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Abstract

A new formula is derived for the random error of sample central moments
from correlated data which does not assume an underlying distribu-
tion and is accurate to leading order in the number of sample elements.
Central moments, being important quantities in turbulence research,
require accurate error estimation. Many approaches have been followed
in the past for estimating the random errors of central moments from
correlated data. These include: simple extensions of the formula for inde-
pendent data, using the formula for the random error of generic averages,
assuming an underlying normal distribution, and using block bootstraps.
All of these approaches are compared with the present formula using
datasets from a turbulent boundary layer, freestream grid turbulence,
and a turbulent round jet. For even-order sample central moments, many
of the existing approaches perform well with differences of less than
15%. However, for odd-order sample central moments, only the block
bootstrap methodology performs similarly well. For the same sample
central moments, the other methods differ by as much as 200%–1000%.
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1 Introduction

Without some quantification of the error associated with a measurement, the

measured values are meaningless. The aim of error analysis is to estimate

the error associated with a measurement where the error includes both bias

error and random error, which determine the accuracy and precision of the

measurement, respectively. There are many sources which discuss error analysis

in the context of fluid dynamics (e.g., Moffat, 1988; Abernethy et al, 1985;

Coleman and Steele, 1989). In particular, these describe the various sources of

error that contribute to the total error associated with a measurement and how

to combine them to arrive at a total error (or uncertainty) in the measurement.

Contributions to the error include precision and calibration of the measuring

instrument, the applicability of an equation used to compute a quantity, and

the randomness inherent in an experiment due to stability of the measuring

instrument, the environment, and the quantity itself (for example turbulent

flows are naturally random and so will always have a large random error). In

addition to assigning a level of accuracy and precision on a final result, error

analysis is also useful in the planning stages of an experiment to determine the

largest sources of errors such that they can be reduced or corrected for before

measurements are taken (e.g., Coleman et al, 1991). In a turbulent flow, when

calculating a mean, for example, the majority of the error can be random error

due to the use of a finite sampling time. In order to reduce that error it is

useful to accurately estimate it and determine its dependence on the sampling

time. This enables the scientist or engineer to determine the sampling time

necessary and plan experiments or simulations accordingly.

This paper focuses on the bias and random errors (also known as stan-

dard errors) associated with statistics that can be computed from a sample

of measurements, where the individual elements within a sample cannot be
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considered independent. In particular, this paper seeks to determine an accu-

rate formula for the standard errors of central moments from correlated data,

with a focus on the field of turbulence, since central moments are ubiquitous

in turbulence research. In particular, for turbulent flows, measurements of the

central moments are important for characterizing the turbulence: second-order

moments (e.g. variance) describe the amplitude of the turbulence, third-order

moments (e.g. skewness) describe the ratio of positive to negative fluctuations,

and fourth-order moments (e.g. kurtosis) describe the prevalence of extreme

turbulent events, for example. The skewness has also been shown to be a mea-

sure of amplitude-weighted phase in triadic scale interactions (Duvvuri and

McKeon, 2015). Velocity structure functions, which involve moments of longi-

tudinal velocity fluctuation difference (Sreenivasan and Antonia, 1997; Lavoie

et al, 2005) and velocity derivative skewness (Burattini et al, 2008), which

involves second- and third-order moments of the spatial derivative of velocity

fluctuation, are also important statistics that describe the dynamics of tur-

bulence. Additionally, in order to solve the Reynolds-averaged Navier-Stokes

equations, one must determine the components of the Reynolds stress tensor—

which involve univariate and bivariate central moments (normal and shear

stresses, respectively)—by either directly modelling the Reynolds stress ten-

sor, or by introducing additional equations to solve for the Reynolds stress

tensor. The latter involve central moments one order higher, which again must

be either modelled or solved with additional equations involving yet higher-

order central moments. This is also true for other Reynolds-averaged transport

equations. For proper modelling of these central moments, experimental mea-

surements of them are extremely useful. Consequently, knowing the accuracy

of the measurements is also of utmost importance.
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The organization of this paper is as follows: Section 2 discusses the calcula-

tion of the standard error of generic averages and central moments. Section 3

presents a new formula for estimating the standard error of central moments

from correlated data. Section 4 describes the experimental datasets on which

the new formula will be tested. Section 5 discusses issues and best practices

associated with the estimation of the standard error. Finally, section 6 pro-

vides a comparison of the formula in this paper with previous methods for

estimating the standard error of central moments from correlated data.

