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In aerodynamic design, good performance is generally required under a range of operating conditions, including
off-design conditions. This can be achieved throughmultipoint optimization. The desired performance objective and
operating conditions must be specified, and the resulting optimization problemmust be solved in such amanner that
the desired performance is achieved. Issues involved in formulatingmultipoint optimization problems are discussed.
A technique is proposed for automatically choosing sampling points within the operating range and their weights to
obtain the desired performance over the range of operating conditions. Examples are given involving lift-constrained
dragminimization over a range ofMach numbers. Tradeoffs and their implications for the formulation ofmultipoint
problems are presented and discussed.

I. Introduction

S EVERAL algorithms have been developed that can efficiently
perform aerodynamic shape optimization [1–6]. The designer

specifies an objective, operating conditions, constraints, and a set of
parameters that define the range of possible geometries. The
optimization algorithm finds the values of the geometric parameters
that minimize the objective function while satisfying the constraints.
Numerical optimization has the following four primary advantages
over the traditional approach to aerodynamic design, that is, cut and
try driven by the designer’s expertise:

1) potentially faster;
2) more likely to achieve a truly optimal design;
3) forces the designer to specify the design problem, that is, the

objective, operating conditions, constraints, and geometric
parameters, carefully and completely;

4) provides insight into the nature of the design space and the
tradeoffs between various competing objectives and operating
points.

Virtually all aerodynamic components must perform efficiently
over a range of operating conditions. Optimization at a single
operating point invariably leads to poor off-design performance.
Therefore, the optimization problemmust be posed such that a range
of operating conditions and off-design performance requirements are
included in either the objective function or the constraints. The
outcome of the optimization is greatly dependent on the details of
how this is done, and consequently the designer must give careful
consideration to precisely what is required, consistent with item 3 in
the list above. For example, higher expectations of off-design
performance typically compromise on-design performance.
Fortunately, numerical optimization can aid in the problem
specification, consistent with item 4 above.

Based on the above discussion, it is clear that numerical
optimization will in general not proceed directly from problem
specification to the optimal design. Rather, the problem specification
will evolve iteratively based on feedback provided by the
optimization results. In this paper, we investigate various means of

posing two-dimensional airfoil optimization problems under a range
of operating conditions. The objective is twofold: 1) to identify a
successful strategy for multipoint optimization, that is, an automated
procedure for designing an airfoil to produce specified optimal
multipoint performance, and 2) to provide some insight into the
tradeoffs involved in different priorities among various objectives to
aid designers in applying numerical optimization algorithms.

II. Multipoint Aerodynamic Shape Optimization
An airfoil can be expected to perform well under a range of Mach

numbers and lift coefficients. In addition, there are typically off-
design requirements such as high lift at low Mach number and
minimizing shock strength at dive conditions (low angle of attack,
high Mach number). Multipoint optimization involves sampling the
range of operating conditions at a sufficient number of operating
points that optimal performance is achieved throughout the desired
range. As discussed by Li et al. [7], there are several different ways to
optimize over a range of operating conditions. (Li et al. use the term
“robust optimization” to describe optimization under a range of
operating conditions.) Three possible approaches are as follows:

1) find the designwith the best worst-case performance, that is, the
minimax strategy;

2) find the design that produces constant performance over the
desired range of conditions;

3) optimize some weighted integral of the performance over the
desired range.

Combinations of these strategies are also possible. For example,
the designer may wish to optimize performance over a range of
conditions while constraining the performance under off-design
conditions.

Given that the overall objective is presumably some combination
of maximizing return on investment and minimizing risk, the task of
the designer is to determine which of these three approaches is most
appropriate for a given design. However, this may not be apparent a
priori, and several iterations may be needed to determine the best
approach in a given context.

