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Start-up Issues in a Newton-Krylov Algorithm

for Turbulent Aerodynamic Flows

Todd T. Chisholm,* and David W. Zingg'
University of Toronto Institute for Aerospace Studies
4925 Dufferin Street, Toronto, ON, M3H 5T6, Canada

A fast Newton-Krylov algorithm is presented for solving the compressible Navier-
Stokes equations on structured multi-block grids with application to turbulent aerody-
namic flows. The one-equation Spalart-Allmaras model is used to provide the turbulent
viscosity. The optimization of the start-up algorithm is discussed. A spatial time step
is presented that stabilizes the turbulence model, provides reduced CPU time to con-
verge to the region of convergence for Newton’s method, and eliminates the memory
requirements of the modified Jacobian suggested by Spalart and Allmaras. Scaling of the
turbulence variable and equation improves the efficiency of the linear solver. A modifi-
cation of the matrix-free method addresses a problem with round-off errors when scaling
differences occur in the system. Three test cases are used to demonstrate convergence

rates. Single-element cases are solved in less than 60 seconds on a desktop computer,
while the solution of a multi-element case can be found in about 10 minutes.

Introduction

Recently, Newton-Krylov methods have been shown
to be very effective in reducing the time required
to compute numerical solutions to the Navier-Stokes
equations. Blanco and Zingg!' studied the solution
of the Euler equations on unstructured grids with a
matrix-free Newton-Krylov method. Geuzaine? used
a similar method with the compressible Navier-Stokes
equations, modeling turbulence with the Spalart-
Allmaras model. Barth and Linton® studied a par-
allel implemention of a Newton-Krylov solver on un-
structured grids for two- and three-dimensional flows.
Pueyo and Zingg* solved the turbulent, compressible
Navier-Stokes equations on structured grids.

Pueyo and Zingg have demonstrated that this ap-
proach is competitive with state of the art multigrid
methods. However, their work was limited to repre-
senting turbulence with the algebraic Baldwin-Lomax
model on single block grids. Here we discuss the so-
lution of the Navier-Stokes equations on single- and
multi-element airfoils, using the one-equation Spalart-
Allmaras turbulence model.?

A common problem with this turbulence model is
exacerbated by the using Newton’s method. That is,
during the early stages of convergence, the Spalart-
Allmaras equation is quite unstable. This paper dis-
cusses methods to efficiently address this problem. We
will investigate time stepping methods which bring the
solution within the radius of Newton’s method, as well
as scaling changes which make the linear solver more
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effective.

Algorithm Description
Governing Equations

We study the solution of the steady compressible
thin-layer Navier-Stokes equations on structured grids.
A generalized curvilinear coordinate transformation is
used to map the physical space to a rectangular com-
putational domain. The use of multiple blocks allows
for complex geometries such as multi-element airfoils.
A circulation correction is used to reduce the effect
of the farfield boundary. The Spalart-Allmaras turbu-
lence model, including trip terms, is implemented as
described by Godin et al.,® with a small change in the
calculation of the modified vorticity factor, first used
by Ashford”

§=5fus+ (1)
X -3
fo2 = (1 + @) (2)

(1 + xfor)(X = fo2)
X

fv3 =

3)

with ¢yp = 5.0. The original form, which allowed S to
become negative, introduced a local minimum quite
close to the solution root at some nodes at the edge of
recirculation bubbles. This can cause the residual to
hang, despite the majority of the flow being converged.
The new form helps avoid this problem.

Spatial Discretization

The spatial discretization follows that used by Nel-
son et al.® Second-order centred differences are used to
approximate derivatives. Both Jameson’s? scalar and
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Swanson and Turkel’s'® matrix second- and fourth-
difference dissipation models can be used to stabi-
lize the centred difference scheme. A pressure switch
is used to control the activation of second-difference
dissipation. The matrix dissipation model uses two
switches V; and V,, to avoid the effect of overly small
eigenvalues in the flux Jacobian matrix. We use
Vi = V., = 0.025 for subsonic cases, and V; = 0.025
and V,, = 0.25 for transonic cases. The turbulent vis-
cosity convection and diffusion terms are discretized
using first-order upwinding and second-order centred
differencing, respectively, as suggested by Spalart and
Allmaras.®

Since a Newton solver is used to solve the resulting
nonlinear system, it is important that all of the bound-
aries be handled fully implicitly. This includes the
interfaces between blocks. The Navier-Stokes equa-
tions are solved on these interfaces in the same manner
as the interior nodes.

