal-E multidimensional SBP operator,
we require that:

1 [12] (v0.1.0) provides additional rules of degree 12 and 16 with LGL facet nodes.
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i. all quadrature points lie in the closure of the simplex,
ii. all weights are positive,
iii. the volume quadrature is at least degree qv = 2p− 1 accurate,
iv. a subset of the quadrature points lying on each facet form a positive-weight facet quadrature rule of

at least degree qf = 2p, and
v. both the facet and volume quadrature rules are symmetric.

The symmetry requirement ensures that a solution obtained using the SBP operators is not spatially
biased within an element. Furthermore, the symmetry constraints reduce the number of unknowns in (2.2)
substantially [32].

The reference triangle and tetrahedron are defined, respectively, as

Ωtri = {(x, y) | x, y ≥ −1; x+ y ≤ 0}, (2.3)

Ωtet = {(x, y, z) | x, y, z ≥ −1; x+ y + z ≤ −1}. (2.4)

There are three symmetry groups on the triangle, and five on the tetrahedron [8,38,32]. However, we will
identify symmetric nodes that lie on the facets of the simplices as being in separate symmetry groups. On
the triangle, the symmetry groups, in barycentric coordinates, are permutations of

S1 =

(
1

3
,

1

3
,

1

3

)
, S21 = (α, α, 1− 2α), S111 = (α, β, 1− α− β),

Svert = (1, 0, 0) , Smid-edge =

(
1

2
,

1

2
, 0

)
, Sedge = (α, 1− α, 0) ,

(2.5)

where α and β are parameters such that the quadrature points lie in the closure of the domain. The
symmetry groups in the first line of (2.5) represent interior points, while those in the second line denote
points on the facets. Similarly, the symmetry groups on the reference tetrahedron are permutations of

S1 =

(
1

4
,

1

4
,

1

4
,

1

4

)
, Sface-cent =

(
1

3
,

1

3
,

1

3
, 0

)
,

S31 = (α, α, α, 1− 3α) , Svert = (1, 0, 0, 0) ,

S22 = (α, α, 1− α, 1− α) , Smid-edge =

(
1

2
,

1

2
, 0, 0

)
,

S211 = (α, α, β, 1− 2α− β) , Sface-21 = (α, α, 1− 2α, 0),

S1111 = (α, β, γ, 1− α− β − γ) , Sedge = (β, 1− β, 0, 0) ,

Sface-111 = (α, β, 1− α− β, 0) .

(2.6)

The facet symmetry groups in the right column of (2.6) are special cases of the symmetry groups in the
left column, which are used in this work to denote interior points exclusively.

3 Methodology

The Vandermonde matrix in (2.2) is a function of the quadrature points, x; hence, the algorithm to solve
the equation starts by guessing the nodal locations and weights. This is done indirectly by providing the
type and number of symmetry groups and the values of the associated parameters and weights. Using
the initial guess of the parameters, it is possible to compute the coordinates of the i-th node using the
transformation,

xi = TTλk, (3.1)

where T ∈ R(d+1)×d contains the coordinates of the d+1 vertices in its rows and λk is the k-th permutation
of the barycentric coordinates of the symmetry group that corresponds to the i-th node. The weight vector,
w, is constructed by assigning equal weights to all nodes in the same symmetry group.

To derive a degree qv quadrature rule satisfying all the properties required to construct a degree p
SBP diagonal-E operator, we first need to find a facet quadrature rule of degree qf ≥ 2p. On the reference
triangle, we use either the LGL rule with nf = p + 2 facet nodes (including the vertices) or the LG rule
with nf = p+ 1. In construction of the volume quadrature rule, we fix the facet quadrature points; hence,
the parameters in the facet symmetry groups are kept constant, i.e., we solve for the weights at all points
and for the parameters associated with the interior symmetry groups. A similar strategy is followed to find
the quadrature rules on the tetrahedron. While existing PI rules can be used as facet quadrature rules for
the tetrahedron, they generally lead to more volume nodes than necessary. Hence, we first construct facet
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Table 3.1 Number of tetrahedron volume nodes due to inclusion of facet symmetry groups

