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A Newton-Krylov Algorithm
for Turbulent Aerodynamic Flows

Todd T. Chisholm,* and David W. Zingg'
University of Toronto Institute for Aerospace Studies
4925 Dufferin Street, Toronto, ON, M3H 5T6, Canada

A fast Newton-Krylov algorithm is presented for solving the compressible Navier-
Stokes equations on structured multi-block grids with application to turbulent aerody-
namic flows. The one-equation Spalart-Allmaras model is used to provide the turbulent
viscosity. The optimization of the algorithm is discussed. ILU(4) is suggested for a pre-
conditioner, operating on a modified Jacobian matrix. An efficient startup method to
bring the system into the region of convergence of Newton’s method is given. Three test
cases are used to demonstrate convergence rates. Single-element cases are solved in less
than 100 seconds on a desktop computer, while the solution of a multi-element case can

be found in about 10 minutes.

Introduction

Recently, Newton-Krylov methods have been shown
to be very effective in reducing the time required
to compute numerical solutions to the Navier-Stokes
equations. Blanco and Zingg' studied the solution
of the Euler equations on unstructured grids with a
matrix-free Newton-Krylov method. Geuzaine? used
a similar method with the compressible Navier-Stokes
equations, modeling turbulence with the Spalart-
Allmaras model. Barth and Linton® studied a par-
allel implemention of a Newton-Krylov solver on un-
structured grids for two- and three-dimensional flows.
Pueyo and Zingg* solved the turbulent, compressible
Navier-Stokes equations on structured grids.

Pueyo and Zingg have demonstrated that this ap-
proach is competitive with state of the art multigrid
methods. However, their work was limited to repre-
senting turbulence with the algebraic Baldwin-Lomax
model on single block grids. Here we discuss the so-
lution of the Navier-Stokes equations on single- and
multi-element airfoils, using the one-equation Spalart-
Allmaras turbulence model.?

Algorithm Description
Governing Equations

We study the solution of the steady compressible
thin-layer Navier-Stokes equations on structured grids.
A generalized curvilinear coordinate transformation is
used to map the physical space to a rectangular com-
putational domain. The use of multiple blocks allows
for complex geometries such as multi-element airfoils.
A circulation correction is used to reduce the effect
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of the farfield boundary. The Spalart-Allmaras turbu-
lence model, including trip terms, is implemented as
described by Godin,® with a small change in the cal-
culation of the modified voriticity factor, first used by
Ashford”

S=5fs+ %va (1)
_3
X
fv2 — (1 + a) (2)
foz = (1 + vali(l - fv2) (3)

with ¢y = 5.0. The original form, which allowed S to
become negative, introduced a local minimum quite
close to the solution root at some nodes at the edge of
recirculation bubbles. This can cause the residual to
hang, despite the majority of the flow being converged.
The new form seems to avoid this problem.

Spatial Discretization

The spatial discretization follows that used by Nel-
son, et al.® Second-order centred differences are
used to approximate derivatives. Both Jameson’s®
scalar and Swanson and Turkel’s'® matrix second- and
fourth-difference dissipation models can be used to
stabilize the centred difference scheme. A pressure
switch is used to control the activation of second-
difference dissipation. The matrix dissipation model
uses two switches V; and V, to avoid the effect of overly
small eigenvalues in the flux Jacobian matrix. We use
Vi = V, = 0.1 for subsonic cases, and V; = 0.025
and V,, = 0.25 for transonic cases. The turbulent vis-
cosity convection and diffusion terms are discretized
using first-order upwinding and second-order centred
differencing, respectively, as suggested by Spalart and
Allmaras,? with two differences. The turbulence equa-
tion is scaled by J !, the grid-metric Jacobian, and the
state variable 7 is replaced with J~!#. These changes
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help keep the entries in each block of the Jacobian of
similar magnitude. This improves the conditioning of
the system, making the Krylov solver more efficient.