Newton-Krylov Algorithm
The Nonlinear System.

After spatial discretization, we have a system of the
form

R(Q*) =0 (4)
where each block of Q, the conservative state variables
with the turbulence variable, is

Qi = J71Qi = T [pi, pui, pus, eq, ) F

To find Q* which satisfies Eq. 4, we apply the im-
plicit Euler method repeatedly until some convergence
criterion, typically ||R||> < 107!2, is reached:

I OR,| \a _
[M‘@]AQ"—R”

Qnt1 = Qn + AQn
We call these the outer iterations. When the time
step is increased towards infinity, Newton’s method is
approached. If At is increased appropriately as ||R||
decreases, the quadratic convergence characteristic of
Newton’s method can be achieved, while dramatically
increasing the region of convergence. Note that, in
%E;ier for Newton’s method to converge quadratically,

5o must be accurate. This requires that the equations

be fully coupled.

The Linear System.

In order for AQn to be found, a linear system needs
to be solved. This system tends to be very large, so
that direct solution is prohibitive in both memory and
time. Fortunately, finding the exact AQ is not neces-
sary, and we may settle for finding an approximation.
This is an inexact-Newton method. There are a num-
ber of popular methods of finding the approximate
solution of the linear system. The proper selection

and use of this method is crucial to the success of
the overall solver.!! The most successful class are
the Krylov iterative methods. Specifically, the precon-
ditioned Generalized Minimum Residual (GMRES)!?
has proven to be effective for aerodynamic systems.
We call these linear iterations the inner iterations.

Over-solving the linear system needs to be avoided
for efficiency. A stopping criterion is needed for the in-
ner iterations. There are two considerations. First, we
use a target reduction in the inner residual. Pueyo and
Zingg!3 found a one order of magnitude reduction ideal
to balance outer and inner iteration efficiency. The
second consideration is setting the maximum number
of iterations of GMRES. The amount of memory and
CPU time increases with each GMRES iteration, so
a limit is prudent. GMRES may be restarted, which
keeps the memory requirements lower, while allowing
further solution of the linear system. However, this can
significantly slow the linear system convergence, due
to the very poor conditioning seen in these systems.
Typically, we do not use restarting for this reason.

The convergence rate of GMRES is very sensitive
to the condition number of the matrix. Since the
Jacobian of the equations being solved is typically
extremely ill-conditioned, a good preconditioner is re-
quired to limit the number of inner iterations. Pueyo
and Zingg* have shown that an incomplete LU pre-
conditioner (ILU) with two levels of fill minimizes
solution time. They also found that a preconditioner
based on a first-order Jacobian is more efficient than
the exact Jacobian, both in saving memory and CPU
time. The first-order Jacobian is formed by using only
second-difference dissipation. This reduces the num-
ber of entries per equation to five instead of nine. It
tends to give a better conditioned matrix, which leads
to a more stable LU factorization. The coefficient of
the second-difference dissipation used in the approxi-
mate Jacobian matrix, €}, is found by

€y = €} + o]

where ¢ is found empirically and €; and €} are the
second- and fourth-difference dissipation coeflicients
used in the evaluation of the residual and the exact
Jacobian.

The systems being solved here are significantly more
ill-conditioned than those used by Pueyo and Zingg,
mostly due to the use of the turbulence model and
matrix dissipation. The latter results in a higher opti-
mum value of 6 = 10. The most efficient level of fill for
the ILU preconditioner is four, although two is usually
close, and reduces memory requirement somewhat.

The GMRES algorithm only requires matrix-vector
multiplies, and does not explicitly require the matrix,
except in forming the preconditioner. A Jacobian-free
implementation of GMRES may be used, which has
been found by Pueyo and Zingg'® to be faster, as well
as resulting in significant memory savings.
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‘ Case ‘ Mach ‘ Alpha ‘ Re-10° ‘ Airfoil
1 0.3 6.0° 9.0 NACA0012
2 0.729 | 2.31° 6.5 RAE2822
3 0.185 6.0° 2.51 NLR

Table 1 Flow conditions

| Case | Dimensions | Nodes | Offwall Spacing |

1 305x 57 [ 17385 10°°
2 257x 57 | 14619 2-107°
3 - 44059 10°°

Table 2 Grids

Reverse Cuthill-McKee reordering is used to reduce
the effect of dropped elements in the preconditioner.
We have found that the root node choosen for this
method is a very important parameter. A node in the
wake is a good choice.