group Sface-cent Svert Smid-edge Sface-21 Sedge Sface-111

# nodes 4 4 6 12 12 24

quadrature rules of degree 2p that would result in fewer volume quadrature points on the tetrahedron by
placing some of the nodes at the vertices and/or edges of the facets. We note that, depending on their
nodal locations, symmetry groups with the same number of nodes on the triangle can produce a different
number of nodes on the tetrahedron when applied to its facets. For example, each of the Svert and Sface-21

symmetry groups results in three nodes per facet, but four and twelve volume nodes, respectively. The
number of volume nodes due to inclusion of the various facet symmetry groups of the tetrahedron is
presented in Table 3.1.

The problem in (2.2) can be written equivalently as a minimization problem,

min
τ

1

2
gT g, (3.2)

where τ = [λ̂, ŵ]T , and λ̂ and ŵ are vectors of all the parameters and weights associated with each
symmetry group. The LMA is widely used to solve (3.2) as it is less sensitive to initial guesses than
Newton’s method. The LMA computes the step direction, h, which is initialized as the zero vector, as

h̃ = −Ã+J̃T g, (3.3)

where A = JT J + νdiag(JT J), and ν > 0 controls the scale of exploration. The initialization of h as
the zero vector is important, as the parameters that correspond to the facet node locations must remain
unchanged; updating the parameter vector as in (3.6) below will update only the entries of the parameter

vector corresponding to the nonzero entries of h. The symbol (̃·) denotes extraction of the rows and
columns of a vector or matrix that correspond to the parameters of the interior symmetry groups and all
weights, which are updated iteratively. Note that the notation (·)+ in (3.3) denotes the Moore-Penrose
pseudo-inverse, J ∈ Rnb×nτ is the Jacobian matrix given by

J(i,j) =
∂gi
∂τj

, (3.4)

and nτ is the sum of the number of parameters and weights. The Jacobian can also be written in terms of
block matrices as

J =

[
d∑
k=1

VTxkdiag(w)
∂x(:,k)

∂λ̂
,VT

∂w

∂ŵ

]
, (3.5)

where Vxk is the k-th direction derivative of V and x(:,k)is the k-th direction component vector of x. The

matrix ∂x(:,k)/∂λ̂ is computed using the relation in (3.1), and ∂w/∂ŵ is a matrix of zeros and ones. The
value of ν is initially set to 1000, but it is gradually reduced or increased depending on the convergence of
the objective function.

The algorithm starts with an initial guess, τ (0), and the value of τ at the n-th iteration is updated as

τ (n+1) = τ (n) + η(n)h(n), (3.6)

where η(n) = 1 is used unless a negative weight is encountered. If a negative weight is encountered at the
i-th entry of τ (n+1), then the update is recomputed using

η(n) =
(ε− τ (n)

i )

h
(n)
i

, (3.7)

where ε > 0 is an arbitrary lower bound for the update of the negative weight, and is set to ε = 10−4 in
all of our cases.

Despite being more robust than Newton’s method, the LMA still suffers from poor initial guesses;
especially, as the number of parameters grows and the quadrature accuracy increases, often stagnating
at a suboptimal local minimum. To mitigate these issues, the LMA is coupled with a particle swarm
optimization (PSO) algorithm. The PSO algorithm starts with an initialization of nc particles, each with
a random initial guess of τ . The objective function, g, given in (2.2), is computed for each particle and the
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personal best, τpb, and global best, τgb, approximations are tracked throughout the iterations. The PSO
step size or velocity vector, v, which is initialized as the zero vector, is computed for each particle as

ṽ(n+1) = bṽ(n) + c1r1 ◦
(
τ̃
(n)
pb − τ̃

(n)
)

+ c2r2 ◦
(
τ̃
(n)
gb − τ̃

(n)
)
, (3.8)

where b = 0.6 is the inertial weight parameter, c1 = 1.5 is the cognitive parameter, c2 = 1.5 is the social
parameter, r1 and r2 are vectors of length equal to that of τ̃ with uniform random entries on [0, 1], and ◦
denotes an elementwise multiplication. The vector, τ , is updated at each iteration as

