
Mesh Movement for a Discrete-Adjoint Newton–Krylov
Algorithm for Aerodynamic Optimization

Anh H. Truong,∗ Chad A. Oldfield,† and David W. Zingg‡

University of Toronto, Toronto, Ontario M3H 5T6, Canada

DOI: 10.2514/1.33836

A grid movement algorithm based on the linear elasticity method with multiple increments is presented. The

method is relatively computationally expensive but is exceptionally robust, producing high-quality elements even for

large shape changes. It is integrated with an aerodynamic shape optimization algorithm that uses an augmented

adjoint approach for gradient calculation. The discrete-adjoint equations are augmented to explicitly include the

sensitivities of the mesh movement, resulting in an increase in efficiency and numerical accuracy. This gradient

computation method requires less computational time than a function evaluation and leads to significant

computational savings as dimensionality is increased. The results of the application of these techniques to several

large deformation and optimization cases are presented.

Nomenclature

A = coordinates of the airfoil surface
E = modulus of elasticity
f = external forces
G = coordinates of the interior grid nodes
J , F = objective functions
i = increment number
K = stiffness matrix
L = Lagrangian
l = length of a side of a triangle
n = number of increments
P = potential energy
Q = flow variables
R = radius of a circumscribed circle
R = flow residual
r = residual of the grid movement equations
s = semiperimeter of a triangle
u = element displacements
V = element volume
X = design variables
� = boundary
�, = adjoint vector
� = radius of an inscribed circle
� = stress tensor
� = element shape quality
� = spatial domain

Subscripts

e = belonging to an element
t = belonging to the entire system
jQ = Q is held constant in the differentiation
� = subtriangular element inside a quadrilateral

Superscripts

^ = known variable on the boundary
T = transpose

Introduction

D YNAMIC meshes are required in the simulation of flow
problems involving moving boundaries. These problems occur

in many engineering applications, including blood flow in arteries;
induced vibrations of suspension bridges, skyscrapers, and offshore
structures; oscillating airfoils; aeroelastic response of wings; and
unsteady motion of rotor blades in forward flight [1–3]. More
recently, with rapid advancements in processing speed and
computing power and the extended use of computational fluid
dynamics software as a design tool, dynamic meshes have also been
used in the process of aerodynamic shape optimization. In either area
of application, a new mesh has to be generated at each time step or
iteration to fit the deformed surface, or the existing mesh has to be
allowed to move with the computational domain. Allowing the
existing mesh to evolve with the computational domain is generally
more efficient than generating a newmesh. In shape optimization, the
boundary surface undergoes many small changes; it would be too
time consuming to regenerate the mesh in response to these
deformations. Remeshing usually requires manual adjustments for
complex geometries and the projection of the solution from the old
mesh to the new one, because the new mesh may not have the same
number of nodes and connectivity [4]. A mesh perturbation
approach, on the other hand,will inherently preserve the original grid
connectivity, hence ensuring the consistency of any mesh-induced
errors in the flow solution (i.e., due to discretization error) between
the initial and deformed grid, provided that a consistent mesh quality
is maintained. It also ensures continuity in the sensitivity derivatives.
The robustness and efficiency of the mesh deformation tool is
particularly important in gradient-based optimization because any
changes in the grid quality can have significant effects on these
derivatives [5].Most important,meshmovement algorithms have the
potential to significantly reduce engineering cost by allowing the
design process to be automated.

The focus of this work is on implementing a robust mesh
movement method and efficient gradient computation for an
aerodynamic optimizer developed by Nemec et al. [6–8]. The
optimizer uses a Newton–Krylov algorithm for aerodynamic shape
optimization on structured meshes with the discrete-adjoint method
for the computation of the objective function gradient. The flow is
governed by the two-dimensional compressible Navier–Stokes
equations with the one-equation Spalart–Allmaras turbulence model
and is solved using the preconditioned generalized minimal residual
(GMRES) method in conjunction with an inexact Newton approach.

Presented as Paper 3952 at the 18th AIAAComputational Fluid Dynamics
Conference, Miami, FL, 25–28 June 2007; received 3 August 2007; revision
received 8 February 2008; accepted for publication 11 February 2008.
Copyright ©2008 byDavidW.Zingg. Published by theAmerican Institute of
Aeronautics andAstronautics, Inc., with permission. Copies of this papermay
be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0001-1452/08 $10.00 in
correspondence with the CCC.

∗Graduate Student, Institute for Aerospace Studies, 4925 Dufferin Street.
Student Member AIAA.

†Graduate Student, Institute for Aerospace Studies, 4925 Dufferin Street.
‡Professor, Senior Canada Research Chair in Computational Aerody-

namics, Institute for Aerospace Studies, 4925 Dufferin Street. Associate
Fellow AIAA.

AIAA JOURNAL
Vol. 46, No. 7, July 2008

1695

http://dx.doi.org/10.2514/1.33836

The discrete-adjoint equation is solved using the same
preconditioned GMRES method. The geometry is defined by a set
of B-spline points, a subset of which is used as design variables.
Geometric constraints are imposed on the objective function as
penalty terms. It is shown that augmenting the discrete-adjoint
equations to explicitly include the grid perturbation can result in
significantly improved run time and gradient convergence.

Background

Mesh Movement Methods

A simple mesh movement technique for structured grids is to
perturb each grid line running from the airfoil surface to the outer
boundary individually. Burgreen et al. [9] computed the
perturbation of each node on the grid line by linearly interpolating
the perturbation between the airfoil and the far field. The method
was later improved for highly curved grid lines by basing the
interpolation on the arc length along the line [10]. In multiblock
meshes, grid lines may not touch the airfoil or the far-field
boundary, and the method needs to be modified. Nemec [7] uses
trigonometric functions to preserve orthogonality for 2-D multi-
element airfoils. Jones and Samareh-Abolhassani [11] implemented
an algebraic perturber that perturbs the block boundaries and
interiors separately, using transfinite interpolation in an arc length
parameter space. As they are strictly algebraic, these methods have
a very short run time. However, for large perturbations, they can
generate poor quality or tangled meshes. This can result in the need
for the user to generate a new mesh during the optimization process.
This is a notable deficiency, as an optimizer using such a method
lacks complete automation.