Test Cases

Three test cases are presented. Two are single-
element, one subsonic, the other transonic. The third
case is an airfoil with a detached flap, at low Mach
number and moderate angle of attack. The flow con-
ditions are shown in Table 1, grid details in Table 2.
Off-wall spacing is given relative to chord length.

The GMRES iterations for the single-element cases
are limited to thirty search directions. This is not suf-
ficient for the larger multiblock case. A limit of sixty
search directions allows the linear solver to converge
for this case.

Startup

For all but the simplest cases, using the freestream
condition for the initial guess causes the equations
to be outside the region of convergence of Newton’s
method. To stabilize the system, we add a time step
during start-up, using Euler’s method instead of New-
ton’s. The choice of a time step is critical to the
efficiency and robustness of the overall algorithm.

Reference time step

Some authors have suggested using a function to
define At,es, dependent on the norm of the residual.
For example, we have had success with

AtTef = min(a - ||R||2_ﬁ7 Atmin) (5)

There are a few interesting details to recognize when
using this approach. The interior of the domain is fully
converged at the first iteration. The only contribution
to the residual is from the equations at the body. The
residual from these equations, which do not have a
time component, should not be used to set the coef-
ficients in the above equation. Until the residual of
the interior is high enough to drive equation 5, Atyef
should be held to the minimum value. Usually, this

only takes two or three iterations. This is the pur-
pose of At,,;n- This will only work as presented if the
boundary condition equations have a magnitude that
is large enough that the norm of the residual does not
cause the time step to increase past Aty in.

The proper choice of Aty,in, «, and S is quite im-
portant. The time step will increase very slowly if «
or the minimum are choosen, or are required to be,
too small. Fortunately, a set of coefficients that give
fast results is available. The proper selection of a de-
pends strongly on the scaling of the equations. This
is discussed is section . The set of coefficients also
needs to be adjusted depending on the type of case
being solved. For example, using a turbulence model
both raises the residual norm, and requires a more con-
servative time step schedule. Depending on how it is
scaled, the turbulence model normally dominates the
residual, and thus determines the time step. This is
desirable since the mean flow equations are generally
much more stable than the turbulence model equa-
tions. The existence of a shock also requires a smaller
minimum At,e.

Equation 5 is really only useful while At,.s is below
about 10%. Above this, we are effectively using New-
ton’s method. Hopefully, the time spent going from
the minimum value time step to Newton’s method is
reasonably short, relative to total time to converge.
Choosing S strongly affects this. We find that a 8 of
one provides rapid increase of time step, while main-
taining stability.

Finally, this method is only efficient when there is a
clear connection between the maximum potential time
step and the residual. Unfortunately, this is not al-
ways true, especially with turbulent flows. In many
of these cases, if too high a multiplier, «, is used di-
vergence will occur after the residual drops an order
of magnitude. On the other hand, if « is decreased, a
long plateau occurs in convergence. During this time,
when the residual is not changing significantly, the
time step could be ramped up, significantly shortening
this phase. We will investigate a number of techniques
to overcome this deficiency, including grid sequencing,
local time step modifications, and the use of a limited
time step for the first few iterations.

When Reynolds number scaling is used, a = 0.001 is
appropriate for inviscid flows, while & = 0.1 is better
for turbulent flow. This reflects the higher residual
of the turbulence model. Subsonic cases can use an
initial time step of 100, while transonic cases should
use a lower value of 10 due to the presence of the shock.

Spatial time step choice

We follow Pulliam,'® who suggests using a local time
step dependent on grid metrics for the mean flow equa-
tions. This approximates a constant CFL, and was
shown to provide a large improvement in convergence
rates when compared with a time accurate approach.
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This geometric time step is

Atref
At =1
14+VJ

We also need to choose a time step for the turbulence
model. The geometric time step is compelling for the
same reason that it is for the mean flow equations:
an approximately constant CFL improves stability for
the convection part of the equations. However, the
turbulence model is much less convection dominated
than the mean flow equations, and TORNADO uses
a spatially constant time step, so we will compare the
spatially constant and varying time steps.

