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Higher-Order Spatial Discretization for Turbulent
Aerodynamic Computations
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A higher-order spatial discretization is presented for the solution of the thin-layer Navier–Stokes equations with
application to two-dimensional turbulent aerodynamic � ows. The terms raised to a level of accuracy consistent
with third-order global accuracy include the inviscid and viscous � uxes, the metrics of the generalized curvilinear
coordinate transformation, the diffusive � uxes in the turbulence model, the numerical boundary schemes, and
the numerical integration technique used to calculate forces and moments. Given the presence of grid and � ow
singularities, third-order convergence behavior is not expected. The motivation is to reduce the numerical error
on a given grid or to reduce the grid density required to achieve speci� ed error levels. Results for several grid
convergence studies show that this higher-order approach produces a substantial reduction in numerical error in
the computation of single- and multielement aerodynamic � ows, both subsonic and transonic. Comparisons with
a well-established second-order algorithm demonstrate that signi� cant savings in computing expense, typically
factors of three to four, can be achieved using the higher-order discretization.

Introduction

O NE way to improve the ef� ciency of a � ow solver for the com-
pressible Navier–Stokes equations is to raise the accuracy of

the spatialdiscretization,therebyreducing the numberof grid nodes
required to achieve a solution of a given numerical accuracy. The
potentialof higher-ordermethods(which we de� ne to be methodsof
order threeor greater) to reducethecostof numericalsolutionsof hy-
perbolicpartialdifferentialequationshas been recognizedfor a long
time.1;2 In applications requiring high accuracy, such as direct sim-
ulations of turbulent � ows,3;4 aeroacoustics,5;6 electromagnetics,7;8

and complex unsteady � ows,9;10 the use of higher-ordermethods is
an active area of research. The applicationof higher-ordermethods
to steadyaerodynamic� ows has beenmore limited, despiteshowing
considerablepromise.11¡17

One issue delaying the impact of higher-order methods in com-
puting aerodynamic � ows is the need for numerical dissipation in
the discretizationof the inviscid � ux terms. Initially, the most popu-
lar approach was the scalar dissipationscheme of Jameson et al.18 It
has since been recognized that this scheme can be a major source of
error in the computationof boundarylayers.19;20 The introductionof
more sophisticatedschemes for adding numerical dissipation, such
as � ux-differencesplitting21 and matrix dissipation,22 has greatly re-
duced the resultingerrors, thus paving the way for the use of higher-
ordermethods.Another impedimentto theuse of higher-ordermeth-
ods is the need for stable numerical boundary schemes of suitable
accuracy. The use of low-order numerical boundary schemes can
greatly undermine the bene� ts of a higher-order scheme in the in-
terior of the computational domain. Similarly, there is little point
in using a higher-order discretization together with a low-order in-
tegration technique for calculating forces and moments, especially
considering that the integration is a postprocessing step that needs
to be performed only once.

To demonstrate the bene� ts of a higher-order spatial discretiza-
tion, a technique for determining numerical error is required. The
developmentof such techniqueshas becomean area of considerable
interest, as discussed by Roache.23 In two dimensions it is practical
to compare the solutioncomputedon a given grid with anothercom-
puted on a much � ner grid. Assuming that the numerical error on
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the latter is negligible relative to that on the former, the difference
between the two solutions provides an estimate of the numerical
error on the coarser grid. Such grid convergence studies have been
used extensively by Zingg.24

Zingg et al.25 performed a detailed study of several spatial dis-
cretizations, including a higher-order scheme, in the context of
turbulent aerodynamic � ows over single-element airfoils. Turbu-
lence was modeled using the algebraic Baldwin–Lomax model.
They concluded that signi� cant error reduction can be achieved
using a consistent higher-order discretization. Their results show
that with modern numerical dissipation schemes, including ma-
trix dissipation,22 upwinding,21 and the convective upstream split
pressure scheme,26;27 dissipation is not the leading source of error.
Furthermore, they demonstrate that raising the inviscid � ux approx-
imation to higher order is ineffectiveunless the approximationused
in calculating the grid metrics is also raised to higher order.