Since a Newton solver is used to solve the resulting
nonlinear system, it is important that all of the bound-
aries be handled fully implicitly. This includes the
interfaces between blocks. The Navier-Stokes equa-
tions are solved on these interfaces in the same manner
as the interior nodes.

Newton-Krylov Algorithm

The Nonlinear System. After spatial discretiza-
tion, we have a system of the form

N

R(Q") =0 4)

where each block of Q, the conservative state variables
with the turbulence variable, is

Qi = J; 1Qi = J; Mpi, pus, pui, eq, )"

To find Q* which satisfies Eq. 4, we apply the im-
plicit Euler method repeatedly until some convergence
criterion, typically ||R||2 < 10712, is reached:

I OR,] A _

Qn+1 =Qn+AQn

We call these the outer iterations. When the time
step is increased towards infinity, Newton’s method is
approached. If At is increased appropriately as ||R||
decreases, the quadratic convergence characteristic of
Newton’s method can be achieved, while dramatically
increasing the region of convergence. Note that, in
order for Newton’s method to converge quadratically,
% must be accurate. This requires that the equations
be fully coupled.

The Linear System. In order for AQ, to be
found, a linear system needs to be solved. This sys-
tem tends to be very large, so that direct solution is
prohibitive in both memory and time. Fortunately,
finding the exact AQ is not necessary, and we may
settle for finding an approximation. This is an inexact-
Newton method. There are a number of popular meth-
ods of finding the approximate solution of the linear
system. The proper selection and use of this method
is crucial to the success of the overall solver.!! The
most successful class are the Krylov iterative methods.
Specifically, the preconditioned Generalized Minimum
Residual (GMRES)!? has proven to be effective for
aerodynamic systems. We call these linear iterations
the inner iterations.

Over-solving the linear system needs to be avoided
for efficiency. A stopping criterion is needed for the in-
ner iterations. There are two considerations. First, we
use a target reduction in the inner residual. Pueyo'®
found a one order of magnitude reduction ideal to

balance outer and inner iteration efficiency. This is ap-
propriate in the turbulent case during the final Newton
stage, but not in the startup. This will be discussed in
the next section. The second consideration is setting
the maximum number of iterations of GMRES. The
amount of memory and CPU time increases with each
GMRES iteration, so a limit is required. GMRES may
be restarted, which keeps the memory requirements
lower, while allowing further solution of the linear sys-
tem. However, this can significantly slow the linear
system convergence, due to the very poor condition-
ing seen in these systems. Typically, we do not use
restarting for this reason.

The convergence rate of GMRES is very sensitive
to the condition number of the matrix. Since the
Jacobian of the equations being solved is typically
extremely ill-conditioned, a good preconditioner is re-
quired to limit the number of inner iterations. Pueyo
and Zingg* have shown that an incomplete LU pre-
conditioner (ILU) with two levels of fill minimizes
solution time. They also found that a preconditioner
based on a first-order Jacobian is more efficient than
the exact Jacobian, both in saving memory and CPU
time. The first-order Jacobian is formed by using only
second-difference dissipation. This reduces the num-
ber of entries per equation to five instead of nine. It
tends to give a better conditioned matrix, which leads
to a more stable LU factorization. The coefficient of
the second-difference dissipation used in the approxi-
mate Jacobian matrix, €, is found by

€h = €b + o€}

where ¢ is found empirically and €} and €] are the
second- and fourth-difference dissipation coefficients
used in the evaluation of the residual and the exact
Jacobian.

Pueyo and Zingg used scalar artificial dissipation.
The use of matrix dissipation significantly worsens the
conditioning of the preconditioner, due to a reduction
in diagonal dominance. This requires further modifica-
tions. Two methods have been investigated. The most
obvious is to include a time step. In order to achieve
preconditioner stability, a sufficiently small time step
needs to be taken. This is due to the existence of neg-
ative entries on the diagonal. Large time steps (with
correspondingly small additions to the diagonal) have
the possibility of worsening the condition of the matrix
by reducing the diagonal. Small time steps are obvi-
ously not desirable, as they dramatically slow outer
residual convergence. For this reason, we add the time
step only to the matrix used for the preconditioner.