In both methods, the experiments where carried out
using varying reference time step as described in sec-
tion . We have to choose a set of parameters (At i, @,
and f) for each method. Also, we should allow a differ-
ent At for the mean flow and turbulent equations.
This is especially important when a spatially differ-
ent time step is used for the mean flow and turbulent
equations. We could use an entirely separate param-
eter set for each, based on the corresponding residual
norm. However, to simplify, one set of parameters is
used for both sets of equations, but the turbulence ref-
erence time step is scaled by a factor 7 to allow some
flexibility. We do this to reduce the number of pa-
rameters to optimize. This also limits the time step
of the mean flow equations when the residual of the
turbulence model is high, which is usually a desirable
characteristic.

To summarize, a spatially varying time step for the
turbulence model is

(6)

-A
At =T 2 (7)
1+VJ
while the time accurate step is simply
At =T Aty (8)

Using 7 = 1 is appropriate for a spatially varying sys-
tem, which is perhaps not surprising. 7 = 1072 is
optimal for a constant time step. Both methods used
a=0.1, 8 =1, and At,,;;, = 100. No grid sequencing
was used in order to accentuate the differences, and the
turbulent residual was scaled by the Reynolds number,
as discussed in section . When scaling modifications
are made to the turbulence equations, as discussed in
section , the time step, whether spatially constant or
varying, has to be appropriately scaled.

Figure 1 compares the geometric time step and a
time accurate step for the subsonic single element and
the NLR cases. It is interesting that there is little dif-
ference in the two methods when the residual is large.
In fact, the only difference appears when the limit-
ing time step, described in section becomes inactive.
This causes a change of only one or two iterations. We
have choosen the geometric time step for the remaining
tests.

100 \

Conétant E—
Geometric --------

0.01
0.0001

le-06

L2 norm of residual

1le-08

le-10

le-12 I I I AN I I
0 20 40 60 80 100 120 140

CPU time - seconds

Fig. 1 Spatially varying vs. constant time step

Grid Sequencing

Grid sequencing uses a series of coarse grids to pro-
vide a good initial guess on the final grid. This has
the advantage of starting much closer to the region
of convergence of Newton’s method, and reducing the
start-up time. Potentially, a larger At,,;, can be used
on the fine grid.

Each coarse grid is formed by removing every other
grid line in both directions from the parent grid. We
see modest benefits to using grid sequencing for all but
the turbulent multiblock case. Grid sequencing also
makes it easier to choose the coeflicients for the refer-
ence time step equation. A more aggresive sequence
can be used on the fine grid, while more conservative
values can be use on coarse grids, where the iterations
are quicker.

Turbulence Model Stabilization

Examination of the turbulence model with a value
of ¥ less than zero shows that production, which is
roughly proportional to 7, will become negative, while
the destruction term, which is proportional to 72, re-
mains negative. This shows that the model becomes
unstable as 7 decreases from zero. Therefore, it is cru-
cial to take steps to ensure that 7 remains positive.
An obvious fix is to clip the turbulence variable after
each update. This is useful, but not sufficient to sta-
bilize start-up without the use of an extremely small
time step. This is a result of the strong coupling be-
tween the turbulence model and mean flow equations.
A large update of the turbulence quantity can drive
the pressure or density negative. Further measures are
required. We present two methods of stabilizing the
turbulence model during the critical start-up. Both
are aimed at preventing updates to ¥ that will make
it negative. The first follows Spalart and Allmaras in
modifying the Jacobian of the turbulence equations.
The second presents a new time step designed to limit
updates. Clipping as well as these methods are dis-
cussed below.

When the mean flow equations are started from
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freestream, there are usually large transients present at
the body during the first few iterations. The produc-
tion and trip terms can produce very large residuals
because of this. It is generally a good idea to perform
a few iterations of the mean flow solver without the
turbulence model to establish a reasonable flow at the
body.