In this paper we extend the higher-orderdiscretizationpresented
by Zingg et al.25 to incorporate the one-equation turbulence model
of Spalart and Allmaras28 and multiblock grids. These extensions
permit application to complex turbulent � ows over high-lift mul-
tielement airfoil con� gurations. Such � ow� elds include con� uent
boundary layers and wakes as well as regions of separated � ow
in coves. Nelson et al.29 showed that the � ow� eld about a three-
element con� gurationcomputedusinga second-orderdiscretization
can contain signi� cant numerical error even with a high-qualitygrid
containing over 100,000 nodes. Hence there is considerable moti-
vation to apply higher-order discretizations to multielement airfoil
� ows in order to reduce the grid density requirements.

Our objective is to examine the tradeoffs associated with the use
of the higher-orderdiscretizationand to investigatethe impact on the
ef� ciency of the � ow solver. We present the details of the discretiza-
tion followed by a series of systematic grid convergencestudies for
practicalaerodynamic� ows, both subsonicand transonic,including
a computation for a three-element high-lift con� guration. The grid
convergence studies provide reliable quantitative estimates of the
numerical errors on various grids. Based on these error estimates,
the overall ef� ciency of the higher-orderdiscretizationis compared
with that of a popular second-orderdiscretization.

Numerical Method and Governing Equations
The basic algorithm parallels that in ARC2D,30 which is closely

related to the widely used code OVERFLOW.31 We use the di-
agonal form32 of the Beam–Warming approximate factorization
algorithm33 with local time stepping to solve the thin-layerNavier–
Stokes equations.The Spalart–Allmaras turbulence model requires
the solution of a partial differential equation governing the trans-
port of an eddy-viscosity-likequantity. This equation is decoupled
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from the mean-� ow equations and also solved using the approx-
imate factorization algorithm. Single-element airfoils are handled
using single-blockgrids with a C topology.Multiblock H grids are
usedformultielementairfoils.The blocksarepatchedwith point and
slopecontinuity.The treatmentof block interfacesis discussedlater,
whereas further details and second-ordersolutions of multielement
� ow� elds are given in Nelson at al.34 and Godin et al.35

The spatial derivatives are approximated using � nite-difference
approximations in generalized curvilinear coordinates. In two-
dimensional generalized coordinates the thin-layer Navier–Stokes
equations are given by30

@ OQ
@t

C @ OE
@»

C @ OF
@´

D @ OS
@´

(1)

where OQ D J ¡1 Q D J ¡1[½; ½u; ½v; e]T is the vector of conser-
vative dependent variables, OE and OF are the inviscid � ux vectors,
OS is the viscous � ux vector, » and ´ are the streamwise and normal
generalized coordinates, respectively, and J is the Jacobian of the
coordinate transformation.

Higher-Order Algorithm
The inviscid � uxes are approximated using a fourth-order cen-

tered operator plus a third-order matrix dissipation term, which re-
duces to � rst order at shocks. The use of fourth-difference (third-
order) dissipation necessitates the use of a � ve-point stencil and
thus the solution of pentadiagonal systems. Increasing the accu-
racy of the centered difference operator to fourth order does not
increase the stencil size, and the overall increase in computing ex-
pense per grid node is small. A fourth-order operator is used for
the viscous � uxes. Grid metrics are evaluated using the same op-
erators as the convective � uxes without any numerical dissipation.
Gustafsson36 has shown that the numericalboundaryschemescanbe
one order lower than the interiorschemewithout reducingthe global
orderof accuracy.Hence we can use second-ordernumericalbound-
ary schemes while preserving third-order global accuracy. Never-
theless, we use third-order boundary schemes whenever they are
found to be stable.Overall, the higher-orderalgorithmcosts roughly
6– 7% more per iteration than a second-order algorithm using the
same numerical dissipation scheme.

Inviscid Fluxes
The followingoperatorsare used to approximate� rst derivatives.
Interior (fourth-order):

±x q j D .1=121x/.¡q j C 2 C 8q j C 1 ¡ 8q j ¡ 1 C q j ¡ 2/ (2)

First interior node (third order):

±x q j D .1=61x/.¡2q j ¡ 1 ¡ 3q j C 6q j C 1 ¡ q j C 2/ (3)

Boundary (third order):

±x q j D .1=241x/.¡11q j C 18q j C 1 ¡ 9q j C 2 C 2q j C 3/ (4)

The last equation is required only for the calculation of grid
metrics.