2 Background

2.1 Standard error

We are interested in determining the uncertainty of some statistic estimated

from sampled turbulent data, which is inherently random. Following Bendat

and Piersol (1966), the uncertainty of a sample estimator θ̄ is defined as its

root-mean-squared (RMS) error:

RMS error =

√〈(
θ̄ − µθ

)2〉
, (1)

where 〈·〉 denotes the expected value, which can be considered as an ensemble

average over an infinite number of realizations, and µθ is the true value of

the statistic that is being estimated, commonly referred to as the population

parameter. This can be split into two terms:

RMS error =

√〈(
θ̄ −

〈
θ̄
〉)2〉

+
(〈
θ̄
〉
− µθ

)2
. (2)
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The first term in (2) describes the variance of the estimator about its

expected value:

σ2
θ̄ =

〈(
θ̄ −

〈
θ̄
〉)2〉

=
〈
θ̄2
〉
−
〈
θ̄
〉2
. (3)

This is the square of the standard deviation, σθ̄, of the distribution of θ̄’s,

which is also referred to as the standard error.

The second term in (2) defines the square of the bias error, bθ̄, between the

expected value of the estimator and the true value:

bθ̄ =
〈
θ̄
〉
− µθ. (4)

In general, bθ̄ is not zero; a well-known example where this is the case is the

sample variance computed as s2 =
∑N

i=1(xi − x̄)2/N .

Thus, the RMS error is the root sum of squares of the standard error and

the bias error of the estimator:

RMS error =
√
σ2
θ̄

+ b2
θ̄
, (5)

and determining the uncertainty associated with the sample estimator amounts

to determining the standard error and the bias error of the estimator, or

equivalently, the variance and expected value of the estimator.

In the following analysis, let us assume that we have collected a sample

{U1, ..., UN} of some quantity, U . For example, this could be a time series

of streamwise velocity in a turbulent flow, in which case we have the sample

{U(t1), ..., U(tN )}. It does not matter what quantity is measured nor what

measurement technique is used to sample the data, and that data can be

sampled temporally or spatially. Furthermore, the sample can be from an

experimental or numerical dataset. Some of the analysis does implicitly assume
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that the data is uniformly sampled (i.e., a fixed sampling rate or distance

between points) in order to make simplifications regarding sums of correlation

coefficients. However, if averages are computed as numerical integrals then the

same set of steps can be followed with a weighted average where the weights

can hold information about the quadrature as well as non-uniform sampling.

Before we begin, let us first note that the true mean of U is its expecta-

tion value (i.e., µU = 〈U〉). Additionally, the true variance of U is given by

σ2
U =

〈
U2
〉
− 〈U〉2.

2.2 Standard error of an average

Suppose we wish to compute the average over the elements in our sample and

want to know the error associated with that average. In the following, it does

not matter if we are computing the average Ū or first apply some element-wise

operation on the sample before computing the average f(U), so long as there

is no additional error introduced by the function f . The formulas for f(U) can

be obtained by substituting f(U) for U in the formulas below.

Recall that we need both the expected value and the variance for the RMS

error. For an average, the expected value can be computed easily:

〈
Ū
〉

=

〈
1

N

N∑
i=1

Ui

〉
=

1

N

N∑
i=1

〈Ui〉 = 〈U〉 , (6)

where µU = 〈U〉 is the true mean of U . Thus, the average is an unbiased

estimator of the mean. We can also compute the variance using (3):

σ2
Ū =

〈
Ū2
〉
−
〈
Ū
〉2

=
1

N2

N∑
i=1

N∑
j=1

〈UiUj〉 − 〈U〉2 (7)
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We can rewrite 〈UiUj〉 using the Pearson correlation coefficient:

ρUi, Uj
=
〈(Ui − 〈Ui〉)(Uj − 〈Uj〉)〉

σUiσUj

=
〈UiUj〉 − 〈U〉2

σ2
U

, (8)

giving

〈UiUj〉 = 〈U〉2 + σ2
UρUi, Uj

. (9)

Inserting this into (7) gives

σ2
Ū =

σ2
U

N2

N∑
i=1

N∑
j=1

ρUi, Uj . (10)

2.2.1 Independent sample elements

If the elements of the sample are all independent of one another then,

ρUi, Uj =


0, if i 6= j

1, if i = j

. (11)

Inserting this into (10) gives

σ2
Ū =

σ2
U

N
. (12)

This is the square of the well-known equation for the standard error of the

mean that can be found in most introductory statistics textbooks.

2.2.2 Correlated sample elements

Turbulent data are typically sampled at a high enough rate to resolve the

smallest-scale flow features. However, due to the wide range of scales in tur-

bulent flows, with such a high sampling rate, there is often a high degree of
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correlation between adjacent elements in the sample. So, in general, ρUi, Uj
6= 0,

except for elements that are well-separated. If we let k = j − i be the lag

between the ith and jth sample elements and note that 〈UiUi+k〉 is the same

for all i at the same k (i.e., 〈U1U3〉 = 〈U2U4〉 = 〈U3U5〉, etc.), then we have

(see e.g. Bendat and Piersol, 1966; Smith et al, 2018, among others):

σ2
Ū =

σ2
U

N

N−1∑
k=−(N−1)