Once the designer has specified how performance is to be
optimized, the numerical optimization problem must be posed such
that this is achieved. If we consider aerodynamic optimization at
fixed lift over a range ofMach numbers, how are the sampling points,
that is, the individual Mach numbers within the range, selected?
Drela [4] shows that the number of sampling points is related to the
number of degrees of freedom in the design space. Similarly, how is
each operating point weighted in the composite objective function?
The sampling points and their weights can be determined by trial and
error, but an automated procedure is preferred and is further
discussed below.
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III. Algorithm Description
Multipoint aerodynamic optimization is studied using the

Newton–Krylov approach of Nemec and Zingg [5]. The geometry is
parameterized throughB-splines. TheB-spline control points and the
angle of attack are the design variables. The compressible Navier–
Stokes equations are solved with a Newton–Krylovmethod in which
the linear system arising at each Newton iteration is solved using the
generalizedminimal residualmethod (GMRES) preconditionedwith
an incomplete lower-upper factorization with limited fill. The
Spalart–Allmaras turbulence model is used to compute the eddy
viscosity. The gradient is calculated using the discrete-adjoint
method; solution of the adjoint equation is accomplished through the
same preconditioned Krylov method. Geometric constraints are
added to the objective function as penalty terms. A new set of design
variables is computed using a quasi-Newton optimizer in which an
estimate of the inverse Hessian based on the BFGS (Broyden–
Fanno–Goldfarb–Shannon) rank-two update formula is used to
compute a search direction [8]. If the initial step does not produce
sufficient progress toward the minimum, the step size is determined
using a line search, which terminates when the strong Wolfe
conditions are satisfied [8]. Each time a new shape is calculated, the
initial grid is perturbed using a simple algebraic technique. For a
complete description of the algorithm, see Nemec [9].

The accuracy of the flow solver has been studied extensively, and
the present meshes (257 ! 57 C meshes with an off-wall spacing of
2 ! 10"6 chords) can be expected to produce lift coefficients
accurate to within 1% and drag coefficients to within 5% for attached
and mildly separated flows, including both numerical and physical-
model error [10,11]. Moreover, differences and trends are predicted
even more accurately when comparable meshes are used. For
example, if a certain drag coefficient is computed on a given airfoil,
and a different drag coefficient is computed on a second airfoil using
ameshwith similar properties to that used for the computation on the
first airfoil, then the difference in the two drag coefficients can be
expected to be very accurate, even though both drag coefficients may
be in error by as much as 5%. This is essential for meaningful
optimization. Note that one should not compare lift and drag
coefficients on two airfoils if significantly different meshes are used
for the two computations.

IV. Simple Two-Point Example
To illustrate the basic ideas, we begin with a simple two-point lift-

constrained drag minimization problem. The objective function is
given by
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whereC$
L is a target lift coefficient,C

$
D is a target drag coefficient, and

!L,!D areweights. Choosing a target lift coefficient that is attainable
and a target drag coefficient that is unattainable with suitable weights
leads to lift-constrained drag minimization with the lift constraint
treated as a penalty term.

The target lift coefficient is 0.715; the Reynolds number is
9 ! 106. Fully turbulent flow is assumed, that is, transition is
assumed to occur at the leading edge. The initial geometry is theRAE
2822 airfoil. Fifteen B-spline control points are used to parameterize
the geometry. Three control points are frozen at the leading edge and
two at the trailing edge. Hence there are 11 design variables,
including the angle of attack. The following thickness constraints are
imposed: t=c & 0:0253 at x=c# 0:01, t=c & 0:121 at x=c# 0:25,
t=c & 0:002 at x=c# 0:99. The two operating points areM# 0:68
andM# 0:75, whereM is the freestream Mach number. Of course,
minimizing the drag at two operating points with 11 design variables
will not produce any sort of optimum performance over a range of
Mach numbers. However, this simple problem shows some
interesting tradeoffs that apply to problems with more sampling

points. Furthermore, multipoint optimization can be considered as a
subset ofmultiobjective optimization, and thereforewe canmake use
of a Pareto front to gain an understanding of the tradeoffs between the
two operating conditions.