In the absence of discontinuities, the matrix dissipation scheme
used is third-order accurate. The basic operator is

.1=1x/.q j ¡ 2 ¡ 4q j ¡ 1 C 6q j ¡ 4q j C 1 C q j C 2/ (5)

At near-boundary nodes the following operator is used for the dis-
sipation:

.1=1x/.¡q j ¡ 1 C 3q j ¡ 3q j C 1 C q j C 2/ (6)

Viscous Fluxes
The viscous terms are in the following general form:

@x .® j @x ¯ j / (7)

A fourth-order expression is used to calculate the @x ¯ j term at half
nodes:

.±x ¯/ j C 1
2

D .1=241x/.¯ j ¡ 1 ¡ 27¯ j C 27¯ j C 1 ¡ ¯ j C 2/ (8)

Near boundaries a third-order expression is used:

.±x ¯/ j C 1
2

D .1=241x/.¡23¯ j C 21¯ j C 1 C 3¯ j C 2 ¡ ¯ j C 3/ (9)

The value of ® j C 1
2

in Eq. (7) is determined using the following
fourth-order interpolation formula:

® j C 1
2

D 1
16 .¡® j ¡ 1 C 9® j C 9® j C 1 ¡ ® j C 2/ (10)

Near boundaries a third-order formula is used:

® j C 1
2

D 1
8
.3® j C 6® j C 1 ¡ ® j C 2/ (11)

The complete operator is then

±x .® j ±x ¯ j / D .1=241x/ ® j ¡ 3
2
.±x ¯/ j ¡ 3

2
¡ 27® j ¡ 1

2
.±x ¯/ j ¡ 1

2

C 27® j C 1
2
.±x ¯/ j C 1

2
¡ ® j C 3

2
.±x ¯/ j C 3

2
(12)

in the interior and

±x .® j ±x ¯ j / D .1=241x/ ¡23® j ¡ 1
2
.±x ¯/ j ¡ 1

2
C 21® j C 1

2
.±x ¯/ j C 1

2

C 3® j C 3
2
.±x ¯/ j C 3

2
¡ ® j C 5

2
.±x ¯/ j C 5

2
(13)

near boundaries.

Turbulence Model
For the Spalart–Allmaras turbulence model a � rst-order upwind

scheme is used for the convective terms in order to maintain pos-
itivity of the eddy viscosity. We have experimented with a third-
order upwind-biased treatment of the convective terms and seen no
degradation in accuracy associated with the use of the � rst-order
operator.One might consider the use of a � ux limiter to ensure pos-
itivity while retaining higher-order accuracy in regions where the
limiter is inactive. However, the additional cost and possible effect
on convergence is not justi� ed, given that the use of a third-order
scheme produces no apparent improvement. For single-blockgrids
the diffusive terms are handled in the same manner as the viscous
terms described in the preceding subsection. For multiblock grids
the diffusive terms are approximatedusing a second-orderscheme,
again with no apparent degradation in solution accuracy.

Boundary Conditions
The value of OQ at a far-� eld boundary node is calculated as

follows37:

OQbc D 1
2
. OQ1 C OQext/ ¡ 1

2
sign.A· /. OQ1 ¡ OQext/

sign.A· / D T· sign.3· /T ¡1
·

(14)

where · is chosen in the direction normal to the boundary, bc
indicates the boundary value, 1 indicates values obtained from
freestream conditions, and ext indicates values extrapolated from
the interior nodes of the mesh. The eigenvalues3· and eigenvectors
T· of A· are calculated from the mean state OQavg D 1

2 . OQ1 C OQext/.
The following second-order extrapolation operator is used at the
far-� eld boundary:

q j D 3q j C 1 ¡ 3q j C 2 C q j C 3 (15)

A far-� eld circulation correction is also included.30

The pressureat the airfoilsurface is determinedfroma third-order
approximation to @p=@n D 0, which gives

p1 D 1
11 .18p2 ¡ 9p3 C 2p4/ (16)

For an adiabatic wall @T=@n D 0, and, when coupled with the as-
sumption of zero pressure gradient and the perfect gas law, this
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Fig. 1 Two-block grid showing halo data.

implies @½=@n D 0. Hence the density at the airfoil surface is de-
termined from an expression analogous to Eq. (16). Although the
assumption that @p=@n D 0 is not strictly correct, for aerodynamic
� ows at high Reynolds numbers the error introduced is very small.
We have experimented with higher-order extrapolation of pressure
with no signi� cant change in the solution.