τ (n+1) = τ (n) + v(n+1). (3.9)

If a negative weight is encountered for any particle, it is simply replaced by a small positive number, e.g.,
10−4, and the update is recomputed. As the quadrature accuracy is increased, the algorithm sometimes
stagnates at a local minimum and further exploration is hindered. If the same local minimum is obtained
over a number of iterations, then τ̃ is perturbed as (1 − δ)τ̃ + δr, where r is a vector of length equal to
the length of τ̃ with uniform random entries on [0, 1] and δ > 0 is an arbitrary small number. The choice
of the value of δ depends on the quadrature degree, as the sensitivity to perturbation increases with the
quadrature degree.

The PSO and LMA are coupled in such a way that the output vector of one is used as an initial vector
of the other in a loop until convergence to machine precision. The PSO mitigates issues related to initial
guesses and convergence to suboptimal local minima, while the LMA offers fast convergence when good
initial values are provided. Despite the efficiency of the coupled algorithm, at very high quadrature degrees,
the minimization sometimes stagnates before convergence is realized. In such cases, the minimization is
restarted, and in some instances, the parameters associated with the interior nodes are initialized using
parameters of known PI rules.

4 Quadrature rules and SBP operators

An SBP operator on a compact reference domain, Ω̂, with a piecewise smooth boundary, Γ̂ , is defined as
[13]:

Definition 4.1 Dx̂i ∈ Rnp×np is a degree p SBP operator in the i-direction approximating the first
derivative ∂

∂x̂i
on the set of nodes S = {xj}npj=1 if

1. [Dx̂ip]j = ∂P
∂x̂i

(xj) for all P ∈ Pp(Ω̂)

2. Dx̂i = H−1Qx̂i , where H is a symmetric positive definite matrix, and
3. Qx̂i + QTx̂i = Ex̂i , where

pTEx̂iq =

∫
Γ̂

PQ nx̂i dΓ , ∀P,Q ∈ Pr(Γ̂ ),

where r ≥ p, nx̂i is the i-component of the outward pointing unit normal vector on Γ̂ , and Pq denotes
a polynomial space of degree q.

A diagonal-norm SBP operator has a diagonal H matrix containing the weights of a volume quadrature rule
of degree at least qv = 2p − 1 [13,14]. The existence of a sufficiently accurate positive-weight quadrature
rule on Ω̂ is necessary and sufficient for the existence of a degree p first-derivative diagonal-norm SBP
operator [13]. The boundary operator, Ex̂i , is also constructed using a degree 2p accurate positive-weight
facet quadrature rule as [6]

Ex̂i =
∑
γ∈Γ̂

RTγ BγNx̂iγRγ , (4.1)

where Nx̂iγ is a diagonal matrix containing the i-component of the outward unit normal vector on facet γ,
Rγ is an extrapolation operator from the volume to the facet nodes, and Bγ is a diagonal matrix containing
the facet quadrature weights. If the volume and facet quadrature nodes are collocated, then Rγ simply
picks out function values at the facet nodes, resulting in a diagonal Ex̂i matrix. The collocation of the facet
and volume nodes reduces the cost of element coupling via simultaneous approximation terms (SATs),
especially for entropy-stable discretizations. For further discussion on construction of multidimensional
SBP operators, we refer the reader to [13,6]. Construction of SATs for SBP discretizations of various
model equations in CFD can be found in [6,4,28,37,34,35].

Using the methodology outlined in the previous section, we have derived quadrature rules that satisfy
conditions i. – v. stated in Section 2, and constructed SBP diagonal-E operators on the reference triangle
and tetrahedron. Quadrature rules with LGL and LG facet nodes of degree up to twenty on the triangle and
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(a) qv = 1, np = 6 (b) qv = 8, np = 27 (c) qv = 14, np = 57 (d) qv = 17, np = 78

(e) qv = 1, np = 6 (f) qv = 8, np = 28 (g) qv = 14, np = 60 (h) qv = 17, np = 81

(i) qv = 1, np = 6 (j) qv = 3, np = 23 (k) qv = 5, np = 44 (l) qv = 9, np = 121

Fig. 4.1 Nodal locations of selected quadrature rules with LGL facet nodes (top row), LG facet nodes (middle row),
and rules on the tetrahedron (bottom row). The symbols • and ◦ denote the volume and facet nodes, respectively, which
are collocated on the facets.