(
1− |k|

N

)
ρU,U (k), (13)

where ρU,U (k) is defined the same as in (8), but with k = j − i implied. The

1 − |k|/N factor results from there being N − |k| = N(1 − |k|/N) identical

terms at each k. Equivalent versions of this can be found in Liepmann (1952),

Lumley and Panofsky (1964), Tennekes and Lumley (1972), and George et al

(1978). Comparing (13) with (12), we see that there is an effective number of

independent elements in the correlated-element case given by:

Nind =
N

N−1∑
k=−(N−1)

(
1− |k|N

)
ρU,U (k)

, (14)

such that

σ2
Ū =

σ2
U

Nind
. (15)

All equations to this point have involved integer lags. We can convert to

temporal variables, as in a time series, if we multiply (13) by ∆t2/∆t2, make

use of the fact that the time lag is |τk| = |k|∆t, the sampling time is T = N∆t,

and the autocorrelation is symmetric:

σ2
Ū =

σ2
U

T

N−1∑
k=−(N−1)

(
1− |τk|

T

)
ρU,U (k)∆t. (16)
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As T → ∞, N → ∞ as well for a fixed ∆t. Since ρU,U (k) is maximum at

τk = 0 and then drops quickly to zero as |τk| increases, for the range of values

that |τk| is non-zero, |τk| � T and therefore (16) becomes:

σ2
Ū ≈

σ2
U

T

N−1∑
k=−(N−1)

ρU,U (k)∆t for large T,N. (17)

The summation is a discrete approximation to twice the integral time scale,

2TU,U =

∫ ∞
−∞

ρU,U (τ) dτ. (18)

Thus, for large N and T , we have:

σ2
Ū ≈

2σ2
UTU,U
T

, (19)

and the effective number of independent elements is:

Nind ≈
T

2TU,U
, (20)

This is the basis for the rule-of-thumb that there is one independent sample

element for every two integral scales.

2.3 Standard errors of central moments

Many of the statistics of interest in turbulent flows can be considered cen-

tral moments, where the mean is subtracted before raising to some integer

power. Examples include the normal Reynolds stresses and the non-normalized

skewness and kurtosis. Before we continue, we must distinguish between the

true (population) central moments and the central moments computed from a
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sample. The true rth central moment involves only expected values:

µr = 〈(U − 〈U〉)r〉 . (21)

Meanwhile, the rth sample central moment involves only averages:

ur =
(
U − Ū

)r
=

1

N

N∑
i=1

(
Ui − Ū

)r
. (22)

Since Ū has its own error that must be propagated, the formulas for the stan-

dard errors in the preceding sections cannot be used for central moments,

which sets them apart from moments about the origin (true: µ′r = 〈Ur〉, and

sample: Ur).

2.3.1 Independent sample elements

Starting from the definition in (3), similar to what was done for an average

in the sections above, Kendall (1943) derived a formula for the error variance

of sample central moments assuming independence between sample elements

that is accurate to order N−1:

σ2
ur =

1

N

(
µ2r − µ2

r − 2rµr−1µr+1 + r2µ2µ
2
r−1

)
. (23)

This formula was introduced to the fluids community by Benedict and Gould

(1996).

2.3.2 Correlated sample elements

Unfortunately, there is no formula in the literature, to the authors’ knowledge,

for the true standard error of central moments computed from samples with

correlated elements, even to leading order.
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The conventional assumption is that we can apply (23) if the sample ele-

ments are correlated by replacing the N in that expression by an effective

number of independent samples, in analogy with (15). For example, Benedict

and Gould (1996) give the following recommendation in their presentation of

(23): “If the sampling rate is too high to ensure independence of samples, N

should be adjusted to reflect the number of integral scales in the total sampling

time, not the actual number of samples.” Mathematically, this implies:

σ2
ur =

1

Nind

(
µ2r − µ2

r − 2rµr−1µr+1 + r2µ2µ
2
r−1

)
(24)

However, there is some lack of clarity in the literature about how Nind should

be calculated. In particular, should autocorrelations (and integral scales) of U

or ur be used in (14) and (20)? Regardless, there is no guarantee that this

approach is valid for all moment orders.

Simple formulas for the standard error of central moments can also be

obtained if some assumptions about the data are made. Lenschow et al (1993)

provides formulas for the second through fourth central moments if the data

are sampled over a time much longer than the integral time scale and fol-

low a normal distribution. Assuming normality and an exponentially-decaying

autocorrelation, Lenschow et al (1993) also derived formulas for the first four

central moments that are valid for all T ; approximations to these are also

provided if the sampling time is much longer than the integral time scale. Addi-

tionally, approximate formulas are derived in Lenschow et al (1993) if some

non-normality is introduced to a Gaussian process. While these formulas are

likely suitable for some turbulent flows, there are plenty of others for which the

data is neither normally-distributed nor has a strictly exponentially-decaying
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correlation. A potentially more accessible version of Lenschow et al (1993) is

Lenschow et al (1994).

For second-order central moments, Wyngaard (1973) applied the formula

for an average in (13) based on the work of Lumley and Panofsky (1964).