On the wake cut (wc) of a single-block C grid, the solution is
computed to fourth-order using the data above and below the wake
cut as follows:

qkwc D 1
6

¡qkwc C 2 C 4qkwc C 1 C 4qkwc ¡ 1 ¡ qkwc ¡ 2 (17)

Treatment of Block Interfaces
For multiblock H grids neighboring block boundaries in the

streamwise direction are overlapped at the interfaces. A speci� ed
number of columns of points are taken from the neighboring block
(known as the halo column). Consider the rectangular two-block
grid in Fig. 1. For simplicity, only one halo column will be consid-
ered here. The � rst interior column of block 2 is stored in the halo
column of block 1, and the last interior column of block 1 is stored
in the halo column of block 2. Blocks 1 and 2 are then updated
independently,resulting in two solutionsat the block interface.The
two interface solutions are subsequently averaged. At steady state
the streamwise interface is completely transparent.Block interfaces
in the cross-stream direction are treated like wake cuts [Eq. (17)].

Integration
To preserve the accuracyprovidedby a higher-ordersolution, it is

necessary to use a higher-order integration technique in calculating
forces and moments. The followingexpressionsare used to evaluate
the normal force CN and axial force C A coef� cients with respect to
the chord line. (For ease of presentation, we consider the pressure
contributiononly.)

CN D 1
c

¡C p. On ¢ Oi/ ds (18)

C A D 1
c

¡C p. On ¢ Oj/ ds (19)

where c is the chord length, s is the arclength along the airfoil
surface, x and y are the Cartesian coordinates, and Oi and Oj are
unit vectors in the x; y coordinatedirections, respectively.The unit
normal with respect to the surface On is given by

On D
¡.dy=ds/Oi C .dx=ds/ Oj

.dx=ds/2 C .dy=ds/2
(20)

We integrate the pressure and shear stress distributionswith respect
to the arclength around the airfoil. This avoids any possible singu-
larities near the leading or trailing edges.

A cubic spline is used to � t a curve through the nodes making
up the airfoil surface. The spline allows for the third-order interpo-
lation of dx=ds and dy=ds at any point on the airfoil surface. The
pressure distribution is also splined. We have examined the result-
ing interpolant for � ows with shocks and seen no oscillations. An
adaptive quadrature routine is used to integrate Eqs. (18) and (19).
The quadrature routine uses the two-point Gauss–Legendre rule as
the basic integration formula with a global error-control strategy.
Details regarding the mechanics of the global strategy can be found
in Malcolm and Simpson.38

Left-Hand Side
The linearizationof the right-hand-sideoperator required for the

implicit algorithmis carriedout such that a pentadiagonalleft-hand-
side operator is obtained.Because the fourth-orderviscousoperator
just described leads to a seven-point stencil, the standard second-
order operator is used on the left-hand side. Approximate lineariza-
tions are used for some of the near-boundaryoperators as well.

Test Cases and Grids
Grid convergencestudiesare presentedfor the following four test

cases:
1) NACA 0012 airfoil, M1 D 0:16, ® D 12 deg, Re D 2:88 £ 106,

laminar-turbulent transition at 0.01 and 0.95 chords on the upper
and lower surfaces, respectively:Boundary-layerseparationoccurs
on the upper surface near the trailing edge. Experimental data can
be found in Gregory and O’Reilly.39

2) NACA 0012 airfoil, M1 D 0:7, ® D 3 deg, Re D 9:0 £ 106,
laminar-turbulent transition at 0.05 chords on both surfaces: This
case and case 3 are transonic � ows with shock waves of moderate
strength.