A common problem occurs when the turbulence
model fails to trip in a portion of the flow during the
early iterations. The residual can drop a few orders
of magnitude with this laminar region. Unfortunately,
this means that the time step has increased, and can
be approaching Newton’s method, when this region
finally transitions. The result can be a spike in resid-
ual with corresponding slow down in convergence, or
can often be divergence because of the large time step.
This is a more common problem when fully turbulent
flow, with no trip terms to help transition, is used.
Fortunately, this is easily treated. By starting with a
low level of turbulence where the final solution is ex-
pected to have transitioned, and by starting the cases
with just the mean flow equations as described above,
we can obtain proper tripping. This turbulence viscos-
ity is rapidly convected from regions that lack enough
shear to sustain it. By starting with a few mean flow
iterations, we establish enough shear near the body
to hold the turbulent viscosity. Using v = 10 is high
enough to seed tripped regions, but still convect out
quickly.

When no trip terms are used, we are assuming fully
turbulent flow, so all nodes start with this small tur-
bulent quantity. When using trip terms, just those
regions behind the trip points are set to nonzero. It is
important to leave the turbulent viscosity at zero in re-
gions upwind of trip points. Otherwise, it is common
that the flow remains fully transitioned, even when
fully converged.

Modified Jacobian

Spalart and Allmaras® suggest modifying the Ja-
cobian of the turbulence model so that it becomes
positive definite. Note that these changes preclude the
use of matrix-free GMRES. The rational behind the
change is that the updates to the turbulence quantity
will always be positive.

The original modifications were derived for a loosely
coupled or uncoupled solver, so that there are no
derivatives of the turbulence model with respect to
the flow state vector. The presence of these coupling
derivatives could complicate the modifications signif-
icantly. However, experimentation has shown that
changes to these entries are not necessary to obtain
positive updates.

Of course, these changes are not desirable when
using a Newton solver and slow the outer iterations
significantly. However it is during start-up when the
highest transients are occurring that we are at the

most risk of seeing very large negative values. After
the residual has dropped, it is possible to return to the
unmodified Jacobian without much risk of encounter-
ing negative values of 7.

The time step method presented in section does not
work well for this method. It requires much higher
time steps for efficiency. Also, there is no clear rela-
tionship between the maximum stable time step and
residual. In fact, a time step of infinity is often pos-
sible, after a few iterations to smooth the solution.
Convergence is instead limited by the modified Jaco-
bian. For these reasons, we use an alternative method
to set the time step when the modified Jacobian is
used. A typical time step series using grid sequencing
proceeds as follows:

e On the twice-coarsened grid

— Atyer = 50. until turbulence model trips
— Atyes = 500. until ||R|| <1074

e Prolong to one-coarsened grid

— Aty = 50. for 3 iterations
— Atyes = 500. until ||R|| < 10~

e Prolong to final grid

— Atyer = 50. for 3 iterations
— Atyes = 500. until ||R|| <1074

— Newton stage, with true SA Jacobian

The first stage ends after the turbulent residual has
peaked. The value it reaches varies strongly by case,
but it is generally safe to choose a minimum of 15 iter-
ations, and switch to the next stage when the residual
drops below one. This stage is quite fast because a
coarse grid is used, so a conservative number of itera-
tions should be used.

After prolonging, a few iterations are performed at
lower time step in order to smooth out prolongation
errors. Negative values of 7 often show up here. Clip-
ping is useful to maintain stability. The transition to
the true Jacobian should happen as soon as possible,
since the modifications to the Jacobian slow conver-
gence significantly.

The above assumes that the turbulent equations are
scaled by the Reynolds number, as described in sec-
tion . If a Jacobian scaling is used, the tolerance of the
linear system must be tightened considerably. There
seems to be two reasons for this. The modifications
to the Jacobian require tighter tolerances to enforce
a positive update. Second, since large time steps are
being used, the linear residual of the mean flow equa-
tions must be reduced, or at least not allowed to grow
in order to preserve nonlinear stability. They are much
smaller than the turbulence model residuals, so a cor-
respondingly smaller linear tolerance is required.
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Local time step

The production and destruction terms are highly
nonlinear and exhibit some very undesirable charac-
teristics when used with a Newton solver. Figure 2
shows the local residual of the turbulence model at
a problem node. In this particular case, the residual
and derivative were evaluated at © roughly equal to 17.
The slope is positive, but very close to zero. This sit-
uation leads to a large negative update. Fortunately,
it is also reasonably easy to avoid if we use an appro-
priate time step. The following applies only locally
and does not address coupling effects. However, most
coupling results from convection and diffusion, both of
which are unlikely to result in large negative updates,
and trip terms, which are discussed in section