By doing so, they consider the random error in the variance of fluctuating

quantities, but ignore the effect of the random error contained in the sample

mean. This is equivalent to using (13), but with U replaced by f(U) = (U −

〈U〉)2. Sreenivasan et al (1978) then considered the extension of this approach

to arbitrary moment order. As we will show, this approach is actually not

an issue for the second-order central moment, but becomes problematic for

higher-order, and more so for odd-order, central moments.

Salesky et al (2012) also devised a clever filtering method that uses a fitting

routine to determine the error variance at a specific sampling time without

the need for computing integral time scales. However, since this method is

based on Lumley and Panofsky (1964), it also neglects the effect of the error

associated with the sample mean and so is not suitable for central moments

of order greater than r = 2.

We will assess these approaches in section 6 on three different turbulent

flows.

2.4 Resampling methods

Other methods have also been devised to estimate the standard error of

arbitrary statistics. These techniques, called resampling methods, include the

bootstrap (Efron, 1979) and the jackknife (Tukey, 1958). The idea behind

resampling techniques is to create many new samples from the original sample,

to estimate the sampling distribution of the estimator from those (re)samples,

and then extract the variance of the estimator from the distribution. In their
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original forms, these resampling methods assume independent and identically

distributed random variables. For correlated data, this can be problematic if

the resampling breaks up the correlation structure in the original sample. To

overcome the requirement of independence, one could attempt to downsam-

ple the sample to ensure independence between elements. This is possible so

long as the standard error is associated with only one integral scale and that

integral scale is known.

Fortunately, there are a host of resampling methods—primarily block

bootstraps—that have been developed for dealing with correlated data (Lahiri,

2003). One form of the block bootstrap that estimates the standard error of

estimators for correlated data with a higher degree of accuracy is the mov-

ing block bootstrap (MBB, Künsch, 1989; Liu and Singh, 1992). Garcia et al

(2006) and Richards et al (2018) have shown its usefulness in estimating stan-

dard errors in the context of turbulent fluids. For any bootstrap method, there

is some additional parameter tuning that is required. In particular, a number

of replications needs to be determined in order to ensure convergence of the

calculated standard error. Additionally, for block bootstraps, a specific block

length needs to be determined which must be chosen large enough such that

it retains the correlation of the initial signal (i.e. it requires an estimate of the

integral scale), although automatic optimal block selection algorithms exist in

the literature (e.g., Politis and White, 2004).

Since block bootstraps can be relatively complicated to implement, require

some tuning for optimal performance, and can be computationally expensive, a

simple and accurate formula for the standard error of central moments is sought

for correlated data. Furthermore, bootstrap techniques should be validated

against an expression for the true error variance or standard error, if such a

thing exists for the quantity under investigation, to ensure that they converge

to the correct value.
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3 Formula for standard error of central

moments from correlated data accurate to

order N−1

Starting from the definition of the error variance in (3), we derive an expres-

sion for the true error variance of sample central moments of arbitrary order

where there is correlation between sample elements and where the underlying

data has an arbitrary distribution. This approach follows the steps of Kendall

(1943) in their derivation of (23), but removes the assumption of independence

between sample elements. The full derivation of the expected value and error

variance is contained in Supplementary section S.1.

Since the complete expression is unwieldy and impractical to implement,

especially for large moment order, we present a formula for the error variance

that is accurate to leading order in the number of sample elements (orderN−1),

as in Kendall (1943). This results in a formula for the standard error that is

accurate to order N−1/2. For the bias error to the same order, we require the

expected value to order N−1/2 as well. To these orders:

〈ur〉 = µr, (25)

and,

σ2
ur =

1

N

(µ2r − µ2
r

) N−1∑
k=−(N−1)

(
1− |k|

N

)
ρur, ur (k)

ρur, ur (0)

−2rµr−1µr+1

N−1∑
k=−(N−1)

(
1− |k|

N

)
ρu, ur (k)

ρu, ur (0)

+r2µ2µ
2
r−1

N−1∑
k=−(N−1)

(
1− |k|

N

)
ρu, u(k)

ρu, u(0)

 .

(26)
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Comparing (26) to (23), we see that for correlated data each term in (23)

must be multiplied by a different correlation sum. Equivalently, this means that

each term has a different effective number of independent sample-elements.

If we generalize the definition of the effective number of independent sample-

elements to (c.f. (14)):

Nind(X,Y ) =
N

N−1∑
k=−(N−1)

(
1− |k|N

)
ρX, Y (k)
ρX, Y (0)

, (27)

then (26) can be rewritten as:

σ2
ur =

µ2r − µ2
r

Nind(ur, ur)
− 2rµr−1µr+1

Nind(u, ur)
+
r2µ2µ

2
r−1

Nind(u, u)
. (28)

Since ρ(0) = 1 for autocorrelations, scaling by ρ(0) in (27) is equivalent to (14)

when X = Y = U . Comparing (28) with (24), we see that the conventional

assumption that N can be replaced with a single Nind in (23) could lead to a

poor approximation.