3) RAE 2822 airfoil, M1 D 0:729, ® D 2:31 deg, Re D 6:5 £ 106,
laminar-turbulent transition at 0.03 chords on both surfaces: The
measured coordinatesfor the RAE 2822 airfoil are used, rather than
the standardcoordinates.Experimental data for case 3 can be found
in Cook et al.40

4) Case A-2 from Moir,41 model designation NHLP 2D: The
speci� c case is L1T2, which includes a 12.5%c leading-edge slat
and a 33%c single-slotted � ap, where c is the chord length of the
nested con� guration. The slat and � ap are de� ected 25 and 20 deg,
respectively, as shown in Fig. 2. Flow conditions are M1 D 0:197,
® D 20:18 deg, Re D 3:52 £ 106. Transition locations are given in
Table 1.

Tables 2 and 3 describe the grids used for the single-elementair-
foils (cases1–3). The distanceto the far-� eld boundary is 12 chords.
We do not discuss the error this introduces,which is independentof
the grid density and the spatial discretization.Grid A was generated
using an elliptic grid generator.Grid B was generated by removing
every second node in both coordinate directions from grid A, and
grid C was similarly generated from grid B. This technique pro-
duces a sequenceof grids suitable for a grid convergencestudy. The
grids for the transoniccases (cases 2 and 3) have more nodes on the
upper surface than the lower surface (but no clusteringat the shock).

Table 1 Transition locations given as
percentage of elemental chord

Upper Lower
Element surface surface

Slat 5.00 ——
Main 0.97 11.0
Flap 2.70 99.3

Fig. 2 High-lift test case A2.
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Table 2 Grids for single-element subsonic case

Points Off-wall Leading-edge Trailing-edge
Grid Dimensions on airfoil spacing (£10¡6) clustering (£10¡3) clustering (£10¡3 )

A 1057£ 193 801 0.23 0.1 0.5
B 529£ 97 401 0.53 0.2 1.0
C 265£ 49 201 1.2 0.4 2.0

Table 3 Grids for transonic cases

Points on airfoil Off-wall Leading-edge Trailing-edge
Grid Dimensions (upper/lower) spacing (£10¡6 ) clustering (£10¡3 ) clustering (£10¡3 )

A 1025£ 225 501/301 0.23 0.1 0.25
B 513£ 113 251/151 0.53 0.2 0.5
C 257£ 57 126/76 1.2 0.4 1.0

Fig. 3 Grid C.

Fig. 4 Block decomposition for three-element test case.

Figure 3 shows grid C aroundthe NACA 0012 airfoil used for case 1
and grid C around the RAE 2822 airfoil used for case 3. Grid C has
a node density suitable for practical computations, with less than
15,000 nodes. For all cases the yC value at the � rst point from the
surface is less than one, where yC is the standard law-of-the-wall
coordinate, and therefore there are a few grid points in the laminar
sublayer of the turbulent boundary layers.

For the multielement con� guration � ve grids were generated in-
dependently.Each grid consistsof 27 blocks,as shown in Fig. 4, and
the outer boundary is 24 chords from the airfoil surface. The grid
densities, ranging from 255,295 nodes in the � nest grid to 51,749
nodes in the coarsest grid, are given in Table 4. For all grids the
streamwise grid spacing is 5 £ 10¡4c at the trailing edge of each
element. Similarly the off-wall spacing in the normal direction is
10¡6 chords for all � ve grids. These grids do not provide a family in
the same sense as grids A, B, and C in the single-elementcases.Use
of such a family is impractical because of the high grid densities
involved. Nevertheless, these � ve grids give a good indication of
the levels of accuracy that can be achieved using grids of varying
density.

Table 4 Multiblock grid densities

Number
Grid of nodes

A 255,295
B 183,721
C 126,125
D 72,837
E 51,749

Results and Discussion
In this section we compare results computed using the higher-

orderalgorithmdescribedwith thosecomputedusinga second-order
discretization for inviscid and viscous � uxes together with matrix
dissipation,as well as second-orderapproximationsfor grid metrics
and a second-orderintegrationtechnique.Zingg at al.25 showed that
this second-orderdiscretizationproducesnumericalaccuracy that is
verysimilar to thatobtainedusingeithera third-orderupwind-biased
� ux-difference-split scheme (with second-order metric terms) or
the convective upstream split pressure scheme with second-order
approximationsfor the viscous � uxes. Hence this second-orderdis-
cretization is representativeof the most popular current algorithms
and provides a suitable benchmark for assessing the higher-order
discretization.