If Newton’s method is used on this uncoupled equa-
tion, we get the following update:

R
I ©)

where R and Jp are the residual and diagonal element
of the equation, respectively. We want to limit this
update so that

Ap =

|AD| < |r|-D (10)
where |r| is a specified ratio. Choosing |r| = 1 would
keep the updated 7 positive in the uncoupled case,
but in practise a smaller value is more robust. To
enforce the limit on A7, we use a local time step, Atj,
determined from

Ar=——F (11)
Atﬂ + Jp
Applying the target update gives
-1
Aty = [i - JD] (12)
7

Av and therefore r should have the same sign as R.
This moves the update in the direction of the residual.
Figure 3 shows different choices of |r|. The method
is reasonably insensitive to the value, with a range of
about 0.4 through 0.8. Going much higher than 0.8
can occasionally cause large negative updates.

Comparison of Stabilization Method

Figure 4 compares the modified Jacobian method
to the modified time step. The new time step shows
a modest improvement over the modified Jacobian.
There are other advantages to the modified time step
that are not evident in the convergence plots. It does
not require an explicit Jacobian matrix to be used,
which opens the possibility to use entirely matrix-free
methods. We do not have to decide where to transition
from the modified to exact (or matrix-free) Jacobian.
The one or two iterations after this transition can be
problematic. Large updates may occur, which can
cause instability in both the nonlinear and linear sys-
tems. For these reasons, we prefer to use the modified
time step method.
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Local SA residual
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Fig. 2 Local turbulence residual at problem node
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Fig. 3 Local turbulent time step limiting ratio for
multi-element case
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Fig. 4 Modified Jacobian vs time step methods of
stabilizing turbulence model
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Turbulence Model Scaling

If the turbulence model is discretized as suggested,
large scaling differences appear within the blocks of the
Jacobian matrix. The off-diagonal entries for the tur-
bulence model are many orders of magnitude higher
than the off-diagonal entries of the mean flow equa-
tions, especially those from the derivative with respect
to the turbulence variable. The diagonal elements are
quite close in magnitude. This disparity results in part
from the mean flow variables being scaled by J~!. The
residual of the turbulence equations is also orders of
magnitude higher than that of the mean flow equa-
tions. This can cause serious problems with nonlinear
stability. The linear system does not need to reduce
the linear residual of the mean flow equations in or-
der to meet the convergence criterion and in fact these
can increase. For this reason, scaling the residual of
the turbulence equations to within about an order of
the mean flow is quite important.

A natural decision would be to scale the turbulence
variable by J~1, the same factor as the mean flow vari-
ables. This improves the derivatives of the mean flow
equations with respect to the turbulence variable. A
scaling of the turbulence model equation addresses the
derivative of the turbulence model with respect to the
mean flow variables. Using J~! is one choice. This
is compelling because it closely matches that of the
mean flow. However, it leads to a strong decrease in
the residuals at the body. This causes problems with
trip and destruction terms, which may not be resolved
until later in the convergence history. Using a pro-
gressive At means there may be quite a high time
step when the residual close to the body is resolved, a
situation best avoided.

A second choice is scaling the turbulence residual by
the inverse of the Reynolds number. This helps scale
the Jacobian (although not as well as using J~!), and
brings the turbulence model residual norm much closer
to that of the mean flow equations, while not affecting
the relative turbulence residual between nodes. It also
makes a certain amount of physical sense, since the
turbulent effects scale roughly by the Reynolds num-
ber.

An extension of this is to automatically rescale the
equations at each nonlinear iteration. We have to do
this at each iteration because we cannot rely on the dif-
ferences in the first few iterations, as these residuals
are strongly dependent on boundary residuals. Note
that we calculate one factor which is used for the tur-
bulence model equations at every node, as opposed to
a calculating an individual factor for each equation.
Applying this method as is does not give good results.
Convergence is slow, requiring excessive linear solves,
to the point where nonlinear convergence can stall.
Watching both mean flow and turbulence model resid-
uals reveals that the difference between them grows
as convergence proceeds. To remedy this, we instead

0.01 ‘
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Jacobian

L2 norm of mass conv. residual

Fig. 5 Effect of turbulence model residual scaling
on multi-element case

only require that the turbulence residual be rescaled to
within one order of the mean flow. This ensures that
the linear residual of the mean flow equations can’t
grow significantly (since we reduce the linear system
residual by one order), but allows the residual of the
turbulence model to decrease to the residual of the
mean flow.