If the true mean, 〈U〉, were known and used in place of Ū in (22), σ2
ur

would only consist of the first term of (26). In fact, since 〈U〉 does not add

any error, this would be equivalent to (13) with f(U) = (U − 〈U〉)r, which is

the approach of Sreenivasan et al (1978). The first term in (26) is related to

the error involved in taking a sample average of the central moment, the third

term is related to the error of the sample mean, and the second term is related

to the interaction of these two.

It can be shown that for r = 1, the error variance in (26) is exactly zero

since µ1 = 0 by construction. Since the second and third term in (26) also

involve µ1 when r = 2, they are zero and it can be shown that the error vari-

ance of u2 is calculated in the same way as is conventionally assumed in (24)
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so long as Nind is calculated using correlations (or integral scales) of u2. Inci-

dentally, this means that the approach of Wyngaard (1973) and Sreenivasan

et al (1978) for r = 2 is also correct. For higher-order moments (r > 2) though,

the error variance in (26) differs from the conventional assumption in (24) and

the approach of Sreenivasan et al (1978).

For a time series, we can convert to temporal variables by multiplying the

numerator and denominator of (26) by ∆t2. As (26) is only true for large N ,

and consequently large T , relative to the correlation sums, (26) can be written

as (c.f. (16)–(20)):

σ2
ur ≈

2

T

[(
µ2r − µ2

r

)
Tur, ur − 2rµr−1µr+1Tu, ur + r2µ2µ

2
r−1Tu, u

]
, (29)

where we use the zero-lag-scaled ρ in the definition of the integral time scales,

and further assume that the sampling rate is high enough (or ∆t small enough)

that the correlation sums closely approximate the integral time scales:

2TX,Y =

∫ ∞
−∞

ρX,Y (τ)

ρX,Y (0)
dτ ≈

N−1∑
k=−(N−1)

ρX,Y (k)

ρX,Y (0)
∆t. (30)

This implies that,

Nind(X,Y ) ≈ T

2TX,Y
. (31)

The extension to bivariate central moments (e.g. uv) is straightfor-

ward, although more algebraically intensive, and the result is contained in

Supplementary section S.2.

4 Experimental datasets

To assess the different methods in section 2.3.2 relative to the more accurate

formula presented in section 3, we consider hot-wire data of the streamwise
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velocity from three experimental datasets: (1) a turbulent boundary layer

(TBL), (2) freestream grid turbulence (FST), and (3) a turbulent round jet

(TRJ).

For the TBL data, hot-wire measurements were made in a zero-pressure-

gradient TBL at a momentum thickness Reynolds number of Reθ = θU∞/ν =

3000, where θ is the momentum thickness, U∞ is the freestream velocity, and

ν is the kinematic viscosity. The TBL was developed over a 0.5-inch aluminum

plate that extended the width and length of the 5 m-long test section of a

recirculating wind tunnel with a cross-section measuring 0.8 m-high × 1.2

m-wide. The hot wires were operated at an overheat of 1.6 using a Dantec

StreamLine Pro 90N10 constant temperature anemometer. The hot-wire data

were filtered at 10 kHz before being sampled at 25 kHz for T = 180 s using a

National Instruments PCIe-6259.

The FST data is case D from Dogan et al (2016) and Dogan et al (2017). It

was saved as 15 samples lasting 25 s each at a sampling rate of 20.5 kHz. Thus,

to construct correlation coefficients, an ensemble average was performed over

the 15 samples, with the mean and standard deviation being computed over

the entire 15-sample dataset. For this data, the freestream turbulence intensity

was urms/U∞ = 12.2%, where urms is the root mean squared freestream fluctu-

ations, and the Taylor microscale Reynolds number was Re = urmsλ/ν = 630,

where λ = urms

√
15ν/ε is the Taylor microscale and ε is the turbulence energy

dissipation rate.

The TRJ data is from Sadeghi and Pollard (2012). The measurements were

taken at a location 15D downstream of the nozzle exit along the centerline,

where D = 73.6 mm is the diameter of the nozzle exit, with a jet velocity of

Uj = 10.4 m/s. This corresponds to a Reynolds number of ReD = DUj/ν =

5 × 104. The data were sampled at a rate of 30 kHz with a sampling time of
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T = 120 s. More details of the experimental setup can be found in Sadeghi

and Pollard (2012).

5 A note on estimation

All of the formulas for the standard errors that we have introduced in

sections 2 and 3 above involve expected values—true (or population) means,

moments, and correlation coefficients—which we typically do not know. In

order to estimate the standard error from a sample we have to use sample

averages, moments, and correlation coefficients. For example, (29) becomes:

s2
ur =

2

T

[(
u2r − (ur)

2
)
T̂ur, ur − 2r ur−1 ur+1T̂u, ur

+r2 u2
(
ur−1

)2

T̂u, u
]
,

(32)

where the T̂ s are estimates of the integral time scales. There is inherent

error associated with replacing the true central moments with sample cen-

tral moments. However, from (29), we also know that the variance of central

moments goes as N−1. This means that the error in replacing the true cen-

tral moments with sample central moments will go as N−2, which we have

neglected.