It is important to recognize that the higher-order algorithm will
generallynot produceconvergenceconsistentwith higher-orderac-
curacy in the presence of grid and � ow singularities, such as those
at the trailing edge of an airfoil. Although one might assume that
the singularity leads to a lower-order error term that dominates the
overall error and thus eliminates the advantage of the higher-order
scheme, this is incorrect. The higher-order scheme can produce
a second-order error, but with a much smaller coef� cient than a
second-orderscheme. Problem 16.27 in Hirsch42 provides an inter-
esting example.The problemde� nes a converging-divergingnozzle
that has a cross-sectionalarea with a discontinuous second deriva-
tive. Because the quasi-one-dimensional Euler equations have an
exact solution for such � ows, the error in a given numerical approx-
imation can be preciselydetermined.We have solved for a subsonic
� ow through this nozzle using both second-order centered differ-
ences with third-ordermatrix dissipation and fourth-ordercentered
differences with third-order matrix dissipation.For smoothly vary-
ing cross-sectional area distributions the former scheme produces
a second-order convergence rate as the grid is re� ned, whereas the
latter scheme produces third-orderconvergence,as expected.When
these schemes are applied to the nozzle with a discontinuoussecond
derivative, both produce second-order convergence,but the higher-
order scheme produces much smaller errors on a given grid. Con-
sequently, in this paper we will concentrate on local and global
solution errors on various grids, rather than demonstrating that a
speci� c order of accuracy is actually achieved. Of particular rele-
vance is the comparison of errors on the coarsest grids (grid C for
the single-elementcases, grids D and E for the multielement case),
which are typical of those used in practice.
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Cl

Cdp

Cdf

Fig. 5 Grid convergence for case 1.

Figure 5 shows the lift, pressuredrag, and skin-frictiondrag com-
puted for case 1 using the higher-orderand second-orderalgorithms
on grids A, B, and C. They are plotted vs 1=N , where N is the num-
ber of grid nodes. Agreement between the two algorithms on grid A
is good, indicating that numerical errors are very small on this grid.
Thus grid A providesa reference for estimatingnumerical errors on
gridsB and C. The error in lift from the second-ordercomputationon
grid C is roughly 1.7%, whereas that from the higher-ordercompu-
tation is much smaller. The errors in the drag components are much
larger. The pressure-dragerror from the higher-orderscheme is less
than 5% on grid C and well below 1% on grid B, whereas that from
the second-orderscheme is over 30% on grid C and near 7% on grid
B. The frictiondrag error from the higher-orderscheme is under 1%
on both grids B and C, whereas that from the second-order scheme
exceeds 15% on grid C and is roughly 3% on grid B. For this case
the higher-order algorithm produces smaller errors on grid C than
the second-orderalgorithmon grid B, which has four times as many
nodes. Figure 6 displayscomputedboundary-layervelocitypro� les
on the upper surface near the trailing edge. The symbols show the
second-order solution on grid A, which is indistinguishable from

Fig. 6 Boundary-layer velocity pro� les on the upper surface at 85%
chord: case 1.

Cl

Cdp

Cdf

Fig. 7 Grid convergence for case 2.
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Cl

Cdp

Cdf

Fig. 8 Grid convergence for case 3.

the higher-ordersolution on grid A, with every fourth point plotted.
The second-order results computed on grid C are seen to deviate
signi� cantly from this reference,whereas the higher-ordersolution
is nearly grid independent.

Grid convergencestudies for the two transoniccases (cases 2 and
3) are shown in Figs. 7 and 8. On grid C the higher-orderalgorithm
produceserrors in lift below 1% for both cases, whereas the second-
order algorithmproduceserrors of roughly1 and 2% for cases 2 and
3, respectively.For the drag componentsthe second-orderalgorithm
producessigni� cant errorson grid C, especiallyin frictiondrag.The
dragcomponentscomputedusing thehigher-orderalgorithmongrid
C are much smaller and are comparable to those computed using
the second-order algorithm on grid B.