A common technique is to model the mesh as a network of
fictitious lineal springs whose stiffness is inversely proportional to
the spring length. A linear system that represents this network of
fictitious springs can be formulated and solved, yielding the interior
nodal displacements due to a given boundary movement. Although
it has been found to be fairly efficient and is applicable to
unstructured or structured meshes, this approach can give tangled
meshes for large shape changes. Farhat et al. [1] improved the
robustness of the method by adding torsional springs. This was later
extended to three dimensions [12]. Samareh [4] used quaternion
algebra to improve the treatment of three-dimensional rotations and
to help preserve the near-surface quality of two-dimensional
viscous meshes. Recently, Liu et al. introduced a mesh deformation
algorithm based on Delaunay graph mapping [13] that is
comparable to the spring analogy method in robustness but
surpasses it in efficiency, as it is noniterative and uses significantly
less memory.

Another approach is to model the mesh as a continuum of elastic
solid whose properties are defined by the modulus of elasticity and
the Poisson ratio. Nodal movements are governed by the equations
of linear elasticity, and mesh distortion can be controlled through
the elements in the elastic matrix [14]. This method has been found
to be much more robust than the spring analogy method, although
relatively inefficient [3,5,15]. Like the spring analogy technique,
the use of the linear elasticity method usually requires some
additional mesh stiffening mechanism to minimize the distortion of
small elements, often by means of nonlinear material properties
and/or nonlinear geometric deformation. Tezduyar et al. [16]
introduced the technique of controlling the element deformation
based on its size. This is achieved by assigning the modulus of
elasticity to be inversely proportional to the cell volume. This way,
smaller elements will be more rigid and more resistant to
deformation. Stein et al. [14] and Bar-Yoseph et al. [3] augmented
this method to include a stiffening mechanism that stiffens the mesh
with increasing mesh displacement for cases with even larger
amplitudes of displacement and rotation. The incremental approach
is adopted here, wherein the deformed shape is achieved through a
series of equal increments. At each increment, the stiffness is locally
increased in highly strained areas. The result is a scheme that has a
relatively high computational cost, yet is robust even to large shape
changes.

Gradient Evaluation Methods

Although many optimization techniques make use of only the
objective function value, the methods that are most computationally
efficient are generally those that also use the value of the objective
function gradient. Efficient gradient evaluation is essential to fast
gradient-based optimizers.

Themost straightforwardway of computing a gradient is bymeans
of finite differences. Although this has the advantage of simple
implementation, it has limited accuracy due to truncation error for
large step sizes and subtractive cancellation error for small step sizes.
Additionally, the time required is long when compared with a flow
solution, and the total time scales linearly with the number of design
variables. The subtractive cancellation errors can be eliminated by
using the complex stepmethod. The theory for thismethod is laid out
by Squire and Trapp [17], and its implementation is discussed by
Martins et al. [18]. It allows very small step sizes to be used, thereby
all but eliminating truncation error. However, the gradient
calculation time is similar to that of finite differences.

Alternatively, the gradient can be computed analytically.
Differentiated code can be produced quickly with algorithmic
differentiation programs in either the forward or reverse modes.
Griewank [19] provides a thorough discussion of the methods. In the
forward mode, the differentiated code must be run once for each
design variable, but in the reverse mode, the code must only be run
once for each objective, and so it has a run time that is independent of
the number of design variables. The speed advantages of the reverse
mode are offset by a very large memory requirement: the
intermediate values of each variable must be stored.

A semi-analytic approach to derivative calculation is the adjoint
method. It was originally introduced to aerodynamic shape
optimization by Pironneau [20] and Jameson [21]. As with reverse
mode algorithmic differentiation, it provides a gradient computation
time that is independent of the number of design variables; the time
is typically on the order of the time taken by one function
evaluation. The bulk of the computation involves solving a linear
system whose size is independent of the number of design variables.
The memory requirement is more reasonable than that of reverse
mode algorithmic differentiation, but it takes considerable
development time to hand code the derivatives required to form
the adjoint equations.

The adjoint equations can be derived from the continuous or
discretized flow equations. In the continuous approach, the adjoint
equations are derived, discretized, then solved. Any discretization of
the continuous adjoint equationsmay be used, and a carefully chosen
discretization can result in computational savings. However, the
computed gradients are different for each possible discretization of
the adjoint system. This appears as an inconsistency between the
computed gradient and the gradient one would expect when
examining the discretized objective function; the discrepancy is on
the order of the truncation error of the method and disappears as the
meshes for the flow and adjoint solvers are refined.

For the discrete-adjoint approach, the process is reversed: the
discrete-adjoint equations are derived from the discrete flow
equations. The discrete-adjoint equations are one of the possible
discretizations of the continuous ones and, by construction, this is
the same discretization that was used for the objective function.
The aforementioned error is therefore nil, and the gradient
accuracy is regulated by the tolerance to which the equations are
solved. As a result, the optimizer may be able to converge more
tightly [22].

In accordance with a philosophy favoring tightly converged
solutions while maintaining the speed advantages of the adjoint
method, the discrete-adjoint method has been selected. For the
optimization of the objective functionJ of theflowvariables,Q, and
the design variables, X, the objective function gradient can be
evaluated as follows. First, the flow solver is converged, as
represented by equating its residual to zero:

R �Q;X� � 0 (1)

Next, the adjoint vector, , is found by solving the linear system

1696 TRUONG, OLDFIELD, AND ZINGG

�
@R
@Q

�
T

 ��
�
@J
@Q

�
T

(2)

where the derivatives are evaluated at the converged values of Q.
Then, the gradient of the objective function is found by evaluating

@J
@X
� @J
@X

����
Q

� T @R
@X

����
Q

(3)

where jQ indicates that Q is held constant in the differentiation. The
solution of Eq. (2) represents the bulk of the computational work
required in the gradient evaluation; it is the size of this system that is
independent of the length of X, resulting in the speed benefits of the
method.

Mesh Sensitivities in the Discrete-Adjoint Method

Considering that the evaluation of an aerodynamic objective
function involves perturbing the mesh, it is to be expected that the
sensitivities of the objective function to the design variables will
involve sensitivities of the mesh perturbation algorithm. When
evaluating the gradient using the discrete-adjoint method, Eqs. (2)
and (3), these mesh sensitivities are implicitly included in the terms
@J =@XjQ and @R=@XjQ.

Within the discrete-adjoint method, a number of different
approaches to computing grid sensitivities have been used. Kim et al.
[23,24] found that it is possible to neglect the grid sensitivities for
design variables that do not involve the translation of a body and
when the flow is considered to be inviscid.