Another method of increasing diagonal dominance is
to increase the value of the matrix dissipation switches
(V, and V}) used in the first-order Jacobian matrix
the factorization is based on. These switches set the
minimum level of dissipation, making them a natural
choice for controlling small diagonals. As they are in-

2 OF 8

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2003-0071



creased toward unity, scalar dissipation is approached.
Note that the switches in the residual evaluation re-
main the same, so that the final solution is unaffected.
The switches in the Jacobian used for the outer iter-
ations are also unchanged, as inaccuracies there can
adversely affect convergence. There are two conflict-
ing effects that have to be balanced to optimize the
preconditioner settings. The preconditioner must be
conditioned well enough to be stable, but remain close
enough to the true Jacobian to provide adequate clus-
tering of the eigenvalues. A useful tool in evaluating
a preconditioner is its condition number estimate, as
discussed by Chow and Saad.'* This is simply the Lo
norm of the solution to LU - &= 1. If a preconditioner
is performing poorly, and has a high condition number
estimate of the order of 107 or greater, more diagonal
dominance is needed. It is usually better to err on
the side of being too well conditioned. While this will
slow convergence somewhat, the linear solves are much
more robust.

To help reduce the effect of entries dropped from
the preconditioner, reverse Cuthill-McKee reordering
is used.!® Good reordering is especially important in
the multiblock case, due to the increased number of
far off-diagonal entries resulting from the block bound-
aries.

The GMRES algorithm only requires matrix-vector
multiplies, and does not explicitly require the matrix,
except in forming the preconditioner. A Jacobian-free
implementation of GMRES may be used, which has
been found by Pueyo!? to be faster, as well as resulting
in significant memory savings.

Startup. Grid sequencing is used to help rapidly
eliminate initial transients. This involves partially
solving on one or more coarse grids, each formed by
removing every other grid line in each direction from
the next finer grid. The solution is interpolated from
the coarse grid to the fine grid. This helps to bring the
solution on the fine grid closer to the region of conver-
gence of Newton’s method, allowing higher initial time
steps. It is important to ensure that the flows on the
coarsened grids are tripped before passing to the fine
grid. If a region is not properly tripped when the New-
ton’s stage is started, divergence is likely. Raising the
trip coefficient ¢y in the turbulence model helps en-
courage transition on the coarse grids. Initializing the
turbulence variable with a small value (=~ 10) helps to
speed the first few iterations and encourages tripping
in troublesome regions. The turbulent variable is set
to freestream (0.01) upstream of trip points to prevent
tripping in what should be laminar regions. To fur-
ther ease the startup a few iterations of the mean flow
solver, without the turbulence solver, are performed
first on the coarse grid. This establishes flow near the
body and helps to prevent large sources in the turbu-
lence model.

Examination of the production and destruction

terms of the turbulence model reveals that these terms
are unstable with negative 7. Therefore, it is cru-
cial to take steps to ensure that # remain positive.
This is a particular problem during the early itera-
tions, when the solution is rapidly changing. There
are a number of strategies which can be used to avoid
negative values. Spalart and Allmaras® recommend
that a modified linearization of the equations be used
during startup. This modifies the turbulence model
Jacobian so that it becomes an M matrix. The flow
portion of the matrix is unchanged. While this pre-
vents quadratic convergence, it was found that this
modification is only necessary during the implicit Eu-
ler stages. This modification will be effective only
if the linear system is solved sufficiently well. If the
same tolerance appropriate for the laminar equations
is used, large negative turbulence viscosities show up
very quickly, despite using a small time step. Inner tol-
erances of approximately 10~* are necessary to see the
advantage of the modified turbulence model Jacobian.
This is not nearly as detrimental as it would seem at
first glance. The first few orders of magnitude reduc-
tion of the linear residual happen much faster than in
the laminar case, often in only two or three iterations.
This phenomenon only occurs when the modified Jaco-
bian is used. Note that during startup, Jacobian-free
GMRES cannot be used, since non-negative turbulent
viscosities cannot be guaranteed.