The higher-order results for the transonic cases indicate that the
� rst-order numerical dissipation used to prevent oscillations near
shock waves does not produce signi� cant errors. To examine this
further, we consider an additional transonic test case with a some-
what strongershock wave. The � ow parametersare as follows:RAE

Fig. 9 Pressure coef� cient on the upper surface; RAE 2822 airfoil,
M 1 = 0 754, = 2 57 deg.

Fig. 10 Boundary-layer velocity pro� les on the upper surface at 95%
chord; RAE 2822 airfoil, M 1 = 0 754, = 2 57 deg.

2822 airfoil, M1 D 0:754, ® D 2:57 deg, Re D 6:2 £ 106, laminar-
turbulent transition at 0.03 chords on both surfaces.

Figure 9 shows the pressure distribution over a portion of the
upper surface. On grid A the second-orderand higher-order results
are indistinguishable;only the second-order results are shown. The
second-order solution on grid C shows signi� cant errors, both at
the shock and near the leading edge. The higher-order solution on
grid C lies much closer to the grid A solution. Similar results are
seen in Fig. 10, which shows computed boundary-layerpro� les on
the upper surface near the trailing edge. The second-order grid C
solutiondeviates substantiallyfrom the grid A solution,whereas the
higher-ordersolution computed on grid C, although not completely
grid independent, is much more accurate. Figure 10 also shows the
boundary-layer pro� le computed using the higher-order algorithm
with a second-order approximation for the viscous terms (labeled
“second-orderviscous terms”). Although raising the inviscid � uxes
and grid metrics to higher order produces the majority of the error
reduction, this � gure shows that the higher-orderapproximationsto
the viscous � uxes also reduce the error noticeably.

The error reduction obtained using the higher-order discretiza-
tion for these � ows over single-element airfoils with the Spalart–
Allmaras turbulence model is similar to that reported by Zingg
et al.25 using the algebraic Baldwin–Lomax model. This demon-
strates that the � rst-order treatment of the convective terms in the
Spalart–Allmaras model does not undermine the accuracy of the
higher-orderdiscretization.
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Cl

Cdp

Cdf

Fig. 11 Grid convergence for case 4.

Figure 11 shows the dependence of the lift and drag compo-
nents on the number of grid nodes for the three-element high-lift
con� guration. Compared to the solution on grid A, the errors in
lift coef� cient are modest for both discretization algorithms, with
the higher-orderscheme being signi� cantly more accurate than the
second-order scheme on grids D and E. On grid D the errors in
both drag components for the higher-order scheme are below 3%,
whereas the errors in the second-orderresults exceed 12%. On grid
E, the coarsestgrid studied, the errors in the drag componentsfor the
higher-orderschemearebelow6%, whereastheerrors in the second-
order computation exceed 20%. For all quantities the higher-order
results computed on grid D are comparable to the second-order re-
sults on grid A, which has over three times as many nodes.

Figure 12 shows the experimentaland computed surface pressure
distributions for the three-element airfoil con� guration. The result
computed using the second-orderscheme on grid A, which is indis-
tinguishable from the higher-order result on the same grid, shows

Fig. 12 Pressure distribution for the three-element geometry.

Fig. 13 Pressure distribution on upper surface of slat.

excellent agreement with the experimental data. A portion of the
upper surface pressure distribution of the slat is shown in Fig. 13.
On grid D the second-order scheme does poorly at computing the
minimum pressure.The higher-ordercomputationon grid D is very
close to the second-ordercomputationon grid A. Similar results are
found on the main element as well.