Nemec and Zingg [6] andMartins et al. [25] used finite differences
for partial derivatives with respect to the design variables, thus
implicitly incorporating mesh sensitivities. Because their optimizers
both use algebraic grid perturbation, it is not computationally
onerous to repeatedly perturb the grid when forming the derivatives
in this way. Burgreen and Baysal [10] and Le Moigne and Qin [26]
hand differentiated arc length-based algebraic grid perturbers
analytically. Bischof et al. [27] used automatic differentiation to
reduce the human effort required to differentiate the more
complicated algebraic grid perturbation method of Jones and
Samareh [11].

More computationally expensive grid perturbation algorithms,
such as the spring analogy and elasticity methods, have been
differentiated using an adjoint approach. Maute et al. [28] presented
an aeroelastic optimizer for three-dimensional Euler flows. They
used the spring analogy mesh perturber of Farhat et al. [1]. The
adjoint problem is posed as a large linear system that includes the
coupled aerodynamic, structural, and mesh movement terms. It is
solved using a staggered procedure, giving adjoint variables for each
of the flow, grid perturbation, and structural solvers. The method is
shown to be efficient, but it is noted that both the time and memory
requirements for the derivative of theflow residualwith respect to the
interior node locations are considerable.

Recently, Nielsen and Park [29] presented an adjoint method for
aerodynamic optimization. It computes an adjoint vector for the flow
solver and then another for the grid perturber. Thiswas performed for
an unstructured grid using the linear elasticity mesh movement
algorithm with one increment. The accuracy of the sensitivities was
comparable to that obtained using direct differentiation, and the
computational time was reduced dramatically. Mavriplis [30] took a
similar approach using the spring analogy for grid perturbation. In
this paper, we extend the method introduced by Nielsen and Park to
allow multiple increments in the mesh movement algorithm.

Although mesh movement is more popular than regeneration in
optimization, analytic and semi-analytic methods have also been
used to differentiate grid generation codes. Sadrehaghighi et al. [31]
used an algebraic grid generator to regenerate a grid at each optimizer
iteration. Their sensitivity analysis includes analytic differentiation
of the grid generation equations. Korivi et al. [32] provided grid
sensitivities through algorithmic differentiation of the algebraic grid
generator of Barger et al. [33]. For an aerodynamic sensitivity
analysis, Pagaldipti and Chattopadhyay [34] differentiated the

equations governing elliptic and hyperbolic grid generation, yielding
a system of equations that can be solved for the sensitivities of the
grid generator.

Linear Elasticity Mesh Perturbation Algorithm

Solving for Displacement of Interior Nodes

The displacement of the interior nodes in the spatial domain, �,
bounded by �, is governed by the equilibrium equation:

r � � � f� 0 on � (4)

subject to the displacement boundary condition

u � û on � (5)

where � is the stress tensor consisting of normal and shear stresses, f
is the vector of external forces, u is the vector of element
displacement, and û is the vector of prescribed displacement on the
boundary.

The constitutive equations connect the stress and strain field in the
elastic body. For linear elasticity, the relation follows Hooke’s law;
the stress, �, is simply the product of the elasticity matrix,C, and the
strain vector, ":

� �C" (6)

Assuming plane strain, isotropic materials, the elements inC can be
expressed as a function of only two independent material constants,
modulus of elasticity E and Poisson’s ratio �.

C � E

�1� ���1 � 2��

1 � � � 0

� 1 � � 0

0 0 0:5 � �

2
4

3
5 (7)

The strain, ", is related to the nodal displacement, u, through the
kinematic relation:

" �Du (8)

The full matrix form of Eq. (8) is

" �
@u
@x
@v
@y

@v
@x
� @u

@y

2
64

3
75�

@
@x

0

0 @
@y

@
@y

@
@x

2
64

3
75
�
u

v

�
(9)

The modulus of elasticity is set to be proportional to the inverse of
cell area at the ith increment, V�i�. In addition, a stiffening
mechanism that varies with the distortion measures is applied to
enhance control of the geometric distortion of the elements,
including aspect ratio, taper, and skew. The change in stiffness from
one increment to the next is based on cell distortion, defined as the
ratio of the element shape quality,�, to its reference value, such that
E increases to infinity as mesh entanglement is approached:

E�i� � 1

V�i�

�
�
�i�
e

�
�0�
e

�
2

(10)

For a quadrilateral element, the element distortion measure is
defined in terms of the 2 norm of the element aspect ratios of its
subtriangular elements:

�
�i�
e �

�����������������������X4
j�1

�
�
�i�
�j

�
2

vuut (11)

�j is the subtriangular element inside the quadrilateral shown in
Fig. 1.�1 ��1;2;4,�2 ��1;2;3,�3 ��2;3;4, and�4 ��1;3;4. The
element aspect ratio of a triangular element is defined as

�
�i�
� �

R�

��
(12)

TRUONG, OLDFIELD, AND ZINGG 1697

whereR� is the radius of the smallest circumscribed circle, and �� is
the radius of the largest inscribed circle:

R�

��
� s�l1l2l3

4A2
�

(13)

where A� �
���
s��s� � l1��s� � l2��s� � l3�

p
is the area of the

triangle�, s� � 0:5�l1 � l2 � l3� is the semiperimeter, and l1;2;3 are
the lengths of the sides of the triangle. These formulations were
suggested by Bar-Yoseph et al. [3], and have been demonstrated to
work well for large deformation problems.

The total strain energy stored in the elastic medium is given by

Pe �
1

2

X
e

uTeKeue (14)

where ue is an 8-element vector containing the x- and y-direction
displacements of each of the corner nodes of the quadrilateral
element e with stiffness Ke. This can also be written in terms of the
total strain of the system:

1
2
uTt Ktut � Pt � uTt ft (15)

The total strain energy is the sum of the potential energy, Pt, and the
externalwork,uTt ft, where ft is the vector of external forces acting on
each of the boundary nodes. ut and Kt are the displacement vector
and stiffness matrix for the entire system. The force is known at the
boundary, as it is the product of nodal displacement and stiffness.
The dimension of these quantities is the number of degrees of
freedom in the system (2 � number of nodes in two dimensions).
Each entry in Kt is formed by summing the corresponding entries in
each overlapping Ke, and f is zero except at the boundary where the
displacement is known.

The steady solution of this system is such that the potential energy
is minimized. This is obtained by setting the derivative of Pt with
respect to ut to 0, which yields the following linear system:

Ktut � ft (16)

For large deformations, the final deformation is achieved in a
series of equal increments,

A�i� � A�0� � i
n
�A�n� � A�0�� (17)

whereA�i� is the vector of coordinates on the airfoil surface for the ith
increment in a perturbation having a total of n increments. A�0� is the
parent airfoil, and A�n� � A is the fully perturbed airfoil.