Nemec and Zingg!® used approximate factorization
with the modified Jacobian during startup with good
results. This is an inexpensive approach to approx-
imately solving the linear system. The turbulence
quantities are decoupled from the mean flow equa-
tions, and the linear system for each block is solved
separately.

The approach followed by Geuzaine? was to use a
variable time step based on the switched evolution re-
laxation method of Mulder and van Leer.!” The time
step in the early iterations is limited, so that the up-
dates to the turbulence quantity are well bounded.

We have found that a spatially varying time step
for the turbulence model can effectively control nega-
tive values of viscosity and be more efficient than the
modified Jacobian method of Spalart and Allmaras.
The lack of modification allows a matrix-free method
to be used during startup, saving considerable mem-
ory. The local time step is based on the desire to keep
the turbulence positive. We consider only local effects
when calculating the time step at each node, meaning
the equation is considered completely uncoupled. We
justify this by noting that the production and destruc-
tion terms, which are highly nonlinear, are the source
of our startup difficulties. Both of these are local, with
the exception of the vorticity in production.

If Newton’s method is used on this uncoupled equa-
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tion, we get the following update:

R
I ®

where R and Jp are the residual and diagonal element
of the equation, respectively. We want to limit this
update so that

A =

|AB| <1 6)

where r is a specified ratio. Choosing r = 1 would keep
the updated 7 positive in the uncoupled case, but in
practice a smaller value is ideal. To actually limit A7,
we use a local time step

R
At,; - Jp
then find the local time step At; to get the target
update.

Aty = [— - JD] B (®)

Note that A7 and therefore r should have the same
sign as R.

In the case where the Newton update is sufficiently
small, the time step is set to

AV =7 Atrey 9)

T allows us to set an appropriate scaling for the tur-
bulence model time step. At,.s is a reference time
step, used by both the mean flow equations and the
turbulence model.

1 B
Atrer = maz | Atpin, @ [—] (10)
! < [1R]2 )

a and beta allow us to control the time step relative
to the convergence. At,,;, keeps the time step from
being too small in the first few iterations.

The geometric time step following Pulliam!® is used
for the flow equations:

Atref
At = ——=
1+

where J is the Jacobian of the metric of the curvilinear
coordinate transformation.

Even with these changes, negative values of 7 are
likely to be found, especially after interpolation be-
tween grids. These values are clipped to zero after
each update. Experiments have been carried out with
other techniques including modifying the production
and destruction terms for negative values, with vary-
ing degrees of success. Simple clipping seems to be the
most robust, and allows more aggressive time steps.

Matrix dissipation tends to be somewhat more un-
stable than scalar, especially during startup. Scalar
dissipation is used on the coarse grids for this reason.
The interpolation error also seems to eliminate any
gains which could be had by using matrix dissipation
on the coarse grids.

(11)

‘ Case ‘ Mach ‘ Alpha ‘ Re-10° ‘ Airfoil
1 0.3 6.0° 9.0 NACA0012
2 0.729 | 2.31° 6.5 RAE2822
3 0.185 6.0° 2.51 NLR

Table 1 Flow conditions

| Case | Dimensions | Nodes | Offwall Spacing |

1 305x 57 17385 10-¢
2 257x 57 14619 2-10°°
3 - 44059 10-°

Table 2 Grids
i

Fig. 1 Case 3 grid

Test Cases

Three test cases are presented. Two are single-
element, one subsonic, the other transonic. The third
case is an airfoil with a detached flap, at low Mach
number and moderate angle of attack. The flow con-
ditions are shown in Table 1, grid details in Table 2.
Off-wall spacing is given relative to chord length. Fig-
ure 1 shows the grid around the multi-element airfoil.

The GMRES iterations for the single-element cases
are limited to thirty search directions, with one restart.
This is not sufficient for the larger, multiblock case.
Sixty search directions with no restarts allow the linear
solver to converge sufficiently for this case.