Figure 5 compares the above three methods of scal-
ing the turbulent residual. Each uses a turbulence
variable scaled by J~!. It is quite difficult and slow
to converge without this variable scaling. The mean
flow residuals are shown instead of the total residual,
because the scaling changes in the turbulence residual
make comparison difficult. The parameters of equa-
tion 5 have to be optimized for the rescaled equations.
The results show that using either Reynolds number
or automatic scaling is significantly faster than using
Jacobian scaling. This difference is even larger when
trip terms are used.

Trip terms

The use of trip terms is strongly recommended by
Spalart and Allmaras in order to ensure that turbu-
lent transition occurs where desired. We follow their
suggestion in using a limited number of nodes ‘within
a reasonable distance of the trip’ for the calculation
of the first trip function fy;. This simplifies the cod-
ing, and speeds calculation of the residual slightly. If
the region is chosen properly, the residual should not
be affected because of the exponential decrease in fi
with increasing distance from the trip point.

Using the trip terms provides a challenge for the
Newton solver. f;; is quite nonlinear, and can show
extreme sensitivity to the velocities at the trip point.
This is due to the exponential nature of f;; and the fact
that the vorticity is a derivative of the velocities. To
further complicate the issue, the residuals of the mean
flow equations are scaled by J~!, which means that
the linear residual near the body may not be reduced,
leading to fluctuations in the velocities at the trip, and
a potentially large increase in the trip term.
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CPU time in seconds
Case | Matrix free | Matrix explicit
1 50 83
2 56 132
3 257 306

Table 3 CPU time with matrix-free and matrix-
explicit

The coupling adds extra entries to the Jacobian ma-
trix. These are important to include if an explicit
matrix is being used. They are not desirable in the
preconditioner, however, since they affect the reorder-
ing and increase memory requirements, especially with
higher levels of fill.

If trip terms are used with no modifications made
to the algorithm presented, convergence can be slowed
unpredictably as the trip term fluctuates. Measures
need to be taken to damp the changes in the turbulence
variable near the trip. This is important for robust-
ness as well as efficiency. The changes in the residual
can easily be large enough to destablilize the solution.
The approach taken is to drop the time step at the
nodes where the trip terms show sensitivity to veloc-
ity. We want to keep the rule as simple as possible,
and to have it work with the reference time step pre-
sented in section . Nodes where the magnitude of the
derivative of the trip term are greater than a set limit
have the time step by up to two orders according to
the following

Atref Atref <10
At = 10 : 10 < Aty <1000 (13)

" At
Mo Aty > 1000

Choosing 1073 for the derivative limit encompasses
all the sensitive nodes. The method is not too sensitive
to this value.

Matrix free vs. matrix explicit

As mentioned previously, GMRES does not require
the matrix to be explicitly formed. There is a trade-
off in speed between matrix-free and matrix-explicit
GMRES, which depends on the number of linear itera-
tions. The former requires one residual evaluation per
iteration. The latter requires a matrix construction
when beginning the linear solve, plus a matrix-vector
multiply per iteration. Since the matrix-vector multi-
ply is cheaper than a residual evaluation, matrix-free
GMRES becomes less efficient with more difficult sys-
tems. Table 3 compares these two methods.

Case 2, the transonic case, shows the largest dif-
ference. The matrix here is better conditioned than
the other cases, due in part to the higher Mach num-
ber, and needs about 10 inner iterations per Newton
step. Also, due to the presence of the shock, the
pressure switch has activated second-difference dissi-
pation. Adding the linearization of the switch and the

dissipation coefficient requires significant amounts of
time when calculating the Jacobian and is not done.
Without these terms in the Jacobian matrix, the con-
vergence of the outer iterations is adversely affected.
The first case also shows a significant advantage. Case
3 has the smallest gain. This is a result of the increased
number of inner iterations required. Matrix-free is
clearly the best choice as it saves CPU time, especially
in the transonic case, and has much lower memory re-
quirements.