For the purposes of the sensitivity analysis, the grid movement
equations are written as setting a residual, r�i�, to zero.

0� r�i� � r�i��G�i�; G�i�1�; A�i��X�	 � K�i�t u�i�t � f�i�t (18)

whereG�i�1� is the solution for the coordinates of the interior nodes at
increment i� 1.

Trailing-Edge Treatment

For a C-grid topology, the grid line extending from the trailing
edge to the far field is treated as a moving boundary. For large

deformation problems involving changes in the slope of the trailing
edge, the location of this grid line is computed separately. The
streamwise displacement of this grid line is determined using the
algebraic method [7], whereas the normal displacement is obtained
by fitting it to a cubic polynomial passing through four points: the
midpoint between the two nodes on the upper and lower surface of
the airfoil just before the trailing edge, the node at the trailing edge,
and the last two nodes on the far-field boundary, as shown in Fig. 2.
The special treatment of the trailing edge is used to prevent the
rotational response of the small, elongated elements extending from
the trailing edge as they resist deformation. The result is a smooth,
gradual change in slope of the elements at the trailing edge
propagating all the way to the far-field region.

Augmented Adjoint Formulation

Because the linear elasticity mesh movement method is much
more expensive than the original algebraic mesh movement method,
it is no longer practical or efficient to usefinite differences to compute
partial derivatives with respect to the design variables, which
involves repeated mesh movement. The adjoint approach taken here
augments the method of Nemec and Zingg through the explicit
inclusion of mesh sensitivities in the adjoint equations. A rigorous
method of deriving the discrete-adjoint equations is through the use
of Lagrangemultipliers, as presented byGunzburger [35]. Using this
method, the variables X, G�i�, and Q are considered to be
independent. The optimization problem can then be posed as
minimizing the design objective with respect to all of these variables,
subject to the constraint that the flow solver and mesh movement
algorithm must have converged. This is expressed as

min J �Q;G�n�; X� w:r:t: Q;G�n�; X

s:t: r�i��G�i�; G�i�1�; A�i��X�	 � 0; i 2 f1; 2; . . . ; ng
R�Q;G�n�; X� � 0

To enforce the constraints, let the Lagrangian, L, be defined as
follows:

L� L���i�; ;Q;G�i�; X�

� J �
Xn
i�1

��i�Tr�i� � TR i 2 f1; 2; . . . ; ng (19)

where and ��i� are the Lagrange multipliers.
Setting each of the partial derivatives of the Lagrangian to zero

then provides optimality conditions for the objective function:

@L
@��i�

� 0� r�i�; i 2 f1; 2; . . . ; ng (20)

@L
@
� 0�R (21)

@L
@Q
� 0� @J

@Q
� T @R

@Q
(22)

@L
@G�n�

� 0� @J
@G�n�

� ��n�T @r
�n�

@G�n�
� T @R

@G�n�
(23)

1

2

3

4
3

l

2l
1

l

Fig. 1 Quadrilateral element with subtriangular element�123 and side

lengths l1, l2, and l3.

Fig. 2 Cubic polynomial fitting at the trailing edge.

1698 TRUONG, OLDFIELD, AND ZINGG

@L
@G�i�

� 0� ��i�T @r
�i�

@G�i�
� ��i�1�T @r

�i�1�

@G�i�
i 2 fn � 1; n � 2; . . . ; 1g

(24)

@L
@X
� 0� @J

@X
�
Xn
i�1

�
��i�T

@r�i�

@A�i�
@A�i�

@X

�
� T @R

@X
(25)

A number of approaches can be taken to find a solution to these
optimality conditions to minimize the constrained objective,
including solving for all of the variables simultaneously, an approach
that defines simultaneous analysis and design. Using this one-shot
approach, a large-scale solver sets the entire gradient of the
Lagrangian to zero. This is not practical for multipoint optimization.

The sequential approach taken here delegates a great deal of the
computation to the existing specialized solvers. For a given X,
Eq. (20) can be solved using the mesh movement code to yield each
G�i�. Using that solution, the flow solver can be used to solve Eq. (21)
to yieldQ. The linear systems in Eqs. (22–24) can then be solved in
the order they appear to give and each ��i�. Finally, the right-hand
side of Eq. (25) can be evaluated to yield a value for @L=@X.

This process sets most of the entries in the gradient of the
Lagrangian to zero, leaving only @L=@X nonzero:

@L
@f��i�; ; Q;G�i�; Xg � 0 0 0 0 @L

@X

	

(26)

The optimizer therefore only needs to consider X, L, and @L=@X.
This can be denoted as the following objective function:

F �X� � L;
�
��i�; ; Q;G�i�j @L

@f��i�; ;Q;G�i�g � 0

�

i 2 f1; 2; . . . ; ng
(27)

having a gradient given by

@F
@X
� @L
@X
� @J
@X
�
Xn
i�1

�
��i�T

@r�i�

@A�i�
@A�i�

@X

�
� T @R

@X�
��i�; ;Q;G�i�j @L

@f��i�; ;Q;G�i�g � 0

� (28)

The function F and the gradient @F=@X are sent to the optimizer.

Notice that in evaluating the gradient, the adjoint equations,
(22–24), are linear systems whose sizes are independent of the
number of design variables. In evaluating the gradient, the only
step whose computational time depends on the number of design
variables is the evaluation of @L=@X in Eq. (25). This step requires
only matrix multiplication and addition and so is not
computationally demanding. The time required to evaluate the
gradient should therefore be nearly independent of the number of
design variables.

Results

Several cases involving pure mesh deformation and deformation
in an optimization cycle are presented. The first two are pure large
deflection cases consisting of translational and rotational
deformations, demonstrating the robustness of the mesh movement
algorithm. The next two are aerodynamic shape optimization cases
examining the performance of the mesh movement algorithm with
the augmented adjoint method compared with that of the original
method. In the optimization cases, the wake cut is treated as part of
the interior of the mesh rather than as a boundary defined by a cubic.
The mesh movement problems are allowed to converge to machine
zero using the conjugate gradient method with incomplete lower–
upper preconditioning with zero fill. In these cases, the number of
conjugate gradient iterations required varies from 20 to 900,
depending on the amount of deformation. The processing time per
increment is typically 16% of the time required for a converged flow
solution.