Figure 14 shows boundary-layer velocity pro� les at the trailing
edge of the � ap. For the second-ordersolutionon grid A, every third
grid point is plotted.The pro� le can be divided into four regions: 1)
the � rst 2.5% of chord above the � ap surface correspondsto the � ap
boundary layer; 2) the region between 2.5 and 10% of chord corre-
sponds to the wake from the main element; 3) the region between
10 and 18% of chord corresponds to the wake from the slat; and 4)
beyond18% of chord above the � ap surface, the � ow slowly returns
to freestream conditions. Given the superior results obtained using
the higher-order scheme for the single-element cases, the higher-
order result on grid A is taken as the reference solution. Region 1
appears to be adequately resolved for both discretization schemes,
even on grid D. In region 2 the higher-orderresult on grid D is more
accurate than the second-orderresult on grid A. In region 3 the error
in the second-order result on grid D is quite large and increases in
region 4. The second-orderresult on grid A and the higher-orderre-
sult on grid D provide comparable accuracy in regions 3 and 4. The
second-ordergrid A result is slightly better in region 3, whereas the
higher-ordergrid D result is slightlybetter in region 4. Nonetheless,
the higher-orderscheme is in excellentagreementwith the reference
solution using a grid with only 73,000 nodes.

The results presented demonstrate that the higher-order algo-
rithmproducesmuchsmallernumericalerrors than the second-order
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algorithm on a given grid. For the single-element cases the higher-
order solutions on grid C are comparable to the second-order so-
lutions computed on grid B, which has four times as many nodes.
For the multielement case the higher-order solution on grid D is
comparable to the second-order solution on grid A, which has over
three times as many nodes. To examine the improvement in ef� -
ciency, we must consider the cost of the two algorithms. In terms
of memory, there is very little overhead associated with the higher-
orderalgorithm.Therefore,the reducedgriddensityrequirementsof
the higher-orderalgorithmtranslatedirectlyinto savings in memory.
With respect to computing time, the higher-orderalgorithmrequires
6 to 7% more time per iteration. Convergence histories (on grid C
for cases 1–3, grid D for case 4) are displayed in Fig. 15. Typically,

Fig. 14 Boundary-layer pro� le: upper surface of � ap at trailing edge.

Case 1 Case 3

Case 2 Case 4

Fig. 15 Residual histories on grid C.

the two algorithmsconvergesimilarly for the � rst three to � ve orders
of magnitude reduction in residual, and the higher-order algorithm
converges somewhat more slowly after that. Convergence of lift
and drag is typically achieved after four to � ve orders of residual
reduction.Therefore, the extra cost associatedwith the higher-order
algorithm is quite small, and the higher-order algorithm produces
solutionsof a givenaccuracymuch more ef� ciently than the second-
order algorithm.

Conclusions
We have presented a stable, accurate, and robust higher-order

spatial discretization for aerodynamic � ows and compared its ef� -
ciency with that of a well-established second-order discretization.
A key aspect of the higher-orderalgorithmis that almost all approx-
imations are raised to a level of accuracyconsistentwith third-order
global accuracy. The primary conclusion is that the higher-order
algorithm is much more ef� cient than the second-order algorithm,
requiring substantiallyfewer grid nodes to reduce numerical errors
to speci� ed levels for both subsonic and transonic � ows. Typically,
the higher-orderdiscretizationreduces the computing expense by a
factor of three to four.

The success of the higher-order discretization suggests several
avenues for future work:

1) Extension to three dimensions, where even larger bene� ts can
be expected, can be considered.

2) Even higher-orderdiscretizations,includingcompact schemes,
can be considered. For example, the seven-point scheme of Zingg
et al.,7 which includes a sixth-order antisymmetric term and a � fth-
order dissipative term, could be applied to steady aerodynamic
� ows. However, it is important to identify the largest sources of
error in the current higher-order discretization before proceeding
towards even higher-orderschemes. For transonic � ows if the � rst-
order numerical dissipation at shocks is now the largest source of
error, then there will be little bene� t from increasing the order fur-
ther. Furthermore, higher-ordernumerical boundary schemes could
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slow convergence and reduce robustness. Similar comments apply
to a higher-order numerical dissipation scheme. Finally, given that
turbulencemodels typicallyrequirea grid point locatednear yC D 1,
there is a physical limit to the amount the grids can be coarsened,
independentof numerical error.

3) Methodologies for estimating local and global solution errors
and local approximation errors need to be further developed. This
information can be used in the generation and adaptation of grids.
Furthermore,quantifyingthecontributionof varioussourcesof error
can help to guide further scheme development.
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