We use the following composite objective function:

J # !JM#0:75 % '1 " !(JM#0:68 (2)

where JM#0:75 is the objective function given by Eq. (1) evaluated at
M# 0:75, JM#0:68 is the same objective function evaluated at
M# 0:68, andw is a weight that controls the relative importance of
the two operating points. The Pareto front that results from varying
this weight is shown in Fig. 1. The corresponding drag coefficient
values are given in Table 1. Several important aspects of this
particular problem are revealed. Although in principle each point on
the front is an equally valid optimum, one can see that the extreme
values of w, that is w < 0:4 and w > 0:8, are not good choices. For
example, increasing w from 0.3 to 0.4 produces a significant
reduction in the drag coefficient atM# 0:75with almost no penalty
in the drag coefficient at M# 0:68. Furthermore, the design with
equal drag at the two operating points, which is also the minimax
solution (for the two specified operating points, not the whole Mach
number range), is achieved with w roughly equal to 0.86. Unless
there is a very good reason to require that the two drag coefficients be
equal, this is not a very good choice, because the relatively low drag
at M# 0:75 is obtained at the expense of high drag at M# 0:68.
Betweenw# 0:85 andw# 0:90, the drag coefficient atM# 0:68 is
increasing over 6 times faster with an increase in w than that at
M# 0:75 is decreasing. For example, reducing w from 0.85 to 0.75
reduces the drag coefficient at M# 0:68 by 0.000145 while
increasing the drag coefficient atM# 0:75 by only 0.000037. This is
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Fig. 1 The Pareto front for the two-point lift-constrained drag
minimization.

Table 1 CD for various values of w

CD at

w M# 0:75 M# 0:68

0.1 0.015325 0.013580
0.3 0.014373 0.013709
0.4 0.014257 0.013710
0.5 0.014204 0.013728
0.6 0.014160 0.013768
0.7 0.014133 0.013812
0.75 0.014104 0.013859
0.8 0.014082 0.013985
0.85 0.014067 0.014004
0.9 0.014043 0.014157
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further illustrated in Fig. 2, which shows that reducing the drag at
M# 0:75 through an increase in w penalizes the drag over a large
portion of theMach number range. This is an example of a problem in
which the designer might change the initial specification of the
problem requiring equal drag at the two Mach numbers when the
tradeoffs are better understood.

V. Automated Selection of Sampling Points
and Weights

Next we consider a more practical example in which lift-
constrained drag minimization is performed over a range of Mach
numbers from 0.68 to 0.76. The target lift and drag coefficients are
C$

L # 0:733 and C$
D # 0:01 with weights !L # 1:0 and !D # 0:1.

(One could argue that the lift coefficient should vary inversely with
the square of the Mach number to produce a fixed lift. However, we
follow Li et al. and require a fixed lift coefficient over the Mach
number range, simply as a good test problem to study issues related to
airfoil optimization under multiple operating conditions. Design of a
practical airfoil requires consideration of various lift coefficients and
other operating conditions.) The RAE 2822 airfoil is parameterized
using 25B-spline control points. OneB-spline control point is frozen
at the leading edge and two at the trailing edge, so there are 23 design
variables, including the angle of attack. The following thickness
constraints are imposed with a weight of unity: t=c & 0:0253 at
x=c# 0:01, t=c & 0:121 at x=c# 0:35, t=c & 0:0137 at
x=c# 0:924, t=c & 0:001516 at x=c# 0:99. The Reynolds number
is again 9 ! 106, and the flow is fully turbulent.

We assume initially that four sampling pointswill be sufficient and
that a constant drag coefficient is desired over the Mach number
range. The initial sampling points areM# 0:68, 0.70667, 0.73333,
0.76, an even distribution, with a composite objective function given
by

J # w1JM#0:68 %w2JM#0:707 %w3JM#0:733 % w4JM#0:76 (3)

with
P

wi # 1. With all four sampling points weighted equally, the
difference between the highest drag coefficient (atM# 0:76) and the
lowest drag coefficient (at M# 0:68) is over ten counts.

To achieve a constant drag coefficient over the specified range of
Mach numbers, an automated technique is proposed involving two
steps. In the first step, the goal is to equalize the drag coefficients at
the specified sampling points. This is accomplished by updating the
weights according to the following formula:

wnew
i % wold

i % c

!
CDiP
N
i#1 CDi

" 1

N

"
(4)

where N is the number of sampling points, and c is a user-specified
constant. The weights are updated according to the above formula
after a complete multipoint optimization with the previous set of
weights. Once the drag coefficients at the specified Mach numbers
are sufficiently equalized, the drag coefficients of the designed airfoil
are evaluated over the entire range of Mach numbers, that is, in
between the specified sampling points. If there exists a significant
local maximum between the specified Mach numbers, then an
additional sampling point is added at the Mach number where the
maximum exists. The newpoint is given an initial weight of zero, and
the weights then evolve according to Eq. (4) until the drag
coefficients at the sampling points, including the newly introduced
Mach number, are sufficiently equalized. These two steps can be
repeated until no significant local maxima occur between sampling
points.