The natural scalings found between the mean flow
equations and turbulence model (in both the Jaco-
bian and the residual) can be problematic for the
matrix-free method. A forward difference approxima-
tion, which requires only one extra right hand side
evaluation, is used to approximate the matrix—vector
multiply

PR CLIUEEAT)

(14)

where € is a small scalar used to perturb Q in the
direction of v. Nielsen et al.'® choose ¢ as

ellvllz ~ vEm (15)

where g,, is the value of machine zero. Pueyo and
Zingg* used this method successfully with the mean
flow equations and an algebraic turbulence model.
There are three potential sources of error in equa-
tion 14. The perturbation ev must be small enough
to minimize nonlinearities in F. The difference in
the numerator must be large enough, compared to F,
to minimize round-off error, just as ev must be large
enough compared to Q.

The problem arises when there are large scaling dif-
ferences in the components of vector v. Equation 15
will choose € appropriate for the largest components of
v. Large round-off errors can then result from the very
small components. This is regularly witnessed when
solving a system with both the mean flow equations
and turbulence model, especially with trip terms. The
manifestation can be subtle and is easily attributed
to a problem with the nonlinear portion of the algo-
rithm. This is because the linear solver will converge
when this problem occurs. Effectively, a different ma-
trix is being solved. The GMRES solver shows no sign
of difficulty because the linear residual is not explicitly
calculated during iteration. However, if the true linear
residual is calculated after the Krylov method finishes,
the residual of the mean flow equations is seen to have
increased by one or two orders. Another symptom
is an increase in number of inner iterations, resulting
from the preconditioner no longer representing the Ja-
cobian that is effectively being solved.

The main culprit is the round-off error. Increasing e
will correct this, at risk of increasing nonlinear errors.
As it turns out, a value can be found that is still within
the linear range, but that minimizes round-off error.
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Results

Figures 6, 7, and 8 compare the convergence his-
tories of the Newton-Krylov solver (NK) with an
approximately-factored solver (AF) in diagonal form
using grid sequencing. They show the conservation
equation residual versus both CPU time and number
of equivalent residual evaluations. We include both
the evaluation of the mean flow and turbulence model
equations in the residual calculation time. The time
to evaluate the residual is virtually identical in both
the AF and NK solvers.

The Newton-Krylov solver was run with and with-
out trip terms. The AF solver used trip terms, al-
though there is little difference in convergence time
without them. All cases used an ILU(4) precondi-
tioner, and were run on an AMD 1800-XP desktop
computer. Cases 1 and 3 are considerably faster than
the AF solver, while case 2 shows a smaller improve-
ment. This is due to the AF solver already solving
the case in 2500 residual evaluations. Case 3 is not
fully converged by the AF solver. There is a small
recirculation bubble at the trailing edge of the flap.
Difficulties arise at the edges of these bubbles with the
highly nonlinear destruction term of the turbulence
model. Qutside of these few nodes, the model is fully
converged.

Cases 1 and 2 show very little difference in conver-
gence when run with and without trip terms. Case
3 shows over a factor of two slow down when trip
terms are used. This results from the trip vorticity
on the underside of the main element converging very
slowly. The vorticity is weak here, and so causes high
trip sources. It also changes significantly between the
coarse grids and the final grid, reducing the effective-
ness of grid sequencing.

L2 norm of mass conservation residual L2 norm of mass conservation residual

Coefficient of drag
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Conclusions

An efficient Newton-Krylov solver has been pre-
sented for the steady compressible Navier-Stokes equa-
tions governing turbulent flows over multi-element air-
foils. A spatial time step has been presented that
stabilizes the turbulence model, and provides reduced
CPU time to converge to the region of convergence for
Newton’s method, as well as eliminating the memory
requirements of the modified Jacobian suggested by
Spalart and Allmaras. Scaling of the turbulence vari-
able and equation improves the efficiency of the linear
solver. Increasing the perturbation of the matrix-
free method addresses a problem with round-off errors
when scaling differences occur in the system. A re-
duced time step for the nodes where the trip source
terms show sensitivity to trip vorticity is used to en-
sure that the turbulence model converges smoothly in
these areas. With out this modification, large jumps
in residual can destabilize the solution. The single-
element test cases can be solved in less than 60 sec-
onds, while the complex flow on the multi-element
case can be found in about ten minutes. The sub-
sonic cases converge four to eight times faster than an

approximately factored algorithm, while the transonic
is better than twice as fast.
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