up to ten on the tetrahedron are derived, which can be found in the supplementary data repository2. Fig. 4.1
illustrates the nodal configurations of some of the quadrature rules in 2D and 3D. Many of the rules are
novel to the authors’ knowledge, and substantial improvements, in terms of number of quadrature points,
have been achieved relative to several of the existing rules on the tetrahedron, as illustrated in Table 4.1.
These improvements result in more efficient SBP diagonal-E operators; for instance, new operators of
degree 3 and 4 are constructed with 44 and 76 nodes, respectively, instead of 69 and 99 nodes. The derived
quadrature rules extend the available set of SBP diagonal-E operators from degree 4 to 10 in 2D and from
degree 4 to 5 in 3D. Unless specified otherwise, all the numerical studies in this work use SBP diagonal-
E operators with quadrature rules stated in the first columns of the different types of quadrature rules
presented in Table 4.1, which also provides the minimum nodal spacing of the quadrature rules on the
reference elements. It is noted that all rules on the triangle with LGL facet nodes have larger minimum
nodal spacing than those with LG facet nodes. Furthermore, the rules obtained on the tetrahedron have
equal or larger minimum nodal spacing than existing rules.

5 Numerical results

In this section, the SBP diagonal-E operators constructed using the proposed quadrature rules are applied
to linear and nonlinear problems. First, a mesh is generated by partitioning the spatial domain, Ω, into m
squares or cubes in each direction and subdividing them into two triangles or six tetrahedra, respectively.
The nodes on the physical elements are obtained by affinely mapping the nodes on the reference elements.
The 2D and 3D meshes are refined for mesh convergence studies using mk = 60 − 5p + (12 − p)k and
mk = 10 + 5k number of edges in each direction, respectively, where k = {1, 2, . . . } denotes the refinement

2 https://github.com/OptimalDesignLab/SummationByParts.jl/tree/zw_v0.2.0/quadrature_data

https://github.com/OptimalDesignLab/SummationByParts.jl/tree/zw_v0.2.0/quadrature_data
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Table 4.1 Number of quadrature points, np, and minimum quadrature node spacing, ∆r, on
the reference triangle and tetrahedron. Quadrature rules in the cited columns denote existing
results, while novel quadrature rules are underlined.

qv
Tri-LGL Tri-LG Tet

np ∆r np[5,12] np[36] np ∆r np[12] np[2] np ∆r np[12] ∆r[12] np[20] ∆r[20]

1 6 1.000 6 6 0.423 6 6 1.000 6 1.000

2 7 0.471 7 7 0.423 7 7 0.866 13 0.333 7 0.866

3 10 0.553 10 10 0.225 10 23 0.222

4 12 0.325 12 12 0.225 12 23† 0.377 36 0.183 26 0.222

5 15 0.345 15 18 0.083 18 44 0.237

6 18 0.214 18 21 0.097 21 51 0.159 69 0.106

7 24 0.141 24 22 0.094 22 76 0.107

8 27 0.129 27 28 0.094 28 89 0.094 99 0.017

9 33 0.129 34 0.068 121 0.077

10 36 0.076 39 0.068 145‡ 0.070

11 40 0.128 42 0.051

12 48 0.069 48 49 0.051

13 55 0.039 54 0.024

14 57 0.062 60 0.040

15 69 0.074 69 0.032

16 72 0.052 75 72 0.032

17 78 0.030 81 0.026

18 93 0.041 93 0.026

19 96 0.037 96 0.010

20 103 0.037 103 0.022

† The qv = 3 and qv = 4 quadrature rules on the tetrahedron are identical.
‡ A rule with 139 nodes is provided in the supplementary data repository, but it is not

considered here since it leads to a restrictively small time step.

level. The number of edges are chosen to ensure that errors are sufficiently larger than machine precision,
enabling calculations of convergence rates for the highest-degree operators.