The estimates of the integral scales are a bit more complicated. With finite

data, as in a sample, calculation of the correlation coefficient at the largest lags

has significant error due to the fact that there are fewer correlations available

to average over (for lag k, there are N−|k| correlations). There are two versions

of the sample correlation coefficient that are typically used to estimate the
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true correlation coefficients:

ρ̂biased(k) =

1
N

N−|k|∑
i=1

(Xi − X̄)(Yi+k − Ȳ )

sXsY
(33)

ρ̂unbiased(k) =

1
N−|k|

N−|k|∑
i=1

(Xi − X̄)(Yi+k − Ȳ )

sXsY
, (34)

where X̄ and Ȳ are the sample means and sX and sY are the sample stan-

dard deviations of X and Y , respectively. Equation (33) is called the “biased”

correlation coefficient because when X̄ and Ȳ are replaced by the true pop-

ulation means, the expected value of ρ̂ is biased relative to the true ρ, while

ρ̂ from (34) is not. These labels are a bit of a misnomer for the estimators as

written since it is possible for the “biased” estimator to have less bias error

than the “unbiased” estimator when sample means are used (see e.g., Perci-

val, 1993). Additionally, due to the lack of available data at the largest lags,

the “unbiased” estimator has a lot of random error at those k. Conversely,

since ρ̂biased(k) = (1−|k|/N)ρ̂unbiased those same large lags are attenuated and

ρ̂biased better estimates the true ρ, which is typically close to zero at large k.

For these reasons, the “biased” estimator is typically the better choice. As an

example, the correlation for the second term in (26), and implicit in (29) and

(32), would be estimated using the biased sample correlation coefficient as:

ρ̂u, ur (k) =

1
N

N−|k|∑
i=1

ui(u
r
i+k − ur)√

u2
(
u2r − (ur)2

) , (35)

where we have made use of the fact that ū = 0 by definition. For r ≥ 1, ur 6= 0.
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Fig. 1 Comparison of the cumulative sum of the ensemble-averaged correlation coefficient of
varied record length vs the full signal correlation coefficient for time-series data of streamwise
velocity at y+ = 20 in a TBL.

However, there are some peculiarities about the biased estimator for the

correlation coefficient, as discussed in Percival (1993). In particular, the sum

over all lags of (33) can be shown to be exactly zero, despite that not being

the case for the true correlation coefficient. In all of the sums that we con-

sider, there is an additional factor of (1− |k|/N), but this only has significant

attenuation for large lags. These summations converge to a non-zero number,

but not the sum of the true correlation coefficent. Thus, in practice, to esti-

mate an integral scale, it is necessary to sum up to some maximum lag. Smith

et al (2018) provides some guidelines for estimating integral scales. In partic-

ular, for short non-periodic signals, they suggest using the familiar first zero

crossing of the correlation coefficient. For longer signals, they suggest breaking

the sample into smaller records that are about 20 integral scales in length and

summing the ensemble-averaged correlation coefficient to obtain an estimate

of the integral scale, where parent statistics are used (i.e., the mean and vari-

ance of the full signal are used for each record). In figure 1, we show using a

TBL time series at y+ = 20 that the results obtained in this way for different

record lengths (τmax) actually mirror the results obtained by simply summing

the correlation of the full signal up to τmax, but require slightly longer τmax

to get the same result. The reason for this is that ensemble averaging actually
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reduces the statistics slightly relative to the full signal. For the full signal, ρ̂(k)

is the sum of N − |k| correlations. For ensemble averaging, if each record is

of length n, then ρ̂i(k), the correlation coefficient at lag k for the ith record,

is the sum of n − |k| correlations. If we ensemble average ρ̂i(k) over the N/n

records, we get a total of N −N |k|/n correlations used in the computations.

This says that for each additional record used for ensemble averaging, there

are |k| fewer correlations used; correlations that would otherwise span across

the record boundaries are eliminated with the ensemble averaging.

For a more robust estimation of correlation sums (including integral scales),

we suggest borrowing the method in Politis and White (2004), used to deter-

mine optimal block sizes for block bootstraps. This method essentially involves

convoluting the correlation with a window function, similar to what is done

in spectral estimation, and performing the sum over that. In fact, the connec-

tion between the correlation and the power spectrum is how this method was

conceived (Politis and Romano, 1995). In this particular case a trapezoidal

window is used; other window functions are surely possible, and may provide

better estimates, but the window size (or bandwidth) would need to be mod-

ified from the present method. For simplicity, we suggest using the method

exactly as described in Politis and White (2004):

1. Estimate
N−1∑

k=−(N−1)

(
1− |k|N

)
ρ(k) by

M∑
k=−M

w
(
k
M

) (
1− |k|N

)
ρ̂(k), where ρ is

the true correlation and ρ̂ is the estimated correlation, M is the bandwidth,

and w
(
k
M

)
is the window function.