Algorithm Optimization
There are a number of parameters which need to be
optimized to get a robust and efficient solver. These
fall into two catagories: startup and preconditioning.
We will optimize without the use of trip terms except
where explicitly required to properly set a parameter,
since these tend to make the convgence less consistent.

Startup

Choosing a proper startup sequence is crucial to ob-
taining maximum efficiency. The Newton steps will
zero the residual much more quickly than the im-
plicit Euler steps, so we try to raise the time step as
rapidly as is feasible. We now compare two methods of
startup: using a modified Jacobian following Spalart
and Allmaras, and using the local time step for the
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turbulence model.

When using the modified Jacobian, the time step
used for the turbulence model is simply the reference
time step. At,.s is set to 50 on the coarsest grid, until
the turbulence model fully trips. This is indicated by
a peak in the turbulent residual. While the maximum
value varies strongly by case, a minimum number of
iterations of 15 should ensure tripping. At this point,
the turbulence has stabilized enough to use a time step
of 500. When [|R||z < 0.01, the solution is interpo-
lated to the next grid. One iteration at a time step of
50 is used to smooth the interpolation error. After this
Atrer = 500 is used until ||R||2 < 0.01, and the solu-
tion is interpolated to the final grid. At this point,
the variable time step is used along with the mod-
ified Jacobian, until [|R|]2 < 0.01. The unmodified
Jacobian and variable time step are used until conver-
gence. Note that the residual vector is comprised of
both the four mean flow equations and the turbulence
equation. The norm, and therefore the transition be-
tween stages, is typically dominated by the turbulence
residual. This is appropriate, considering that the tur-
bulence model is less stable than the flow equations.
This method is quite robust when trip terms are not
used. However, it can fail to converge in more complex
multielemet cases with trip terms.

When a spatially varying time step is used for the
turbulence model, the following parameters must be
set: a, B, Atyin, T, and r. Fortunately, the method
is not terribly sensitive to these parameters. This is
a result of the local time step, which stays small and
is independent of At,.s in trouble areas. 8 =1, and
r = 0.3 are good choices. A value of 100 can be use
for Atin, @, and 7. When a shock is present, more
conservative values need to be used on the coarse grid
to establish the shock. A value of 10 is appropriate for
Atin, @, and T.

When the trip terms are being used, the turbulence
model convergence will often hang around 10~*. This
is a result of the edge of the turbulent region moving
slightly. The problem can be solved by lowering the
time step which ‘damps’ this movement, and allows
the edge of the turbulent region to settle into position.
The best way to do this is to reduce «, so that the
time step doesn’t start to rise until after the turbulent
region has settled. Setting a to one accomplishes this.
This of course results in a penalty in convergence rate.

Figure 2 compares the two startup methods for case
3. The modified Jacobian takes longer to reach the
Newton stage. It is also quite ill-conditioned at the
beginning of the Newton iterations, making it signifi-
cantly more sensitive to preconditioner settings. The
second method does not require an explicit Jacobian
matrix. We recommend the local time step method for
these reasons.

Modified J ——
1 ~ ]
0.01
£ 0.0001
o
=
3
3 1e-06 /\
[
[
x \/\
1e-08
le-10
1le-12
0 100 200 300 400 500 600 700

CPU Time (seconds)

Fig. 2 Case 3 startup method comparison

Inner iterations
o | Case1 | Case 2
4 430 div
5 323 263
6 334 291
7 379 308
8 401 321
9 483 345

Table 3 Inner iterations vs. o

CPU time (sec)
Viand V, | Case 1 | Case 2 | Case 3
3 dnc 100 div
4 92 81 dnc
.6 90 90 375
8 94 112 455
1.0 110 121 400

Table 4 CPU time vs. Preconditioner switch

Preconditioner

Choosing proper parameters for the preconditioner
is crucial for stability. If the preconditioner is too
poorly conditioned, the linear solves will fail. Mov-
ing the parameters past the value required for stability
generally slightly slows convergence.