The standard fourth-order Runge-Kutta (RK4) scheme is applied to march the numerical solution in
time. For the accuracy studies, sufficiently small time steps are used such that the temporal errors are
negligible compared to the spatial errors. As in [28,35], the L2 solution error in the domain is computed by
interpolating the numerical solution from the SBP nodes to a quadrature rule of degree 3p+ 1, integrating
the square of the solution error, summing the result over all elements, and taking the square root of the
sum.

5.1 Linear advection problem

We consider the linear advection equation,

∂U
∂t

+
d∑
i=1

ci
∂U
∂x̂i

= 0, (5.1)

on the periodic domain Ω = [0, 1]d. The problem is used to test the accuracy and time step stability limits
of the operators. The initial condition, U(x̂, t = 0), and the exact solution, U(x̂, t), for the problem are
given by

U(x̂, t) =
d∏
i=1

sin(ωπ(x̂i − cit)), (5.2)

where c = [5/4,
√

7/4]T in 2D or c = [3/2, 1/2, 1/
√

2]T in 3D is used in all cases. The values of c are
chosen to set the wave speed magnitude at

√
d but are otherwise chosen randomly. The direction of the

wave propagation depends on c and affects numerical errors and mesh convergence rates in some cases.

The advection equation, (5.1), is discretized using the diagonal-E SBP operators and an upwind SAT,
see, e.g., [6] for the details of the SBP-SAT discretization. The problem is run up to t = 1 with the ω
parameters in (5.2) set to 8 and 2 for the 2D and 3D cases, respectively. The solution errors and convergence
rates are tabulated in Table 5.1, which shows convergence rates close to p+ 1 on the finest meshes.
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Table 5.1 Solution convergence of the linear advection problem discretized with SBP diagonal-E operators on triangles
and tetrahedra.

p qv
Tri-LGL Tri-LG Tet

m1 m2 m3 m1 m2 m3 m1 m2 m3

1 1
error 3.81e-01 2.98e-01 2.37e-01 1.69e-01 1.28e-01 9.99e-02 7.74e-02 4.72e-02 3.13e-02

rate – 1.60 1.72 – 1.80 1.86 – 1.72 1.84

1 2
error 3.58e-02 2.36e-02 1.64e-02 4.15e-02 2.77e-02 1.94e-02 8.80e-03 4.42e-0 2.64e-03

rate – 2.69 2.72 – 2.62 2.66 – 2.39 2.30

2 3
error 8.60e-04 4.75e-04 2.87e-04 1.23e-03 6.76e-04 4.04e-04

rate – 3.85 3.76 – 3.90 3.85

2 4
error 5.27e-04 3.19e-04 2.09e-04 5.56e-04 3.37e-04 2.20e-04 9.11e-04 3.56e-04 1.75e-04

rate – 3.26 3.17 – 3.26 3.17 – 3.26 3.19

3 5
error 4.11e-05 2.22e-05 1.31e-05 5.24e-05 2.81e-05 1.63e-05 5.92e-05 1.94e-05 8.01e-06

rate – 3.99 3.98 – 4.05 4.07 – 3.89 3.96

3 6
error 4.18e-05 2.26e-05 1.33e-05 4.52e-05 2.44e-05 1.43e-05 4.48e-05 1.45e-05 5.98e-06

rate – 3.99 3.99 – 4.00 4.00 – 3.93 3.95

4 7
error 4.72e-06 2.21e-06 1.15e-06 4.02e-06 1.87e-06 9.68e-07 3.44e-06 8.43e-07 2.85e-07

rate – 4.91 4.93 – 4.94 4.95 – 4.89 4.86

4 8
error 3.63e-06 1.70e-06 8.82e-07 4.35e-06 2.08e-06 1.09e-06 2.70e-06 6.28e-07 2.08e-07

rate – 4.91 4.93 – 4.79 4.85 – 5.07 4.95

5 9
error 3.51e-07 1.41e-07 6.30e-08 4.31e-07 1.72e-07 7.81e-08 1.44e-07 2.64e-08 7.14e-09

rate – 5.94 6.01 – 5.95 5.92 – 5.90 5.86

5 10
error 3.65e-07 1.49e-07 6.88e-08 3.54e-07 1.43e-07 6.51e-08 9.62e-08 1.78e-08 4.80e-09