2. Choose m̂ where |ρ̂(m̂ + k)| < c
√

log10N/N for k = 1...KN , where KN =

max(5, log10N) and c = 2 are the suggested parameters, and select M =

2m̂.
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3. Construct the trapezoidal window:

w

(
k

M

)
=


1, if 0 < | kM | <

1
2

2
(
1− | kM |

)
, if 1

2 < |
k
M | < 1

0, otherwise

.

By virtue of the implied hypothesis test in step 2, this method chooses the

bandwidth based on the lag where the correlation remains close to zero for a

minimum of five lags. While this is similar to the first zero-crossing for expo-

nentially decaying correlations (summing up to the first zero-crossing would

be akin to using a rectangular window with M = m̂), it is robust in that it

also gives reasonable estimates for periodically-decaying correlations (or other

correlations with multiple peaks so long as the correlation eventually decays

to zero). This is useful because the limitation of estimating (29) is in obtaining

accurate estimates of the integral scales. For N �M , the 1− |k|N factor is neg-

ligible. A comparison of the integral time scale of u computed from the TBL

dataset using this method and both summation up to the first zero-crossing

and up to 20 integral times scales is shown in figure 2. The trapezoidal win-

dow method produces similar results to the other two methods and seems to

be a good compromise. In section 6, we use this trapezoidal window method

with m̂ and M calculated using ρ̂u, u, which typically has the longest integral

time scale, to compute all integral time scales in (32). This ensures a consistent

bandwidth.

6 Convergence of central moments

To quantify the accuracy of using the approaches in section 2.3.2, a percentage

difference is considered relative to the more accurate formula presented in
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Fig. 2 Comparison of the estimated integral time scale of u for three different methods
across a TBL.

section 3 (denoted σ2
ur, present

):

∆σ2
ur =

σ2
ur − σ2

ur, present

σ2
ur, present

× 100%. (36)

The approaches compared include: the Gaussian formulation with (denoted as

Gaussian/Exp. ρ) and without (denoted as Gaussian) an exponential autocor-

relation in Lenschow et al (1993), the conventional assumption of extending

(23) to correlated data with two choices of autocorrelation variable (denoted as

Conventional (u, u) and Conventional (ur, ur)), the approach of Sreenivasan

et al (1978) of extending (13) to higher moment orders (denoted as SCA78),

and the moving block bootstrap (denoted as MBB).

Figures 3–5 show this percentage difference for the three flows mentioned

in section 4 for moment orders from r = 2 to r = 7. For the TBL this data was

extracted at y+ = 75; located in the logarithmic region, this is where the data

most closely approximates a Gaussian distribution. Similarly, the TRJ data

was extracted at r/r0.5 = 0 (i.e. the jet centerline) for the same reason. For the

TBL, TRJ, and FST data, we have that T/Tu, u ≈ 45 000, T/Tu, u ≈ 20 000,

and T/Tu, u ≈ 11 000, respectively. Thus, T � T for all of these flows (Tu, u is
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Fig. 3 Difference in the error variance for the first seven central moments of U computed
from the methods in section 2.3.2 relative to (29) for the TBL data at y+ = 55. The
dotted lines track the results for the even (filled symbols) and odd (open symbols) moments
separately. Inset expands the region near ∆σ2 = 0.
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Fig. 4 Difference in the error variance for the first seven central moments of U computed
from the methods in section 2.3.2 relative to (29) for the TRJ data at r/r0.5 = 0. The
dotted lines track the results for the even (filled symbols) and odd (open symbols) moments
separately. Inset expands the region near ∆σ2 = 0.

the longest integral time scale), as required for (29) and many of the methods

mentioned in section 2.3.2.

The trends for each of the flows are very similar. Typically, the difference is

smaller for even moments than it is for odd moments. In particular, at r = 2, as

was mentioned in section 5, Conventional (ur, ur) is exactly equivalent to (29),

as is SCA78. For higher-order even moments, both of these methods agree with

(29) to within 5% for all of the flows considered. For r = 3, SCA78 has a very

large discrepancy for all flows, being off by > 600% for all flows considered, but

tends towards 0% as odd r increases. Conventional (ur, ur) behaves similarly
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Fig. 5 Difference in the error variance for the first seven central moments of U computed
from the methods in section 2.3.2 relative to (29) for the FST data. The dotted lines track
the results for the even (filled symbols) and odd (open symbols) moments separately. Inset
expands the region near ∆σ2 = 0.

for odd r, but has a smaller discrepancy at r = 3 of ∼ 200%. If Conventional

(u, u) is used then there is a very large discrepancy for all r, but more so for

odd r, that increases with r. The Gaussian method shows a lot of dependency

on the flow, and this is not unexpected since the accuracy of the method is

likely tied to how closely the flow resembles a Gaussian process. They are all

within 30% of (29) for r = 2, but show greater discrepancy as r increases,

being off by ≈ 50 − 100% at r = 4. As expected, assuming an exponential

form for the autocorrelation coefficient, in addition to a Gaussian distribution,

typically results in larger discrepancies with (29). The MBB performs the best

across all r, including odd r, being within 15% for all r and for all flows. In

most cases, ∆σ2 is positive, meaning that the sampling time required to reach

a target level of error is actually smaller than implied by the other methods

in section 2.3.2.