Table 3 shows the effect of varying o on the total
number of inner iterations needed to reach ||R||z <
10'2 on the fine grid for cases 1 and 2. div indicates
that the case diverged. Based on these results, o = 5
was chosen.

Table 4 shows the effect of preconditioner switch val-
ues on convergence time. dnc indicate the case failed
to converge. The transonic case is the best conditioned
of the tests. This is likely due to the higher Mach num-
ber, increased dissipation, and relatively low number
of grid nodes. Choosing V; = V;, = 0.4 in the precondi-
tioner is most efficient. The other cases require higher
switch values. Using V; = V,, = 0.6 is a safe choice.
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0.01 T
L | Mat-free
0.001 :' t
il

0.0001

1605 [ || \
1le-06 \
le-07 \
1e-08 \

1le-09
le-10

le-11 \
le-12 \

0 50 100 150 200
CPU time - seconds

L2 norm of density residual

Fig. 3 Case 2 matrix-free vs. matrix-explicit GM-
RES

Note that the switch values in the residual and exact
Jacobian remain unchanged.

Using a minimum value of time step in the precon-
ditioner could improve the conditioning of the pre-
conditioner, but it seemed to be too imprecise a tool
compared with the switches. The time step is added
to each equation, while the switches only affect those
with very low dissipation. For this reason, the use of
modified switches was much more successful in stabi-
lizing the preconditioner than the use of a time step.

As mentioned previously, GMRES does not require
the matrix to be explicitly formed. There is a trade-
off in speed between matrix-free and matrix-explicit
GMRES, which depends on the number of linear itera-
tions. The former requires one residual evaluation per
iteration. The latter requires a matrix construction
when beginning the linear solve, plus a matrix-vector
multiply per iteration. Since the matrix-vector multi-
ply is cheaper than a residual evaluation, matrix-free
GMRES becomes less efficient with more difficult sys-
tems. Figures 3 and 4 compares these two methods for
cases 2 and 3.

The matrix-free solver requires roughly the same
time as the matrix-explicit solver, despite the number
of inner iterations being over forty. This makes the
matrix-free GMRES more attractive, since it requires
less memory. The situation for case 2, the transonic
case shows a larger difference. The matrix here is bet-
ter conditioned, and needs about 15 inner iterations
per Newton step. Due to the presence of the shock,
the pressure switch has activated second-difference dis-
sipation. Adding the linearization of the switch and
the dissipation coefficient requires significant amounts
of time when calculating the Jacobian. Without these
terms in the Jacobian matrix, the convergence of the
outer iterations is adversely affected. Matrix-free is
clearly the best choice for transonic cases.

The choice of level of fill in the preconditioner is im-
portant in balancing the memory use and CPU time.

0.01 T
Mat-free

0.001 | 1
|

0.0001 ‘T !

1e-05 |||

16-06 \ ,\[

1le-07

1le-08

1le-09

L2 norm of density residual

le-10

le-11

le-12 -
0 50 100 150 200 250 300 350 400 450

CPU time - seconds

Fig. 4 Case 3 matrix-free vs. matrix-explicit GM-
RES

| ILU fill | Case 1 | Case 3 |

2 91 590
3 108 533
4 101 486
) 102 460

Table 5 Convergence time (seconds) vs. ILU fill

There is an optimum level of fill to minimize CPU
time. Higher fills produce more powerful precondition-
ers, which reduce the number of inner iterations, but
require significantly more time to factorize and apply.
Table 5 shows residual convergence times for cases 1
and 3. Both cases show that ILU(4) is a good choice
for minimizing CPU time. This adjustable parame-
ter has the advantage of allowing a trade-off between
memory and speed. The matrix formed when a finite
time step is used is quite well conditioned, so that a
preconditioner with a fill of two is sufficient during the
startup phase. ILU(1) can be used, but the time step
has to be dropped significantly to maintain precondi-
tioner stability.