Mesh Movement for Large Deformations

Translational and rotational displacements are examined. In the
first case, the RAE 2822 airfoil is deformed and given a translation of
one chord length in both the x and y directions, as shown in Fig. 3.
The final configuration was achieved using only one increment, and
the element quality [as defined in Eq. (11)] of the deformed mesh is
equivalent to that of the original.

Figure 4 shows the result of rotating the NACA 0012 airfoil by
60 deg about the trailing edge. Themesh has 201 � 45 nodes, and the
final deformation is achieved using five increments. It can be
observed that the smoothness and orthogonality of the original mesh
are maintained even for such a large rotation, and the quality of
smaller elements in the boundary layer of the airfoil is preserved. The
deformation is propagated to larger elements in the far-field region.
Again, using Eq. (11), the quality of the deformed mesh is
determined to be 0.836, which is quite acceptable considering the
large degree of rotation the mesh has undergone.

1.998 1.999 2 2.001 2.002 2.003

0.998

1

1.002

0 1 2 3

0

1

2

a) RAE 2822 airfoil C mesh b) Modified mesh at the trailing edge

Fig. 3 Original and deformed mesh of the RAE 2822 airfoil consisting of 10,550 nodes.

TRUONG, OLDFIELD, AND ZINGG 1699

Optimization Cases

Test Case Details

Two test cases are presented. In case A, the design objective is to
minimize the drag-to-lift ratio for an airfoil in a subsonic flow. The
Mach number is 0.25 and the Reynolds number is 2:88 � 106. The
turbulent flow is computed on a 225 � 49mesh (11,025 nodes). The
initial airfoil is the NACA 0012, which is parametrized by a B-spline
curve having 13 control points, as shown in Fig. 5. The three control
points at the leading edge and the two at the trailing edge are held
fixed, whereas the y coordinates of the remaining eight control points
are used as design variables. The angle of attack, initially 4 deg, is
also a design variable. Six minimum thickness constraints, given in
Table 1, are used. A piecewise linear distribution for the radius of
curvature constraint is given in Table 2 and is shown graphically in

Fig. 6. The respective properties of the NACA 0012 airfoil are
included for reference. The minimum radius of curvature constraint
was chosen to be less than the radius of curvature of theNACA0012.
In the critical areas of the nose and tail, the specifiedminimum radius
of curvature is relatively close to the radius of curvature of the
RAE 2822 airfoil.

In the second case, the design objective is to minimize drag at a
fixed lift coefficient under transonic flow conditions. The Mach and
Reynolds numbers are 0.78 and 2:0 � 107, respectively. The target
lift coefficient is 0.75. An enclosed minimum area constraint of 0.8
times the area of the initial airfoil, the NACA 0012, is enforced.
Thickness constraints are 0.012 at a chordwise coordinate of 0.95 and
0.11 anywhere between chordwise coordinates 0.15 and 0.4. The
starting mesh as well as radius of curvature constraints are the same
as in case A. The test cases were run using an Athlon64 3500�
processor with a clock speed of 2.2 GHz.

Optimized Airfoil Performance

For caseA, thefinal lift-to-drag ratio achieved is 60.2, a substantial
increase from the initial value of 31.1, at an angle of attack of 4.7 deg.
The optimized airfoils found using the augmented adjoint method,
for case A, are shown in Fig. 7. Although the optimal airfoil shape
does not depend much on the gradient calculation method, the figure
shows that the shape is dependent on the grid perturbation technique
used. The two variants of the elasticity method give very similar
results, but the algebraic method gives a somewhat different shape.

To explore this, a new mesh was regenerated for each of the
optimized airfoils, and the objective functions were recomputed on
the new meshes. These objective functions include the constraint

-1 0 1 2 3
-2

-1

0

1

2

a) NACA 0012 airfoil C mesh

0.98 0.99 1 1.01 1.02

-0.03

-0.02

-0.01

0

0.01

b) Modified mesh at the trailing edge
Fig. 4 Original and rotated mesh (by 60 deg) of the NACA 0012 airfoil consisting of 9,045 nodes.

NACA0012

control points

design variables

Fig. 5 Airfoil parameterization and design variables, cases A and B.

Table 1 Thickness constraints (case A)

Chordwise coordinate Thickness constraint NACA 0012 thickness

0.05 0.04 0.0706
0.35 0.11 0.1177
0.65 0.04 0.0809
0.75 0.03 0.0612
0.85 0.026 0.0389
0.95 0.012 0.0137
0.99 0.002 0.0028

Table 2 Radius of curvature constraint

Chordwise
coordinate

Radius of curvature
constraint

NACA 0012 radius of
curvature

0 0.01 0.016
0.005 0.01 0.030
0.2 0.3 1.357
0.8 0.3 7.528
1 0.2 5.551

Chordwise coordinate

R
ad

iu
s

o
f

cu
rv

at
u

re

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
Target
NACA0012

Leading-edge detail

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

Fig. 6 Radius of curvature constraint.

1700 TRUONG, OLDFIELD, AND ZINGG

penalties; to maintain consistency, the penalties are not recomputed
on the regenerated mesh, but are retained from the optimized result.
These values, given in Table 3, show that the elasticity method with
n� 2 provides the shape having the best performance, as computed
on the regenerated mesh. Also, the comparison between the result
computed on the perturbed and regenerated meshes is best for the
elasticity method with n� 2 and worst for the algebraic method.
This suggests that themesh obtained using the elasticity methodwith
n� 2 has the highest quality, that is, it is most similar to the original
mesh.

For case B, the optimized airfoil (shown in Fig. 8) has a drag
coefficient 14 counts lower than the original airfoil and is shock free,
as can be seen in the pressure distribution shown in Fig. 9.

Optimizer Convergence

The convergence history for case A is shown in Fig. 10 for the
algebraic mesh movement with and without the augmented adjoint
and in Figs. 11 and 12 for the elasticity mesh movement with n� 1
and 2, respectively. The figures show the norm of the objective
function gradient, and a normalization of the objective function,
given by

F normalized �
F

Fmin

� 1 (29)

where Fmin is the minimum objective function value found. This
accentuates the difference between the objective function at a given
iteration and the optimal value.

The curves for the normalized objective function show that the
first two nonzero digits of the objective function value are
determined after the first 15–20 iterations. At the end of the
optimization, between 5 and 10 digits of the objective function are
unchanging.

In all cases, the original and augmented adjoint methods are very
similar for the first several iterations. As the optimization progresses,
the differences between the methods accumulate and their
convergence histories diverge. In the end, it can be seen that the
gradient converges to about the same level for both gradient
calculation methods, when using the algebraic grid perturbation
scheme.