To assess how each of the methods performs when the flow deviates even

further from a Gaussian distribution and as the integral scales change, we com-

pute the percentage difference with (29) for various wall-normal locations in the

TBL data. This is done for r = 3 (figure 6) and r = 4 (figure 7). As an estimate

of the degree of non-normality in the flow, the quantity Q =
√
S2 + (3−K)2
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Fig. 6 Difference in the error variance for the r = 3 central moment of U computed from
the methods in section 2.3.2 relative to (29) for the TBL data across y. The thin black line

is Q =
√
S2 + (3 −K)2 in arbitrary units. Vertical line corresponds to minimum of Q at

y+ = 75. Inset expands the region near ∆σ2 = 0.

is also displayed alongside the results, where S = u3/(u2)3/2 is the skewness

and K = u4/(u2)2 is the kurtosis (S = 0, K = 3, and therefore Q = 0 for

normally-distributed data). This curve shows good qualitative agreement with

the results from the Gaussian approximations; the closer to a Gaussian the

data is (i.e. Q close to zero), the closer the Gaussian approximations are to

the result of (29). Again only the MBB does a good job of estimating the

error variance for both even and odd order moments, although SCA78 and

Conventional (ur, ur) perform similarly well for r = 4 across the boundary

layer. In figure 6, the results from Conventional (ur, ur), Conventional (u, u),

and SCA78 seem to follow the same trend as Tu, u in figure 2. This is due to

the fact that (29) depends on Tu, u, whereas Conventional (ur, ur) and SCA78

only depend on Tur, ur . Conventional (u, u) also follows this trend because it

uses Tu, u for terms that should depend on Tur, ur based on (29).

As a final point, for the MBB, its accuracy is dependent on the number

of bootstrap replications, nrep, used to estimate the error variance. Figure 8

shows the convergence of the MBB standard error relative to (29) for the

r = 3 central moment at y+ = 75 using the TBL data. Due to the random

nature of the MBB, each time it is performed, a separate convergence history
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Fig. 7 Difference in the error variance for the r = 4 central moment of U computed from
the methods in section 2.3.2 relative to (29) for the TBL data across y. The thin black line

is Q =
√
S2 + (3 −K)2 in arbitrary units. Vertical line corresponds to minimum of Q at

y+ = 75. Inset expands the region near ∆σ2 = 0.
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Fig. 8 Convergence of the difference in the error variance for the r = 3 central moment of
U computed from the MBB relative to (29) for the TBL data at y+ = 75. Inset expands the
region near ∆σ2 = 0.

is generated, as is seen for the two plots in figure 8. For an accuracy of < 5%,

the MBB requires nrep > 1000 for this central moment. For figures 3–5, we

have used 1000 replications in the computation of the MBB estimate of σ2
ur

as a compromise between accuracy and run time. Additionally, to properly

estimate the error variance using the MBB, it is imperative to construct the

replications from the initial U data, and not data with the mean subtracted.

This ensures that the sample mean, Ū , remains a random variable. Not doing

so would produce results akin to SCA78.
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7 Summary and conclusions

We have derived a formula for estimating the standard errors of sample cen-

tral moments of arbitrary order from correlated data which does not assume

an underlying distribution and is accurate to leading order in the number of

sample elements. Using experimental data of streamwise velocity in a turbu-

lent boundary layer, freestream grid turbulence, and a turbulent round jet, we

show that there are sizable discrepancies between methods that have previ-

ously been used to estimate the variance of central moments and the present

formula. For even-order central moments, good agreement (< 15% difference)

is seen when either the conventional assumption using autocorrelations of ur,

the method of Sreenivasan et al (1978), or the moving block bootstrap (MBB)

is used for all flows. In particular, when r = 2, the former two methods are

exactly equivalent to the formula derived in the present work. For odd-order

central moments, however, good agreement is seen for only the MBB.

To ensure accurate estimates of the error variance or standard error of

central moments, it is imperative that (26) or the temporal version in (29)

be used. Previous approaches have either ignored the effect that the sample

mean has on the standard error of sample central moments or made incorrect

assumptions about how to extend the existing formula for independent sample-

elements. Block bootstrap methodologies, such as the MBB, can also be used

so long as the sample mean is not removed from the data before forming

the bootstrap replications and a sufficient number of replications are used

(nrep & 1000).

Supplementary information. Derivations of the expressions for the

expected value and variance of the sample central moments, as well as

additional details, are included as supplementary information.
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