The results of this automated procedure are presented in Tables 2
and 3 and Fig. 3. Table 2 shows the evolution of the weights, Table 3
shows the evolution of the drag coefficients at the specified Mach
numbers, and Fig. 3 displays the evolution of the drag coefficients
over the entire range of Mach numbers. A value of c# 15 is used in
Eq. (4). Each iteration shown in the tables is a complete multipoint
optimization. After eight such iterations, the difference between the
drag coefficient atM# 0:76 and that atM# 0:68 has been reduced
from over ten counts to roughly one count. The weight on the
objective function at M# 0:76 has more than doubled, while the
others have decreased. However, evaluation of the drag coefficient
over the complete range ofMach numbers from 0.68 to 0.76 reveals a
significant local maximum atM# 0:753, where the drag is over six
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Fig. 2 Variation of drag coefficient with Mach number at CL ! 0:715
for various values of w.

Table 2 Evolution of weights

Weights (Mach No.)

Iteration c 0.68 0.70667 0.73333 0.753 0.76

1 0.25000 0.25000 0.25000 0.25000
2 15 0.14736 0.20276 0.23624 0.41365
3 15 0.07167 0.17371 0.24624 0.50837
4 15 0.01497 0.15141 0.24749 0.58613
5 15 0.01598 0.14456 0.23031 0.60915
6 15 0.02188 0.13996 0.21372 0.62444
7 15 0.03808 0.13543 0.19683 0.62966
8 15 0.04999 0.13010 0.18127 0.00000 0.63865
9 15 0.01311 0.09592 0.15396 0.11384 0.62317
10 15 0.05062 0.10483 0.12189 0.12695 0.59571
11 15 0.04409 0.10294 0.10973 0.15193 0.59131
12 15 0.04441 0.10647 0.09879 0.16495 0.58539
13 15 0.04430 0.11093 0.09259 0.17228 0.57990
14 15 0.04529 0.11475 0.08648 0.17772 0.57576
15 15 0.04622 0.11815 0.08234 0.18116 0.57214
16 15 0.04637 0.12041 0.07901 0.18481 0.56940

Table 3 Evolution of drag coefficients and standard deviation

CD (CL # 0:733)

0.68 0.70667 0.7333 0.753 0.76 St Dev

1 0.014176 0.014391 0.014521 0.015211 0.0004473
2 0.014254 0.014435 0.014586 0.014915 0.0002801
3 0.014351 0.014484 0.014576 0.014873 0.0002216
4 0.014683 0.014652 0.014611 0.014769 0.0000668
5 0.014720 0.014679 0.014632 0.014757 0.0000538
6 0.014779 0.014698 0.014649 0.014736 0.0000553
7 0.014750 0.014682 0.014642 0.014738 0.0000503
8 0.014634 0.014647 0.014681 0.015378 0.014740 0.0003169
9 0.015039 0.014897 0.014694 0.014918 0.014717 0.0001452
10 0.014745 0.014768 0.014718 0.014901 0.014756 0.0000713
11 0.014784 0.014800 0.014729 0.014847 0.014754 0.0000452
12 0.014781 0.014804 0.014751 0.014818 0.014755 0.0000294
13 0.014784 0.014798 0.014749 0.014806 0.014759 0.0000246
14 0.014782 0.014794 0.014757 0.014795 0.014760 0.0000182
15 0.014777 0.014787 0.014760 0.014794 0.014763 0.0000150
16 0.014770 0.014787 0.014762 0.014786 0.014764 0.0000119
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counts higher than that at M# 0:76, as shown in Fig. 3, where the
result is labeled “8 iterations.”Consequently, an additional sampling
point is added at M# 0:753 with an initial weight of zero. Eight
further iterations are performed with the five sampling points until
the difference between the largest drag coefficient and the smallest is
reduced to one-quarter of a count. Figure 3 shows that the resulting
airfoil (labeled “16 iterations”) produces no significant local maxima
between operating points, although there are two local minima. The
final airfoil produces a maximum drag coefficient of 0.014787 for
Mach numbers ranging from 0.68 to 0.76.