When the elasticity method is used to perturb the grid, however,
the augmented adjoint method allows much tighter convergence of
the gradient than does the original adjoint method (about 4 orders of
magnitude difference). This is due to convergence difficulties
experienced when using the original adjoint method and can be
explained by gradient inaccuracy. Considering the gradient
evaluation equation (3), in which the terms @F=@XjQ and
@R=@XjQ are formed with finite differences, a great deal of error
propagation can occur. Small amounts of numerical error are present
in the calculation of F and R used in the finite differences; this is
larger when the elasticity mesh perturbation method is used (rather than the algebraic method), due to the imperfect convergence of the

linear system. In the course of forming the finite differences, both
truncation error and subtractive cancellation error occur. As a result,
the derivatives have more erroneous trailing bits than do F and R.
The two derivatives are then added together. Near convergence of the
optimizer, their sum (the gradient) is by definition a near-zero
quantity. To effect this, several of the leading bits in @F=@XjQ and
 T@R=@XjQ must cancel, and so several more of the trailing bits
become erroneous.

By this mechanism, small errors are amplified as the gradient is
computed, and the amplification becomes more pronounced as
optimizer convergence is reached. This eventually results in a

algebraic
elasticity, n=1
elasticity, n=2

Fig. 7 Optimized airfoils for case A.

Table 3 Optimized airfoil performance using perturbed and
regenerated meshes

Objective function

Perturbation method Perturbed mesh Regenerated mesh Difference

Algebraic 0.016993 0.016685 0.000307
Elasticity (n� 1) 0.016694 0.016744 0.000050
Elasticity (n� 2) 0.016681 0.016668 0.000013

Fig. 8 Optimized airfoil for case B, linear elasticity method with n� 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1.5

−1

−0.5

0

0.5

1

1.5

Chordwise coordinate

P
re

ss
ur

e
co

ef
fic

ie
nt

Fig. 9 Optimized pressure distribution for case B at an angle of attack

of 1.6 deg, cl � 0:741, and cd � 0:013759.

0 5 10 15 20 25 30 35 40 45 50
10−12

10−10

10− 8

10− 6

10− 4

10− 2

100

Function and gradient evaluations

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
an

d
gr

ad
ie

nt
 n

or
m

Function: original adjoint
Gradient: original adjoint
Function: augmented adjoint
Gradient: augmented adjoint

Fig. 10 Optimizer convergence for case A: algebraic method.

0 10 20 30 40 50 60 70
10−10

10− 8

10− 6

10− 4

10− 2

100

Function and gradient evaluations

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
an

d
gr

ad
ie

nt
 n

or
m

Function: original adjoint
Gradient: original adjoint
Function: augmented adjoint
Gradient: augmented adjoint

Fig. 11 Optimizer convergence for case A: elasticity method with

n� 1.

TRUONG, OLDFIELD, AND ZINGG 1701

completely erroneous gradient, at which point the optimizer stalls. In
the augmented adjoint method, however, finite differences are
avoided. This elimination of one of the stages of error amplification
results in a more accurate gradient, allowing tighter optimizer
convergence.

Despite the fact that the convergence histories are different when
using the original and augmented adjoint methods, they result in very
similar optimized airfoils. The largest vertical displacement between
the optimized airfoils is less than 10�6 chordswhen the algebraic grid
perturbation is used. For the elasticity grid perturbation, the
difference is less than 10�3 chords; this is expected, given the loose
convergence obtained with the original adjoint method.

The optimizer convergence for case B shows trends similar to
those found in case A. The normalized function and gradient
convergence for the case in which the elasticity method is used with
n� 2 is shown in Fig. 13. The figure shows that the augmented
adjoint method converges about 3 orders of magnitude more tightly.

Using the same mesh movement method, the difference between
the y coordinates of the optimized airfoils obtained using the original
and augmented adjoint methods is less than 10�4 chords (see Fig. 8).
The difference between the airfoils obtained with different mesh
movement methods is not significant in this case, less than 10�3

chords. This differs from case A, in which the algebraic mesh
movement method gave a noticeably different airfoil. The reason for
the difference is likely that shock elimination dominates the transonic
problem, whereas viscous drag is more important for the subsonic
airfoil and, thus, so is mesh orthogonality.

Gradient Evaluation Time

The CPU time required to evaluate the gradient was investigated,
considering different mesh movement techniques, gradient
evaluation methods, and numbers of design variables. In each of
Figs. 14–16, the gradient evaluation time for the second iteration in
caseA is plotted against the number of B-spline design variables, and
the augmented adjoint method is contrasted with the original adjoint
method. In Fig. 14, algebraic mesh movement is used. This shows

little difference between the two gradient evaluation techniques,
although the original method is slightly slower. This difference is
indicative of the speed of the analytic calculation of @R=@G. The time
taken by the augmented method actually decreases some with an
increasing number of design variables; this is likely noise due to the
slightly different convergence of the solvers.

Figures 15 and 16 use the elasticity mesh movement method, with
the number of increments, n, being 1 and 2, respectively. The time
taken by the augmentedmethod varies by less than 5%with differing
numbers of design variables and does not show an increasing trend.
Additionally, the augmented adjoint method is several times faster
than the original adjoint method, whose time requirements increase
linearly with the number of design variables. The evaluation time for
the original adjoint method is several times longer than that of a flow
solution, which takes roughly 50 s.

In an entire optimization, the gradient evaluation time is
essentially constant, despite warm starting each ��i�. The function
evaluation (flow solution plus mesh movement) grows increasingly

0 10 20 30 40 50 60 70 80
10−12

10−10

10−8

10−6

10−4

10−2

100

102

Function and gradient evaluations

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
an

d
gr

ad
ie

nt
 n

or
m

Function: original adjoint
Gradient: original adjoint
Function: augmented adjoint
Gradient: augmented adjoint

Fig. 12 Optimizer convergence for case A: elasticity method with

n� 2.

0 10 20 30 40 50 60
10−10

10− 8

10− 6

10− 4

10− 2

100

102

104

Function and gradient evaluations

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
an

d
gr

ad
ie

nt
 n

or
m

Function: original adjoint
Gradient: original adjoint
Function: augmented adjoint
Gradient: augmented adjoint

Fig. 13 Optimizer convergence for case B: elasticity method with

n� 2.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Number of B−spline design variables

G
ra

di
en

t c
al

cu
la

tio
n

tim
e,

 s

Augmented adjoint
Original adjoint

Fig. 14 Gradient calculation time for case A: algebraic method.