rate – 5.82 5.78 – 5.90 5.89 – 5.87 5.86

6 11
error 4.27e-08 1.44e-08 5.52e-09 4.60e-08 1.54e-08 5.95e-09

rate – 7.07 7.16 – 7.08 7.14

6 12
error 4.68e-08 1.58e-08 6.16e-09 4.59e-08 1.57e-08 6.21e-09

rate – 7.05 7.04 – 6.96 6.94

7 13
error 1.26e-08 3.62e-09 1.23e-09 1.34e-08 3.83e-09 1.30e-09

rate – 8.08 8.07 – 8.13 8.11

7 14
error 1.25e-08 3.61e-09 1.23e-09 1.29e-08 3.77e-09 1.30e-09

rate – 8.06 8.05 – 8.00 7.99

8 15
error 4.46e-09 1.16e-09 3.57e-10 4.55e-09 1.20e-09 3.74e-10

rate – 8.72 8.85 – 8.65 8.72

8 16
error 4.93e-09 1.30e-09 4.04e-10 4.80e-09 1.24e-09 3.80e-10

rate – 8.65 8.75 – 8.77 8.87

9 17
error 5.48e-09 1.36e-09 3.63e-10 4.91e-09 1.17e-09 3.22e-10

rate – 9.06 9.87 – 9.28 9.69

9 18
error 4.78e-09 1.14e-09 3.07e-10 5.02e-09 1.21e-09 3.32e-10

rate – 9.32 9.79 – 9.22 9.70

10 19
error 2.59e-08 5.03e-09 1.19e-09 2.73e-08 5.29e-09 1.25e-09

rate – 10.63 10.77 – 10.64 10.82

10 20
error 2.63e-08 5.17e-09 1.24e-09 2.62e-08 5.10e-09 1.21e-09

rate – 10.55 10.71 – 10.62 10.76

In addition to the accuracy of the operators, we are also interested in their maximum time-step limits
for explicit time marching schemes. A large time-step limit is desired for stability-bounded problems,
where the maximum stable time step can be applied without compromising accuracy. The maximum time
step is computed for each operator using golden section optimization. For this study, the triangular and
tetrahedral meshes are obtained by subdividing quadrilateral and hexahedral meshes with four elements
in each direction and ω is set to 2 for both the 2D and 3D cases. The discretization is considered to be
stable if the change in energy is less than or equal to zero after five periods. The change in energy at a
given time step is computed as,

∆E =
∑

Ωk∈Th

(
uTkHkuk − uT0,kHku0,k

)
, (5.3)
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Table 5.2 Maximum time step on the reference triangle and tetrahedron.

qv Tri-LGL Tri-LG Tet Tet[12] Tet[20]

1 0.0258 0.0758 0.0641 0.0641

2 0.0446 0.0394 0.0388 0.0345 0.0388

3 0.0323 0.0365 0.0164

4 0.0235 0.0216 0.0065 0.0208 0.0204

5 0.0258 0.0203 0.0184

6 0.0146 0.0131 0.0097 0.0101

7 0.0145 0.0129 0.0074

8 0.0106 0.0092 0.0049 0.0058

9 0.0070 0.0089 0.0075

10 0.0066 0.0012 0.0059

11 0.0008 0.0066

12 0.0059 0.0015

13 0.0016 0.0040

14 0.0048 0.0040

15 0.0025 0.0035

16 0.0038 0.0020

17 0.0022 0.0027

18 0.0033 0.0024

19 0.0029 0.0023

20 0.0025 0.0019

Table 5.3 Reciprocal of the spectral radii of the discretization system matrices for the 2D advection problem.

qv 1 2 3 4 5 6 7 8 9 10

Tri-LGL 0.0090 0.0150 0.0111 0.0081 0.0091 0.0051 0.0051 0.0037 0.0025 0.0023

Tri-LG 0.0278 0.0143 0.0132 0.0079 0.0075 0.0049 0.0048 0.0034 0.0033 0.0004

qv 11 12 13 14 15 16 17 18 19 20

Tri-LGL 0.0003 0.0021 0.0006 0.0017 0.0009 0.0013 0.0008 0.0012 0.0011 0.0009

Tri-LG 0.0025 0.0005 0.0015 0.0015 0.0013 0.0007 0.0010 0.0009 0.0009 0.0007

where uk, u0,k, and Hk are the solution vector at the specified time step, the initial solution vector, and
the norm matrix on element Ωk, respectively, and Th is a set containing all physical elements.