Figure 4 displays the Mach number contours for the final
optimized airfoil at CL # 0:733, M# 0:76. The surface pressure
coefficient distributions at the five specified Mach numbers are
compared with the initial RAE 2822 airfoil in Fig. 5. The high
weighting on the two highest Mach numbers is evident from these
figures. The performance atM# 0:70667 is actually inferior to that
of the RAE 2822 airfoil. The upper surface pressure distribution on
the optimized airfoil atM# 0:753 is quite typical at a Mach number
just below the maximum.

The automated procedure converged such that the drag
coefficients at the sampling points are equalized, and there are no
significant local maxima between sampling points. Nevertheless,
due to the presence of two local minima, constant drag has not been
achieved throughout the Mach number range. To achieve constant
drag, sampling points would have to be introduced at the Mach

numbers where the local minima occur, and the drag forced to
increase at these points. This would not appear to be a worthwhile
exercise. In some examples, the weight assigned to a given sampling
point can be reduced to zero (negative weights are not permitted), yet
the drag coefficient remains lower at this sampling point than at the
others. This indicates that this sampling point is redundant and can be
omitted, and furthermore that constant drag cannot be achieved
without purposely increasing the drag at this sampling point. This
suggests that constant drag over the entire Mach number range is not
a particularly good goal, unless there is sufficient benefit to such
performance to justify an increase in drag at some points in the
operating range.

Rather than producing constant drag in the interval, the automated
procedure hasminimized themaximumdrag over the specified range
of Mach numbers. This is generally preferable to constant drag.
However, the reduction in drag at the highest Mach numbers, M#
0:753 and 0:76, is achieved at the expense of a significant increase in
drag between M# 0:68 and 0:73; compare the solution with equal
weights to the converged solution after 16 iterations in Fig. 3. It is up
to the designer to decide whether the minimax solution obtained
using the automated weight update formula is preferred over other
possibilities, such as the optimized airfoil obtained using equal
weights. The feedback from the optimizer can aid the designer in
making this decision.

When performing the Mach number sweep after the drag
coefficients at the sampling points have been equalized, a Mach
number increment must be selected. The behavior of the drag
coefficient as a function of the Mach number is dependent on the
number of design variables. A greater number of design variables
typically leads to a greater number of local extrema, and
consequently more sampling points and a smaller Mach number
incrementwill be required. Therefore, the number of design variables
should be chosen with some care based on experience. Note that the
computing time penalty associated with performing a Mach number
sweep with a small Mach number increment is small. Because each
solution along the sweep is warm-started from the previous solution,
a small increment produces an excellent initial condition and
consequently fast convergence.

VI. Off-Design Performance
Next we consider an example in which performance at off-design

conditions is considered, taken from Driver and Zingg [12]. The
objective function is the endurance factor, given by

J # C3=2
L

CD

(5)

The reciprocal of the endurance factor is minimized. The following
parameters are used:

1)M# 0:25, Re# 2 ! 106;
2) fifteen B-spline control points of which six are used as design

variables; the angle of attack is also a design variable
3) thickness constraints: t=c & 0:01 at x=c# 0:15, t=c & 0:164 at

x=c# 0:35, t=c & 0:07 at x=c# 0:60, t=c & 0:01 at x=c# 0:92,
t=c & 0:001 at x=c# 0:99.

For this example, the location of laminar-turbulent transition is
free and is predicted using the en method. Hence the optimizer
exploits this by designing an airfoil for which transition occurs
relatively far aft. The final airfoil has transition points located at 56
and 65% chord on the upper and lower surfaces, respectively, at an
angle of attack of 4.36 deg. The resulting endurance factor is 115.

Whenever an airfoil is designed with a region of natural laminar
flow, one must consider the possibility that transition will occur
earlier than expected for some reason, such as frost, roughness,
damage, etc. When an analysis is performed with the assumption of
fully turbulent flow of the airfoil optimized under the assumption of
free transition, the endurance factor drops below 50. This is a drastic
reduction in performance andmay not be acceptable. A conservative
approach is to optimize the design under fully turbulent conditions.
This leads to an endurance factor of 58 under fully turbulent
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Fig. 4 Mach number contours for the final airfoil at CL ! 0:733,
M! 0:76.
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Fig. 3 Variation of drag coefficient with Mach number at CL ! 0:733.
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conditions and roughly 75 if analyzed with free transition. This is a
substantial penalty under free transition conditions compared with
the value of 118 achieved by the previous design.