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

900

Number of B−spline design variables

G
ra

di
en

t c
al

cu
la

tio
n

tim
e,

 s

Augmented adjoint
Original adjoint

Fig. 15 Gradient calculation time for case A: elasticity method with
n� 1.

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

Number of B−spline design variables

G
ra

di
en

t c
al

cu
la

tio
n

tim
e,

 s

Augmented adjoint
Original adjoint

Fig. 16 Gradient calculation time for case A: elasticity method with

n� 2.

1702 TRUONG, OLDFIELD, AND ZINGG

faster as the optimization progresses. This is due towarm starting; the
flow solution gradually becomes faster, whereas themeshmovement
accelerates abruptly near the end of the optimization. For the mesh
densities used here, the flow solution requires about 50 s during the
early iterations. The linear elasticity mesh movement requires about
8 s or 16% of the processing time required for the flow solution, per
increment. Solving theflow adjoint equation requires 12%of the cost
of the flow solution, whereas the solution of the grid adjoint equation
requires 16% for each increment. If a function evaluation requires
roughly 58 s for one increment, or 66 s for two, then the gradient
calculation (flow adjoint equation solution plus mesh adjoint
solution per increment) typically requires about 24% of the cost of a
function evaluation for one increment and 33% for two increments.

Conclusions

We have presented a mesh movement technique that models the
mesh through the equations of linear elasticity. To maintain mesh
quality, cells are stiffened in inverse proportion to their area and
quality. Multiple mesh movement increments can be used so that the
stiffening can be adjusted based on intermediate quality measures.
This mesh movement approach requires more computation than
simpler techniques, such as algebraic methods, but is very robust,
producing high-quality meshes even for large shape changes. An
augmented adjoint approach is used to calculate adjoint variables
associated with the mesh movement algorithm. Adjoint variables are
computed for each increment used. The use of the augmented adjoint
method allows the optimizer to convergemuchmore tightly thanwas
possible using the original adjoint method. This is indicative of
increased gradient accuracy. The augmented adjoint method has a
run time that is independent of the number of design variables. With
the augmented adjoint approach, the cost of computing the gradient
is about 24–33% of that of a function evaluation (mesh movement
plus flow solution), depending on the number of increments.

Acknowledgments

Thisworkwas sponsored by theNatural Sciences andEngineering
Research Council of Canada, the Canada Research Chairs Program,
Bombardier Aerospace, the Society of Naval Architects and Marine
Engineers, and the University of Toronto. Their financial support is
gratefully acknowledged.

References

[1] Farhat, C., Degand, C., Koobus, B., and Lesoinne, M., “Torsional
Springs for Two-Dimensional Dynamic Unstructured Fluid Meshes,”
Computer Methods in Applied Mechanics and Engineering, Vol. 163,
Nos. 1–4, Sept. 1998, pp. 231–245.
doi:10.1016/S0045-7825(98)00016-4

[2] Allen, C. B., “An Unsteady Flow Solver with Algebraic Grid Motion
for Aeroelastic Simulations,” ICAS 2002-R3, International Council of
the Aeronautical Sciences, Bristol, England, U. K., 2002.

[3] Bar-Yoseph, P. Z., Mereu, S., Chippada, S., and Kalro, V. K.,
“Automatic Monitoring of Element Shape Quality in 2-D and 3-D
Computational Mesh Dynamics,” Computational Mechanics, Vol. 27,
No. 5, May 2001, pp. 378–395.
doi:10.1007/s004660100250

[4] Samareh, J. A., “Application of Quaternions for Mesh Deformation,”
NASA TM-2002-211646, April 2002.

[5] Martineau, D. G., and Georgala, J. M., “AMesh Movement Algorithm
for High Quality Generalised Meshes,” AIAA Paper 2004-0614,
Jan. 2004.

[6] Nemec, M., and Zingg, D. W., “Newton–Krylov Algorithm for
Aerodynamic Design Using the Navier–Stokes Equations,” AIAA

Journal, Vol. 40, No. 6, 2002, pp. 1146–1154.
[7] Nemec,M., “Optimal ShapeDesign ofAerodynamicConfigurations: A

Newton-Krylov Approach,” Ph.D. Thesis, Univ. of Toronto, 2003.
[8] Nemec, M., and Zingg, D. W., “MultiPoint and Multi-Objective

Aerodynamic Shape Optimization,” AIAA Journal, Vol. 42, No. 6,
June 2004, pp. 1057–1065.
doi:10.2514/1.10415

[9] Burgreen, B. W., Baysal, O., and Eleshaky, M. E., “Improving the
Efficiency of Aerodynamic Shape Optimization,” AIAA Journal,
Vol. 32, No. 1, 1994, pp. 69–76.

[10] Burgreen, G. W., and Baysal, O., “Three-Dimensional Aerodynamics
Shape Optimization Using Discrete Sensitivity Analysis,” AIAA

Journal, Vol. 34, No. 9, 1996, pp. 1761–1770.
[11] Jones, W. T., and Samareh-Abolhassani, J. A., “A Grid Generation

System forMultidisciplinaryDesignOptimization,”AIAAPaper 1995-
1689, 1995.

[12] Degand, C., and Farhat, C., “A Three-Dimensional Torsional Spring
Analogy Method for Unstructured Dynamic Meshes,” Computers and
Structures, Vol. 80, Nos. 3–4, Feb. 2002, pp. 305–316.
doi:10.1016/S0045-7949(02)00002-0

[13] Liu, X., Qin, N., and Xia, H., “Fast Dynamic Grid Deformation Based
on Delaunay Graph Mapping,” Journal of Computational Physics,
Vol. 211, No. 2, Jan. 2006, pp. 405–423.
doi:10.1016/j.jcp.2005.05.025

[14] Stein, K., Tezduyar, T., and Benney, R., “MeshMoving Techniques for
Fluid-Structure Interactions with Large Displacements,” Journal of

Applied Mechanics, Vol. 70, No. 1, Jan. 2003, pp. 58–63.
doi:10.1115/1.1530635

[15] Nielsen, E. J., and Anderson, W. K., “Recent Improvements in
Aerodynamic Design Optimization on Unstructured Meshes,” AIAA

Journal, Vol. 40, No. 6, June 2002, pp. 1155–1163.
[16] Tezduyar, T. E., Behr,M.,Mittal, S., and Johnson, A.A., “Computation

of Unsteady Incompressible Flows with the Stabilized Finite Element
Methods: Space–Time Formulations, Iterative Strategies and
Massively Parallel Implementations,” New Methods in Transient

Analysis, edited by P. Smolinski,W.K. Liu, G. Hulbert, and K. Tamma,
Vol. 143, American Society of Mechanical Engineers, New York,
1992.