Table 5.2 presents the maximum time-step values for each SBP-SAT discretization. On the triangle,
we have not made improvements in terms of number of nodes relative to the existing quadrature rules
except in the case of the degree 16 rule with the LGL facet nodes; hence, comparisons of the maximum
time steps with previously existing operators are not presented. On the tetrahedron, the new quadrature
rule for the degree 2 SBP diagonal-E operator yields a smaller stable time step than the existing rules,
while the degree 3 and 4 operators with qv = 2p quadrature rules lead to slightly lower but comparable
stable time steps relative to the existing rules. The table also shows that the degree 3 and 4 diagonal-E
operators constructed with qv = 2p− 1 quadrature rules have about 1.72 and 1.28 times larger maximum
time steps, respectively, than the existing degree 3 and 4 operators with qv = 2p. This, combined with
their lower node count, leads to substantial efficiency improvements for stability-bounded problems.

A similar conclusion on the relative time-step restrictions can be obtained using the eigen-spectra of the
system matrix arising from the spatial discretization. Table 5.3 presents the reciprocal of the spectral radii
of the system matrices for the two-dimensional periodic advection problem discretized using SBP diagonal-
E triangular elements with LGL and LG facet nodes. The mesh is identical to that used for calculating the
maximum stable time steps in Table 5.2. As expected, for each pair of degree qv triangular operators with
LGL and LG facet nodes, the operator with the larger stable time-step limit exhibits a smaller spectral
radius. The ratios of the maximum stable time steps for operators with LGL facet nodes to those with LG
face nodes are consistently close to the ratios of the reciprocal of their corresponding spectral radii; hence,
the maximum stable time-step and spectral analysis lead to the same conclusion. Some examples of the
eigen-spectra of the discretization system matrix obtained using upwind SATs are shown in Fig. 5.1. As
illustrated, all of the eigenvalues lie on the left-hand of the imaginary line, producing stable discretizations.
We have also verified that the symmetric SATs produce purely imaginary eigenvalues.



10 Z. A. Worku, J. E. Hicken, D. W. Zingg

−100 −75 −50 −25 0
Real

−100

−50

0

50

100

Im
ag

Tri-LGL

Tri-LG

(a) qv = 5

−200 −150 −100 −50 0
Real

−100

0

100

Im
ag

Tri-LGL

Tri-LG

(b) qv = 6

−1500 −1000 −500 0
Real

−1000

0

1000

Im
ag

Tri-LGL

Tri-LG

(c) qv = 12

−1500 −1000 −500 0
Real

−500

−250

0

250

500

Im
ag

Tri-LGL

Tri-LG

(d) qv = 13

Fig. 5.1 Examples of eigen-spectra for discretization of the advection problem using SBP diagonal-E operators and
upwind SATs.

5.2 Isentropic vortex problem

The isentropic vortex problem, governed by the Euler equations, is another common test case used to
study the accuracy of high-order methods. We consider the 3D case on the periodic domain Ω = [−10, 10]3

with the initial conditions [30]

ρ =

(
1− 2

25
(γ − 1) exp

(
1− (x2 − t)2 − x21

)) 1
γ−1

,

e =
ργ

γ(γ − 1)
+
ρ

2

(
u2 + v2 + w2

)
,

u = −2

5
(x2 − t) exp

(
1

2

[
1− (x2 − t)2 − x21

])
,

v = 1 +
2

5
x1 exp

(
1

2

[
1− (x2 − t)2 − x21

])
,

w = 0,

(5.4)

where ρ is the density, e is the total energy per unit volume, u, v, and w are the velocities in the x1, x2,
and x3 directions, respectively, and γ = 7/5 is the ratio of specific heats.