Reordering the preconditioner matrix can increase
the effectiveness of the preconditioner significantly.
The reverse Cuthill-McKee algorithm is not com-
pletely defined, as the root node is only specified as
a node of minimum degree. For this system, that is a
boundary node. A study of different roots shows that
this is an important choice and should not be left to
chance. Figure 5 shows the convergence of case 3 with
three different roots. This is a typical result. Choosing
an upwind node gives a preconditioner with extremely
poor conditioning. Downwind nodes near the centre of
the outflow boundary are good candidates. The reason
for this is not clear.

Results

Figures 6, 7, and 8 compare the convergence his-
tories of the Newton-Krylov solver (NK) with an
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Upwind —_—

1 i Downwind corner - ]

0.0001

1le-06

Residual norm
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le-10

le-12 -
0 100 200 300 400 500 600
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Fig. 5 Case 3 comparison of reordering root

CPU time - seconds

0 100 200 300 400 500 600
0.01 T T T ———— T
NK - with trip ——
0.001 1
‘H AF s

0.0001
1le-05
1e-06 [
le-07
1le-08
1le-09
le-10
le-11

L2 norm of mass conservation residual

le-12

0 1000 2000 3000 4000 5000 6000 7000 8000
Equivalent residual evaluations

Fig. 6 Case 1 residual history

approximately-factored solver (AF) in diag form using
grid sequencing. They show the conservation equa-
tion residual versus both CPU time and number of
equivalent residual evaluations. We include both the
evaluation of the mean flow and turbulence model
equations in the residual calculation time. The time
to evaluate the residual is virtually identical in both
the AF and NK solvers.

The Newton-Krylov solver was run with and with-
out trip terms. The AF solver used trip terms, al-
though there is little difference in convergence time
without them. All cases used an ILU(4) precondi-
tioner, and were run on an AMD 1800-XP desktop
computer. Cases 1 and 3 are considerably faster than
the AF solver, while case 2 shows a smaller improve-
ment. This is due to the AF solver already solving
the case in 2500 residual evaluations. Case 3 is not
fully converged by the AF solver. There is a small
recirculation bubble at the trailing edge of the flap.
Difficulties arise at the edges of these bubbles with the
highly nonlinear destruction term of the turbulence
model. Qutside of these few nodes, the model is fully
converged.

CPU time - seconds
0 50 100 150 200

0.01 T = T —T
d NK - with trip ——

1e-06 \
1e-07
108 AR
1e-09

1e-10 \
le-11 \

le-12

L2 norm of density residual

0 500 1000 1500 2000 2500 3000

Equivalent residual evaluations

Fig. 7 Case 2 residual history

CPU time - seconds
0 500 1000 1500 2000 2500 3000 3500
0.01 T T T T
NK - with trip ——
0.001 & 1

0.0001 |
iy |
1e-05 \\M
I
1e-06 {3

le-07

1le-08 \ T

L2 norm of density residual

1le-09 \

le-10 H
|

le-11 Vl
le-12

i
0 2000 4000 6000 8000 10000 12000 14000 16000
Equivalent residual evaluations

Fig. 8 Case 3 residual history

Conclusions

An efficient Newton-Krylov solver has been pre-
sented for the steady compressible Navier-Stokes equa-
tions governing turbulent flows over multi-element air-
foils. Proper optimization is essential. This includes
using grid sequencing and the implicit Euler method
for startup. During this phase, care must be take to en-
sure that the turbulent viscosity remains positive. We
have shown that a spatially varying time step for the
turbulence model is a good approach. Incomplete LU
preconditioning is used. A level of fill of four was found
to be optimal with respect to CPU time and mem-
ory. The ILU factorization is applied to the first-order
Jacobian matrix with modified second-difference dissi-
pation. Time step selection and modified dissipation
switches are important to stabilize the preconditioner.
The single-element test cases can be solved in less
than 100 seconds, while the complex flow on the multi-
element case can be found in about ten minutes. The
subsonic cases converge three to five times faster than
an approximately factored algorithm.
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