[17] Squire, W., and Trapp, G., “Using Complex Variables to Estimate
Derivatives of Real Functions,” SIAM Review, Vol. 40, No. 1,
March 1998, pp. 110–112.
doi:10.1137/S003614459631241X

[18] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J., “The Complex-Step
Derivative Approximation,” ACM Transactions on Mathematical

Software, Vol. 29, No. 3, Sept. 2003, pp. 245–262.
doi:10.1145/838250.838251

[19] Griewank, A., Evaluating Derivatives: Principles and Techniques of

Algorithmic Differentiation, Society for Industrial and Applied
Mathematics, Philadelphia, 2000.

[20] Pironneau, O., “On Optimum Design in Fluid Mechanics,” Journal of
Fluid Mechanics, Vol. 64, 1974, pp. 97–110.
doi:10.1017/S0022112074002023

[21] Jameson, A., “Aerodynamic Design via Control Theory,” Journal of

Scientific Computing, Vol. 3, No. 3, 1988, pp. 233–260.
doi:10.1007/BF01061285

[22] Anderson, W. K., and Venkatakrishnan, V., “Aerodynamic Design
Optimization on Unstructured Grids with a Continuous Adjoint
Formulation,” Computers and Fluids, Vol. 28, No. 4, 1999, pp. 443–
480.
doi:10.1016/S0045-7930(98)00041-3

[23] Kim, H., Obayashi, S., and Nakahashi, K., “Flap-Deflection
Optimization for Transonic Cruise Performance Improvement of
Supersonic Transport Wing,” Journal of Aircraft, Vol. 38, No. 4, 2001,
pp. 709–717.
doi:10.1016/S0045-7930(98)00041-3

[24] Kim, H., Sasaki, D., Obayashi, S., and Nakahashi, K., “Aerodynamic
Optimization of Supersonic Transport Wing Using Unstructured
Adjoint Method,” AIAA Journal, Vol. 39, No. 6, 2001, pp. 1011–1020.

[25] Martins, J. R. R. A., Alonso, J. J., and Reuther, J. J., “A Coupled-
Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural
Design,” Optimization and Engineering, Vol. 6, No. 1, March 2005,
pp. 33–62.
doi:10.1023/B:OPTE.0000048536.47956.62

[26] Le Moigne, A., and Qin, N., “Variable-Fidelity Aerodynamic
Optimization for Turbulent Flows Using a Discrete Adjoint
Formulation,” AIAA Journal, Vol. 42, No. 7, 2004, pp. 1281–1292.
doi:10.2514/1.2109

[27] Bischof, C. H., Mauer, A., Jones, W. T., and Samareh, J., “Experiences
with Automatic Differentiation Applied to a Volume Grid Generation
Code,” Journal of Aircraft, Vol. 35, No. 4, 1998, pp. 569–573.

[28] Maute, K., Nikbay, M., and Farhat, C., “Sensitivity Analysis and
Design Optimization of Three-Dimensional Non-Linear Aeroelastic
Systems by the Adjoint Method,” International Journal for Numerical
Methods in Engineering, Vol. 56, No. 6, Feb. 2003, pp. 911–933.
doi:10.1002/nme.599

[29] Nielsen, E. J., and Park, M. A., “Using an Adjoint Approach to
EliminateMesh Sensitivities in Computational Design,”AIAA Journal,
Vol. 44, No. 5, 2005, pp. 948–953.
doi:10.2514/1.16052

TRUONG, OLDFIELD, AND ZINGG 1703

http://dx.doi.org/10.1016/S0045-7825(98)00016-4
http://dx.doi.org/10.1007/s004660100250
http://dx.doi.org/10.2514/1.10415
http://dx.doi.org/10.1016/S0045-7949(02)00002-0
http://dx.doi.org/10.1016/j.jcp.2005.05.025
http://dx.doi.org/10.1115/1.1530635
http://dx.doi.org/10.1137/S003614459631241X
http://dx.doi.org/10.1145/838250.838251
http://dx.doi.org/10.1017/S0022112074002023
http://dx.doi.org/10.1007/BF01061285
http://dx.doi.org/10.1016/S0045-7930(98)00041-3
http://dx.doi.org/10.1016/S0045-7930(98)00041-3
http://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
http://dx.doi.org/10.2514/1.2109
http://dx.doi.org/10.1002/nme.599
http://dx.doi.org/10.2514/1.16052

[30] Mavriplis, D. J., “Multigrid Solution of the Discrete Adjoint for
Optimization Problems on Unstructured Meshes,” AIAA Journal,
Vol. 44, No. 1, Jan. 2006, pp. 42–50.
doi:10.2514/1.15696

[31] Sadrehaghighi, I., Smith, R. E., and Tiwari, S. N., “Grid Sensitivity and
Aerodynamic Optimization of Generic Airfoils,” Journal of Aircraft,
Vol. 32, No. 6, 1995, pp. 1234–1239.

[32] Korivi, V. M., Newman, P. A., and Taylor, A. C., “Aerodynamic
Optimization Using Sensitivity Derivatives from a Three-Dimensional
Supersonic Euler Code,” Journal of Aircraft, Vol. 35, No. 3, 1998,
pp. 405–411.

[33] Barger, R. L., Adams, M. S., and Krishnan, R. R., “Automatic
Computation of Euler Marching Grids and Subsonic Grids for Wing-

Fuselage Configurations,” NASA TM 4573, July 1994.
[34] Pagaldipti, N., and Chattopadhyay, A., “A Discrete Semianalytical

Procedure for Aerodynamic Sensitivity Analysis Including Grid
Sensitivity,” Computers & Mathematics with Applications, Vol. 32,
No. 3, 1996, pp. 61–71.
doi:10.1016/0898-1221(96)00113-7

[35] Gunzburger, M., “Introduction to the Mathematical Aspects of Flow
Control and Optimisation,” Inverse Design and Optimisation Methods,
von Karman Institute of Fluid Dynamics, Brussels, Belgium,
April 1997.

Z. Wang
Associate Editor

1704 TRUONG, OLDFIELD, AND ZINGG

http://dx.doi.org/10.2514/1.15696
http://dx.doi.org/10.1016/0898-1221(96)00113-7