We use the Hadamard-form entropy-stable discretization [4] on tetrahedral elements with the Ismail-
Roe two-point fluxes [15]. Furthermore, the matrix-type interface dissipation operator of [15] is applied.
The problem is run until t = 1, and a mesh convergence study is conducted. The L2 solution errors and
their rates of convergence are shown in Table 5.4. Convergence rates greater than p + 0.5 are attained
on the finest meshes for all operators constructed using the new quadrature rules. This confirms that the
derived quadrature rules and SBP diagonal-E operators are suitable for development of efficient high-order
SBP-SAT discretizations on simplices.

6 Conclusions

Several novel quadrature rules that are applicable for construction of diagonal-norm diagonal-E SBP op-
erators on triangles and tetrahedra are derived. The quadrature rules are obtained by coupling the LMA
and PSO methods to solve the nonlinear systems of equations arising from the quadrature accuracy con-
ditions. The LMA provides fast convergence when a good initial condition is provided, while the PSO
enables efficient exploration of the design space while also mitigating stagnation issues at suboptimal local
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Table 5.4 Solution convergence of the 3D isentropic vortex problem discretized with SBP diagonal-E operators on
tetrahedra.

p qv m1 m2 m3 m4 m5

1 1
error 1.53e+00 9.93e-01 7.03e-01 5.27e-01 4.14e-01

rate – 1.51 1.55 1.57 1.58

1 2
error 1.35e+00 7.98e-01 5.65e-01 4.12e-01 3.16e-01

rate – 1.82 1.55 1.73 1.72

2 4
error 3.73e-01 1.93e-01 1.06e-01 6.68e-02 4.52e-02

rate – 2.30 2.68 2.53 2.54

3 5
error 9.12e-02 3.59e-02 1.68e-02 8.87e-03 5.03e-03

rate – 3.24 3.40 3.51 3.68

3 6
error 9.27e-02 3.68e-02 1.72e-02 8.89e-03 5.02e-03

rate – 3.21 3.40 3.63 3.71

4 7
error 2.72e-02 7.87e-03 2.70e-03 1.22e-03 5.80e-04

rate – 4.31 4.80 4.36 4.81

4 8
error 2.82e-02 8.25e-03 2.87e-03 1.26e-03 6.02e-04

rate – 4.27 4.72 4.53 4.78

5 9
error 6.03e-03 1.35e-03 4.27e-04 1.51e-04 6.30e-05

rate – 5.20 5.17 5.71 5.65

5 10
error 6.47e-03 1.47e-03 4.57e-04 1.60e-4 6.63e-05

rate – 5.15 5.25 5.77 5.69

minima. The combination of the PSO and LMA algorithms was crucial for generating new quadrature
rules that were previously unattainable with the LMA alone. Furthermore, heuristic consideration of sym-
metry orbits to optimize node placement was essential for extending results to higher polynomial degrees.
Previous techniques did not achieve these results due to the difficulty in finding good initial guesses and
the heuristic nature of the choice of nodal symmetry group combinations.

Quadrature rules of degrees one through twenty on triangles with both the LGL and LG type facet
nodes are presented. For tetrahedra, quadrature rules of degree one through ten are reported, which, in
most cases, have substantially fewer nodes than previously known rules for SBP diagonal-E operators.
The newly derived quadrature rules lead to SBP diagonal-E operators with enhanced efficiency relative to
many of the existing operators of the same degree. They also extend the available set of SBP diagonal-E
operators from degree 4 to 10 in 2D and from degree 4 to 5 in 3D.

The diagonal-norm diagonal-E multidimensional SBP operators are applied to solve the linear advection
and isentropic vortex problems on periodic domains. Mesh refinement studies for the problems show that
convergence rates on the finest meshes are greater than p + 0.5 in all cases. We have found that the
quadrature points with the LGL facet nodes on triangles have larger minimum nodal spacing than those
with the LG facet nodes. For tetrahedra, the rules constructed in this work provide equal or larger minimum
nodal spacing than those found in the literature. We have also investigated the maximum time-step values
for stability, and found that most of the new rules offer comparable or larger stable time steps relative to
previously reported rules.
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