The tradeoffs between good performance under fully turbulent
conditions and free transition can be assessed using a Pareto front.
The composite objective function is

J #wftJft % '1 " wft(Jlt (6)

where the subscript ft denotes fully turbulent conditions, and lt
denotes free transition. The Pareto front computed by varying wft is
shown in Fig. 6. Note that the front is plotted as a maximization
problem. The extreme ends of the front are not good designs. For
example, increasingwft from 0.1 to 0.2 leads to a significant increase
in the endurance factor under fully turbulent conditions with little
penalty in the free-transition endurance factor. Similarly, reducing
wft from 0.9 to 0.7 produces a large increase in the endurance factor
with free transition without significantly penalizing performance
under fully turbulent conditions. Hence, the Pareto front provides
feedback needed by the designer to select the value of wft that
produces the airfoil that best meets the designer’s priorities. In this
case, a value of wft between 0.2 and 0.7 should be selected.

VII. Discussion
The above examples have shown that formulation of a multipoint

aerodynamic optimization problem is not a straightforward task. The
designer must have a deep understanding of the desired performance
characteristics of the aerodynamic component and their implications
on the performance of the aircraft. Furthermore, the designer must be
aware ofwhat is feasible before the problemcan be fully posed.Well-
designed aerodynamic optimization software can be of great use in
understanding the tradeoffs between various competing performance
objectives, especially through the use of Pareto fronts.

A complete multipoint optimization will involve consideration of
various lift coefficients aswell as a range ofMach numbers plus some
off-design requirements. Although one can achieve nearly constant
drag over a range of Mach numbers, it does not seem reasonable to
design for constant drag over a range of lift coefficients. A constant
lift-to-drag ratio may be more appropriate. Minimizing a weighted
integral over the on-design operating envelopewill likely be themost
effective approach if a rational strategy based on the aircraft mission
requirements can be used to determine the appropriate weighted
integral. Using the midpoint, trapezoidal, or Simpson integration
formulas, the weighted integral can be converted to a multipoint
optimization problem with specified sampling points and weights.
The automated procedure presented in this paper can be used for such
a problem, not to determine theweights, because they arefixed by the
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Fig. 5 Final airfoil (after 16 iterations): Cp graphs for all five design points with CL ! 0:733.
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specified weighted integral, but to determine the sampling points
needed to provide a good approximation to the weighted integral.
The above numerical integration formulas are accurate only if the
function is well-behaved between sampling points. Hence new
sampling points can be added automatically if significant local
maxima or minima are detected between existing sampling points.

The ability to optimize aerodynamic components for specific
performance over a range of operating conditions also increases the
importance of careful specification of off-design requirements. Off-
design performance is usually imposed as a constraint. For example,
a certain maximum lift coefficient may be required for low-speed
performance, and constraints may be placed on performance under
dive conditions as well. With formal multipoint aerodynamic
optimization, the constraints associated with off-design performance
requirements can have a significant detrimental impact on the
performance under on-design conditions. Consequently, the off-
design performance requirements must be specified as carefully as
the on-design requirements, which in turn requires a good
understanding of uncertainty and risk under off-design conditions.

VIII. Conclusions
Issues in aerodynamic optimization under variable operating

conditions have been discussed and addressed. The examples show
that it is difficult to pose a multipoint optimization problem a priori

and that the feedback from the optimization can lead to better
problem specification. Pareto fronts are shown to be particularly
useful in revealing the tradeoffs associated with different weightings
in composite objective functions. A method is presented to
automatically select sampling points and their weights to achieve
desired performance over a range of operating conditions, in this case
constant drag over a range of Mach numbers. The results presented
provide insight both in formulating and in solving multipoint
aerodynamic optimization problems.
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Fig. 6 Pareto front arising from maximization of endurance factor
under free transition (ft) and fully turbulent (ft) conditions.
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